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Abstract

The expressions for elliptic integrals, elliptic functions and theta functions given in
standard reference books are slowly convergent as the parameter m approaches unity, and
in the limit do not converge. In this paper we use Jacobi's imaginary transformation to
obtain alternative expressions which converge most rapidly in the limit asm-* 1. With
the freedom to use the traditional formulae for m < \ and those obtained here for m > {,
extraordinarily rapidly-convergent methods may be used for all values of w; no more than
three terms of any series need be used to ensure eight-figure accuracy.

1. Introduction

The Jacobian elliptic functions sn(« | m), cn(« | m), dn(w | m), etc., where u is the
argument and m the parameter, and the complete elliptic integrals K(m) and
E(m) can be calculated in a number of ways. Methods include the use of power
series, Fourier series, Landen transformations, and theta functions, for which
various methods exist including the use of infinite series and products. Most of
these are presented in the chapters by L. M. Milne-Thomson in [1]. These
methods are not useful for all values of argument and parameter. For example,
the power series are useful only for small arguments, and the Fourier series are
not convergent if the parameter approaches unity. The Landen transformations
are rapidly convergent, but are non-trivial to apply. If theta functions are used,
the series and products for these are the most convenient of all for small values of
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the parameter. However, they too do not converge if the parameter approaches
unity.

It is known that Jacobi's imaginary transformation may be simply applied to
recast the expressions for theta functions so that they are most rapidly convergent
in the limit as the parameter tends to unity. However, explicit presentations of
these recast series seem not to have been given, except by Eagle [2, Section 3.53]
who considered non-standard functions. The existence of these alternative expres-
sions seems to be almost unknown.

In this paper, alternative series and products for theta functions are obtained
using the imaginary transformation. These results are then used to give alternative
expressions for the elliptic functions which also converge most rapidly in the limit
where previously-presented expressions do not converge. Finally, alternative
methods for the calculation of complete elliptic integrals are developed. These are
shown to be the simple complement of well-known methods but, remarkably,
seem to be unknown.

2. Theta functions

Theta functions are entire functions of the argument z, which also depend on a
parameter m which is usually in the range 0 < m < 1. The zeros of the theta
functions form an infinite rectangular lattice on the z plane, while the functions
themselves have a real period, and an imaginary pseudo-period which will be
described below. There are several different definitions of the theta functions;
initially the definition used here will be that used by Whittaker and Watson [4].
Subsequently these will be related to other definitions of the theta functions.

Consider the four functions defined by the Fourier series:

Uz,q) = 2 1 (-OV+'/^sinUAi + V2)2z], (1.1)
n=0

82{z,q) = 2 2 q(n+l/2)2cos[(n + l/2)2z], (1.2)
n=0

93(z,q) = 1 + 2 2 q"2cos2nz, (1.3)

04(z, q) = 1 + 2 f (-1) V2cos2«z, (1.4)
n=\

where q is the nome q = q(m) — exp(-^rK'/K), in which K = K(m) is the
complete elliptic integral of the first kind and where K' — K{\ — m). The theta

https://doi.org/10.1017/S0334270000003301 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000003301


[31 Elliptic integrals and functions 49

functions can also be obtained by infinite products, as given by [4, Section 21.3]:

0,(z, q) = 2G<7'/4sin z fl 0 - 2 9
2 n cos2z + q4n), (2.1)

«=i

00

62{z, q) = 2G<7l/4cosz f[ (l + 2<?2"cos2z + qAn), (2.2)
n= l

^ M ) = <?n (l + 29
2"-1cos2z + 9

4 " - 2 ) , (2.3)

*4(*. ?) = G 5 0 - 2?2""1cos2z + ?
4 " - 2 ) , (2.4)

where G is the infinite product

G= n ( i - ?
2 " ) .

From these it can be simply verified that the zeros of the functions form an
infinite rectangular lattice as shown on Figure 1, the interval between zeros being
•n horizontally and irr vertically, where T = iK'/K, such that q — exp(/7rr).

The theta functions defined in (1) and (2) are singly-periodic with real periods.
It can be shown that 0, and 62 have period 2w, while 03 and 94 have period IT. By

tt. t*.

7TT

Figure 1. Part of complex plane, showing lattice of zeros. These zeros are those of the theta functions
6,,62, 63 and 04 if each function has the origin marked 1, 2, 3 and 4 respectively.
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increasing z in (1) by TTT it can be shown that the following pseudo-periodic
relations hold:

ey(z + 1rr,q) = -q-1e-l2%(z,q), (3.1)

82(z + *T,q) = q-*e-i2%(z,q), (3.2)

03(z + 1rr,q) = q->e-'2%(z,q), (3.3)

04(z + TTT, q) = -q-le-a%(z, q). (3.4)

An important property is that

^-(0,q) = 82(0,q)03(0,q)6A(0,q), (4)

for which a rather lengthy proof is given in [4, Section 21.41].

3. Jacobi's imaginary transformation

The transformation is suggested by the rectangular array of zeros as shown in
Figure 1, for dividing z by T ( = iK'/K) is equivalent to a rotation of -TT/2 and a
scaling of | T |~', so that the zeros of a theta function of argument Z/T would have
a real interval of -n, and an imaginary interval of TT/T. This factor 1/T is equal to
-iK/K' and so the nome corresponding to an imaginary interval of W/T is
qx — exp(/7r/r) = exp(-vK/K'), which is precisely the complementary nome,
qx{m) = <7(1 — m). From this outline it seems that two theta functions, one of
argument z and nome q, and the other of argument Z/T and nome qx, have the
same simple zeros and may be related to each other. That they are related and the
form of this relationship can be established following the procedure of [4, Section
21.51], for the case of 83, as follows.

It can be simply verified that the zeros of 83{z, q) and 03(Z/T, qx) are simple
zeros at z = (k + {)ir + {n + ^)WT, where k and n are integers. The ratio of these
two functions, denoted by/(z), is an entire function with no zeros, hence the ratio

f(z + vr) _ 83{z/r + 7T, qx) / 03(z/r, qx)

f{z) 03{z + nr,q) / 83(z,q)

is also an entire function with no zeros. Rearranging, and using the fact that
03(z + 77, q) = 63{z, q) and the pseudo-periodic relation (3.3), this gives

/ (z + 77T)/ / (Z) = qe'2z = exp i(2z + WT). (5)

The quantity on the right can be expressed as exp /((z + 77T)2/77r)/exp i(z2/Trr),
and if g(z) is introduced such that
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then (5) gives g(z + nr) = g(z), so that g(z) has an imaginary period of TTT.
Similarly it can be shown that g(z + IT) — g(z), so that it also has a real period,
of IT. Thus, g(z) is a doubly-periodic, entire function. As 03 is bounded near the
origin it can be shown that g(z) is bounded near the origin. As it is doubly-peri-
odic, it is bounded everywhere, and hence by Liouville's theorem, it is a constant,
g (for a particular value of m). Hence

8,{z,q) = g-
lexP(z2/iTrT)83(z/T,qi), (6.3)

and it may similarly be shown that

6x(z,q) = ig-xexv(z2/iTTT)0x{z/7,qx), (6.1)

62(z,q) = g-xexv(z2/iTTT)dA(z/T,qx), (6.2)

and
04(z, q) = g"1 exp(z2//7TT)02(z/T, qx). (6.4)

To determine g, (6.1) may be differentiated, and substituting z — 0 gives

but use of (4) and (6) gives g~2 = IT"1, g = ±(K/K')i/2, and considering (6.3)
at z = 0 it is clear that the positive sign should be taken.

The results as given by (6) are very useful, for values of the theta functions may
be obtained from the transformed theta functions, which use the complementary
nome qv As q -* 1, and the original series (1) become slowly convergent, then
qx -+ 0, and the expressions on the right side of (6) are very rapidly convergent.
Now, these alternative explicit expressions for the theta functions will be given.

4. Alternative series and products

Substituting the series (1) into the right side of (6) gives

6x(z, q) = 2(K/K')i/2exp(-z2K/K'v) | (-l)^{'I+1/2>2sinh[(/I + \)2zK/K>\,
n = 0

(7.1)

82(z,q) = (K/K')l/2exp(-z2K/K'<!r)\\ +2 2 (-l)V2cosh(2«ztf//i:')k

(7.2)

83(z, q) = {K/K')X/\xp{-z2K/K'ir)\\ + 2 f qf co^n^/K')\, (7.3)
I n=\ J
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and

64(z,q) = 2(K/K')l/2exp(-z2K/K'w) f q\n+i/2?cosh[(n + ±)2zK/K'].

(7-4)

Whereas the nome appeared in the original series (1) as q" , the complementary
nome qx appears in these series as q" . If m < j , the series (1) should be used,
whereas if m > {, the scries (7) are more rapidly convergent. Provided this
boundary of m = ^ is observed, the fortunate and powerful result is obtained that
the expansion parameter used need never be greater than q{\) = e~n = 0.04321,
which is raised to at least power n2 in the nth term. These must be among the
most rapidly convergent of all series as well as the simplest, for the coefficients in
both (1) and (7) are either +1 or -1 in every case.

It is perhaps surprising that functions which are periodic in the real part of z
should be described by rapidly-convergent series of functions which are so clearly
non-periodic as the hyperbolic functions. However, this is not much more
remarkable than the fact that the series x — x3/3\+x5/5\ approximates a
periodic function. In the use of the hyperbolic series (7) for arguments with a
large real part, the hyperbolic functions may become large, rendering convergence
slow. This is avoided if it is recognized that the functions 6y and $2 have a real
period of 2m, while 63 and 64 have a real period of m. Hence

dj{z,q) = 6j(z{mod2m),q) iorj= 1,2,3,4,

so that the actual value of %{z) used in (7) can always be made to lie in the range
(-77, IT). Thus the greatest magnitude of ^Jt(z) used in the calculations is IT. For
sufficiently large z the hyperbolic functions in (7) all vary like exp(2nzK/K'),
which on substituting the largest value z — m, becomes qx~

2n, and the individual
terms in (7.2), for example, vary like qf~2n, so that successive terms are of
relative magnitude 1, qx, q\, q\, The last term need never be greater than
(0.04321)9 « . 5 X 10~12: three terms are an excellent approximation!

If the Fourier series (1) are used when z has a large imaginary part, then similar
problems may occur. In this case the pseudo-periodic relations (3) can be used so
that the series calculations need never be performed with an imaginary part of z
greater than m in magnitude, that is:

dj{z + ir2K'/K,q) = (q-2e->*')rdj{z,q) fo r /= 1,2,3,4,

where r is any integer. Analysis similar to that for the hyperbolic series shows that
successive terms vary like 1, q, q*, q9,..., so that three usually suffice.

Although the infinite-product expressions are not so rapidly-convergent as the
series, the results of the imaginary transformation are here presented for com-
pleteness. Substituting the imaginary transforms (6) into the products (2) gives
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0,(z, q) = 2ql/4(K/K')X/2G} exp(-z2K/K'v)sinh(zK/K')
00

X II (l - 2?2ncosh(2zX"/A'') + q4n), (8.1)
n=\

62(z, q) = {K/K')X/2G,cxp{-z2K/K'-rt)

X II (l - 2^2n+1cosh(2zA-/A"') + <72(2n+1>), (8.2)

63\z,q) = yK/K) G| exp(—z K/K'trj

X n (l + 2^2n+1cosh(2zA"/A-') + ^ 2 ( 2 n + 1 ) ) , (8.3)
n = 0

and
04(z, q) = 2qY4{K/K')X/2Gx exp(-z2K/K'n)cosh{zK/K')

X n (l + 2^1
2"cosh(2zA'/A") + q4n), (8.4)

n=\

where G, = 11"= ,(1 - q2"). In the products (2) and (8) it can be seen that the
nomes appear raised to the power 2n, whereas in the series (1) and (7) they are
raised to the power n2. Clearly the series converge more quickly, and are to be
preferred in most applications.

5. Neville's theta functions

The theta function notation used by Neville (see [3] and [4, Section 16.36]) is of
greater convenience in calculating elliptic functions, as will be seen in §6 below.
These four theta functions are 6S, 6C, 6d and 0n, which are simply 0,, 02, 63 and 84

respectively except that they are expressed as having u = 2Kz/w as argument
(with spacings of zeros 2 AT and i2K'), dependence on the parameter is not shown
explicitly, and they are scaled so that in the case of 0s the derivative at zero is
unity, while the other three have a function value of unity at zero. Thus,

Bc{u) = 92(z, q)/02(0, q),

*M = 93(z, q)/63(0, q),

and
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It should be noted that the expression given in [1, Section 16.36.6] for 0s is
incorrect, the factor of m in the denominator having been omitted. Now, use can
be made of (4) and the formulae given in [1, Section 16.38] to give the relation-
ships between the two sets of functions:

6s(u) =[v/{2m^mY2K)Y/2Ox(z,q), (9.1)

6c(u)=[«/2m'"'2K]l/262(z,q), (9.2)

6d(u) = [«/2K]l'%(z,q), (9.3)

and

[Y/264(z,q), (9.4)

where m, = 1 — m. For a given value of m, the quantities mx, K, K', q and q'
may be calculated from expressions obtained in Section 7, then with z = iru/2K,
either of the series (1) or (7) may be used to calculate the 0s(u) etc., depending on
whether m S {.

6. Jacobian elliptic functions

These are doubly-periodic meromorphic functions, each of which may be
defined as the ratio of any two of the theta functions 6S, 0C, 0d and 6n, so that each
elliptic function has the zeros of the theta function in the numerator and poles
corresponding to the zeros of that in the denominator. The Jacobian elliptic
function ab u may be defined as

ab M = ab(« | m) = 0a{u)/6b{u),

where a and b may be any two of the letters s, c, d and n and where dependence
on the parameter is shown by m itself. The most commonly-encountered func-
tions of the twelve possible are sn u, en u and dn u, and it is possible to obtain
any of the other nine from ratios of these. To obtain explicit formulae for
calculating them, the formulae (9) may be used:

(z, q)/84(z, q).

The series for these theta functions (1) or (7) may be substituted to give the
following explicit formulae for the elliptic functions, where the infinite series have
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been replaced by the first three terms. If m < \ :
Usez = iTu/2K a.r\&

sn M = z —

/ mxq \ ' / 4 c o s z + ?
2cos3z + <?6cos5z + • • • . ,

en u = 2 I , (10.2)

2<74cos4z —

3z + q6 cos 5z

— 2^rcos2z + 2<74cos4z —

and

i / 4 1 + Iqcoslz + 2g4cos4z + • •• .
dn M = m ' 4 3- . (10.3)

1 2tfcos2 + 244cos4z

Use w = 7TU/2K' and

. ,. sinhw — q,rsinh3w + <7i sinh5w — • • • . .
snM = w " 1 / 4 — — , (11.1)

coshw + o, cosh3w + a, cosh5w + • • •
_ 1 / Wi \ l / 4 1 - 2gx cosh2w + 2qf cosh4w

2 \ ŵ f1 / coshw + #2cosh3w + q\cosh5w + • • •

and,

_ 1 / m, \ ' / 4 1 + 2<7lcosh2w + 2gfcosh4w + • • •

2 \ 9i / coshw + o,2cosh3w + qf cosh5w + • • •

As each of these functions has a real period of AK and an imaginary period of
iAK', no matter how large the value of u, it is a simple matter to bring the value
of M to be used in calculations to have a maximum real magnitude of 2K and
imaginary magnitude of i2K'. If this is done, the series in the numerators and
denominators are all rapidly convergent and for eight-figure accuracy may be
truncated at the terms shown. The largest neglected terms are proportional to q6

or gf, which is never greater than 6 X 10~9, provided the limitations in m are
observed. If greater accuracy is required, the series can easily be extended by
inspection, where the general term of q°, q2, q6... is q"<-"+l\ and of q°, q\ q4,...
is q"\

From the expressions (10) and (11) the limiting values of the elliptic functions
as m approaches 0 or 1 can simply be obtained. Using [1, Section 17.3.28]:

m^oV ml m-*\\ml ) 16

and

77

m—*Q m-* 1 ^
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gives: as m -» 0, s n « ^ sin u, en u -» cos u and dn u -» l,and as AM -» 1, sn w -»
tanh M, en M -» sech u and dn u -* sech w.

7. The inversion problem: calculating elliptic integrals

In many applications it is the parameter m which is known initially whereas to
appiy the series given in this work the elliptic integrals K, K' and the nome q
must be known. The calculation of these quantities is one of the classical
problems in the field of elliptic functions—the inversion problem. There has
never been a simple and explicit method for solving this over all values of m,
despite the Landen transforms, and a useful series for small m presented origi-
nally by Weierstrass [4, Section 21.8]. Unfortunately this series is not convergent
in the limit m -* 1, which may explain its absence from [1], perhaps the most
widely-used collection of results in this field.

Here, the alternative series developed in the present work will be used in an
approach complementing that of Weierstrass so that K can be calculated over all
values of m with rapidly-convergent series. A technique is used which is similar to
that of Weierstrass, but using the complementary functions (q{ instead of q, and
so on). From [4, Section 21.8]:

and substituting the qx expansions (7.2) and (7.3) gives

m . / 4 = l-2ql + 2qt----
l 2 2 t

If qi is known initially, this provides a convenient way of calculating m. In
practice, m is usually known, and this becomes a transcendental equation for qx,
which could be recast as a series for that quantity, however a more rapidly
convergent procedure is obtained by introducing e,:

_ 1 - m1/4

1 ' / 4 '

where ex -> 0 as m -> 1. Substituting for m1 / 4 gives

03(O, q) ~ g2(0, q)
2 £ l «,(<), q) + 9,(0, q)
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where the series in the numerator and denominator converge even more rapidly
than those presented in Section 4. It is easily shown that this is equivalent to

_
1

where the dependence on the parameter is in this case actually qf. The object is,
however, to obtain qx as a function of e, and so (12) can be used to give

qx = e, + 2ef + \5e\ + 15Oej3 + O(el7). (13)

An identical series exists for q as a function of e = ^(1 — m' / 4 ) / ( l + /w1/4),
given in [4, Section 21.8], which is most suitable for m ^ {. Thus, as m, need
never be taken greater than \, e, is always less than 0.04321, and for give-figure
accuracy, only one term in (13) need be taken! It is interesting that this is the first
series in this work where the coefficients are unable to be written down after
inspection of the first few.

Having calculated qx, K' is obtained using the result given in [1, Section
16.38.6]:

K' = (V2)*32(0) = ( V 2 ) ( l + 2 9 l + 2qf + 2q\ + • • • ) \ (14)

and K obtained from the definition of q}:

K=(K'/«M\/ql). (15)

Each of the results (13), (14) and (15) is simply the complementary form of those
given by Weierstrass (see [4, Section 21.8]) but with m, e,, qu K' and K replacing
my,e,q,K and K' respectively. While this seems obvious in retrospect, it has not
been shown or pointed out explicitly. For example in [4, Section 21.8] it is stated
that the Weierstrass form can be used even for moderately large m, but without
mentioning that it is useless as m -» 1 and without mentioning the existence of a
complementary form better suited for m> j . For m =£ \ it is clearly advanta-
geous to use the original Weierstrass form.

It is often necessary to calculate the complete elliptic integral of the second
kind, E(m), or its complement E' = £(1 — m). An explicit method capable of
high accuracy which uses quantities already calculated above is as follows. In [1,
Section 17.3.23] a formula is presented:

E ( 2 - m )— = + 2
K 3 (if 24

(16)

which is clearly useless if m -» 1, q -» 1. However, in Section 17.3.13 of the same
book, Legendre's relation is presented:

EK' + E'K - KK' = IT/2. (17)
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If m < I , then E can be found from (16) and subsequently E' from (17).
Otherwise, qx and K' can be used in (16) to give E', and (17) used to obtain E.
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