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Abstract. We study the Dehn functions of the fundamental groups of complexes of
groups. We study a function known as the Howie function, which has a natural geometric
formulation. We make use of the Howie function to obtain an upper bound for the Dehn
function of the complex of groups. And we show a connection between the Howie
function and actions on complexes.

0. Introduction. If G is a finitely presented group then its Dehn function speaks of
the underlying geometry of the group. For example, G is hyperbolic (in the sense of
Gromov, see [5]) iff its Dehn function is linear. Thus studying the Dehn function is one of
the basic problems in geometric group theory.

In [1], the Dehn functions of amalgamations and HNN extensions were studied. The
results there can easily be applied to graphs of groups where the edge groups are finite.
Modulo a technical result about subnegativity (see below for the definition), the result is
that the Dehn function of the fundamental group of the graph of groups is bounded above
by the maximum of the Dehn functions of the vertex groups.

Complexes of groups with finite edge groups (see [2]) are the next obvious case to
conisder. We restrict ourselves to developable complexes, i.e., those arising from a group
action.

Suppose <§ is a developable finite complex of groups with finite edge groups. Let H
be the fundamental group of the graph of groups on the one-skeleton. Letting 8 be the
maximum of the Dehn functions, 5u's, of the vertex groups, from [1] we have that 8,, < 8,
where < stands for being of less type (definitions given below) and / denotes the
subnegative closure of f.

The fundamental group of fj is the quotient group G = H/N where N is the normal
closure of the labels on the two-cells. It seems natural to expect that 5<-; should depend on
8 (or 5//) and the geometry of the complex. This is made precise with the Howie function,
Ih/,, of the complex (first introduced in [3]). Our main result is that

8a < 8 ° hsi

In the latter part of the paper, we relate the Howie function to group actions on
complexes, identifying it with the Dehn function of a naturally arising complex.

The layout of our paper is as follows. In § 1 we recall a few preliminary facts about
Dehn functions and complexes of groups. And we algebraically define the Howie
function. In § 2 we prove two lemmas and give a geometric interpretation of the Howie
function.

In § 3 we prove our main result about the Dehn function for a complex of groups. In
§ 4 we study group actions.

1. Preliminaries. To establish notation, we start by recalling the definition and a
few basic facts about Dehn functions (see [1]). Suppose X is a finite two-complex. Let w
be an edge-circuit in A"1 that is null-homotopic in X. Then there is a singular disk (D,j)
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spanning w, i.e., D is a two-dimensional disk, / is a transverse map with j(dD)<zX\ and
j\dD represents w (after choosing an orientation of dD). We define Ax(w) =
min{a(D) | D is a singular disk spanning w}. Here a(D) is the area of the transverse map/,
i.e., the number of sub-disks in the picture of the map. Note that we could get an
equivalent formulation of AA-(w) by using van Kampen diagrams, i.e., combinatorial maps
of simply connected finite planar complexes, and their area. In any case, the Dehn
function of X is the function

?>x(n) = max{AA-(iv) | w is a circuit in A'1, null-homotopic in X, with |w| ̂  n}.

We could also, in an analogous fashion, define the Dehn function, S&, of a finite
presentation SP: Inessential edge-circuits are replaced by words w that represent the
identity and A&(w) is defined to be the least n such that we can write w as a product of n
conjugates of relators or their inverses. It is clear that if P is a finite presentation and X is
the associated two-complex, then 5^ = 8P. Also observe that if X is not a finite complex,
we can still define the Dehn function by replacing "max" with "sup". Of course in such a
case, the Dehn function may take on the value of +°°.

The Dehn function may change with change of presentation. However, the type of
function does not change. By "type" we mean the following: Given / , g:N\{0}—»N, we
say t h a t / < g if there are constants a, b, c so that for all n the following holds:

f(n) <a. n + b . g(c. n)

We say that/and g are of the same type, and we write f = g, if both f<g and g < / a re
true.

If P, and P2 are finite presentations of the same group, then 8Pl and 8Pl are of the
same type. More generally, if X, and X2 are finite complexes with isomorphic
fundamental groups, then 8Xl = SXy Thus when we speak of the Dehn function of a
group, we are speaking of a function only defined up to equivalence of type.

We say a function / i s subnegative if/(«) +/(m) ^f(n + m). Given a function h, we
write h for the subnegative closure of h, i.e., the smallest subnegative function greater
than or equal to h. For convenience sake, when we speak of the subnegative closure, / , of
a function / , we will assume that / ( I ) s 1. This does not affect the type of the resulting
function so has no impact on our results, as we are only interested in functions up to type.
We make use of the subnegative closure when we obtain our upper bound for the Dehn
function of a complex of groups.

We now turn to complexes of groups (see [2] and [3]). For a complex of groups, the
fundamental group (and hence its Dehn function) is determined by the 2-complex of
groups on the 2-skeleton. Moreover, the groups assigned to the 2-cells have no effect on
the fundamental group. Hence, for our purposes, it suffices to regard a complex of groups
as a triple (X,%(f>) where A1 is a connected 2-complex, (X\ <§) is a graph of groups on
the 1-skeleton of X, and cf> is a corner labeling function: for each directed corner a of A* at
the vertex v (i.e., directed edge of the link lk(v)), <f)(a) e % and <j>{a) = (/>(«)"'.

For the rest of this paper, we fix a complex of groups with X finite, each vertex group
% finitely presented, each edge group % a finite group, and ^ developable (i.e., it arises
in a natural way from a group action on a 1-connected complex). And we will abuse
notation and use just $ to refer to the complex of groups.

We need to recall some notation about words in a graph of groups. As in [7], to
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define the group of a graph of groups, we could either choose a basepoint and work with
loops based at that point, or work modulo a maximal tree. We will take the latter
approach. Let y be a directed edge of X\ We identify % with its image in %,{y). Write
a >-*ay for the monomorphism ^,—» Gl(y), and Wy for its image. A word W is a pair (c, )x)
where c = y]y2... y,, is an edge-path in X' and /x = (g0,... , gn) is a sequence of elements
gi e %. with Vj = o(yi+]) = t{yj). We will refer to c as the A'-path of the word W. Then W
represents the element goy\g\ • • • yng,,.

By the length of a word we mean the length of the A'-path. Note that length zero
words are those where the edge-path c is a degenerate edge-path, i.e., a single vertex. If
the A'-path is a circuit then allowing for any cyclic permutation of it, yields the notion of a
cyclic word.

A cyclic word W of positive length can be represented by a pair (c,/x) where
fi = ( l ,g i ,g2 , • • • ,gn)- If W has length zero, say with c the degenerate path at the vertex
v, then n = g() e %. We say that two cyclic words W and W of length s 1 are equivalent
if, for some closed edge-path c, W and W are represented by words (c,(i) and (c , / i ' ) ,
respectively, where n = (l,gt,... ,g ) , /x' = (l,g\,... ,g',,), and there is a sequence
(fli,.. . , a,,), «, e ^ , such that g,' = a>['giar+] with indices mod n.

The elements of the fundamental group H of the graph of groups (A1',^) are
represented by words (after choosing a maximal tree as in [7]). Equivalent cyclic words
represent conjugate elements. Note that by [1], the Dehn function of H is bounded above
by the maximum of the Dehn functions of the vertex groups.

To define the fundamental group of the complex of groups <S, we need to use the
corner labels on the two-cells of X. For each two-cell a of X, choose a boundary cycle of
a. Let r,r denote the cyclic word obtained by reading the edges and corner labels in order
around the chosen boundary cycle. Then the fundamental group of the complex of groups
<0 is the quotient group G = H/N where N is the normal closure of the r,/s.

A cyclic word W is inessential if it represents an element of N. Given an inessential
word W, the element it represents in H can be expressed as a product of conjugates of the
r,/s or their inverses. We write A%(W) for the minimal number of conjugates required in
such a factorization. The function defined by

hV/(n) = supjA./XVV) | W is an inessential word of length at most «}

is called the Howie function of the complex of groups. Note that even though the
underlying complex X is finite, we need, a priori, to take a supremum instead of a
maximum as we are working with the length of the A'-path instead of a length function
arising from a finite set of generators, and there may be some n with infinitely many
words W of length </?.

To bound the Dehn function of G we need to construct a finite 2-complex K with
fundamental group isomorphic to G. We proceed as follows.

For each directed edge x of X, let Ax be the set of non-trivial elements of the finite
group %. For each vertex v of X, choose a finite presentation §>

V = (AV\ Rv) for % with
the property: for each directed edge .v with o(x) = v, we have A, c Av. Let Kv denote the
canonical 2-complex (with a single vertex) associated to the presentation 3PV.

To construct K, start with the disjoint union of the complexes Kv. Attach a 1-cell e*
corresponding to each 1-cell e of A"; if v and v' are the endpoints of e, then the endpoints
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of e* are attached to the unique vertices of Kv and Kv.. (Of course v and v' could be the
same point.) Finally, we attach 2-cells corresponding to the 1- and 2-cells of X as follows.
Let e be a 1-cell of X and let x be the directed edge obtained by choosing an orientation
of e. For each a e Ax, attach a 2-cell along the circuit x*axx*a~l. Now let a be a 2-cell of
X. Choose an orientation of a and let (c, fj.) be the corresponding cyclic word around its
boundary. Suppose c = xt ... x,, and ^i = (l,gu... ,g,,) and choose edge-paths M>, in
Kiu,) - K»ui+1) representing the elements g,. Then we attach a 2-cell along the circuit
wa = xtwlx$... w,,^lx*w,,.

Let p :/(—»X be the obvious projection; thus p~](v) = Kv for each vertex v of X, and
p~\Q) is a wedge of circles (resp. a point) for each interior point Q of a 1-cell (resp.
2-cell) of X. Observe that K is the two-skeleton of a complex of spaces associated to the
given complex of groups. In particular, K\(K) is isomorphic to the fundamental group of
the complex of groups. (Note that the complex of groups being developable is equivalent
to the inclusion Kv

<-^ K inducing a monomorphism on fundamental groups for each
vertex v of X.)

Given an inessential edge-circuit w in K, we need to be able to construct a singular
disk (DJ) for w and measure its area. To do this, we use the projection p in order to
make use of the geometry of the complex of groups. Our construction works for both
essential and inessential edge-circuits. So suppose w is an edge-circuit in K. We will
associate a cyclic word, Word(w), in (X\ <£) to w as follows: The circuit w projects to the
circuit p{w) in X]. Write w in the form w = x*wx ... x*wn where each xf is a directed
edge in Kl projecting to an edge x, in X1 and each w, is a closed edge-path in K'
projecting to a vertex v, of X\ Let g, be the element of the vertex group cSVi represented
by w,. Then take Word(w) to be the cyclic word represented by (c, /!,), where c = xt . . . x,,
and p. = ( l ,g , , . . . ,gn). Observe that it is immediate that if w is inessential in K then
W = Word(w) is an inessential cyclic word in c§.

2. Howie diagrams and the Howie function. If we take an inessential edge-circuit w
in K and project and perform the above construction, then we get an inessential cyclic
word W - Word(w) in CS. The Howie function tells us that we can write W as a product of
no more than /J«(|VK|) conjugates of the two-cell labels r,/s or their inverses. We need to
use this to construct a singular disk for w mapping into K and be able to bound its area.
First we will construct a labelled van Kampen diagram over X, also known as a Howie
diagram.

A Howie diagram (see [3]) in ^ is a triple (Q,/, A) w h e r e / : Q ^ X is a combinatorial
map, Q is a planar 1-connected finite 2-complex, and A is a corner labeling function
assigning to each directed corner a of Q, both interior and exterior corners, an element of
the vertex group ^f(v) (where a is incident to v) with A(a) = A(a)~', and such that the
following properties are satisfied:

(HI) If v is a vertex of Q and a , , . . . , a, are the directed corners of Q at u in order
according to some orientation of the plane (thus, forming a loop around v),
then A(a,). . . A(a,) = 1 where the product is taken in ^/(u).

(H2) If a is an oriented 2-cell of Q, then the cyclic word obtained by reading the
labels on the directed edges (via / ) and the corners of a (via A) in order
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around da (in the direction of the orientation of a) is equivalent to the cylic
word on the oriented boundary of/(cr).

We will often write f:Cl—>X for the Howie diagram, i.e., the corner labelling
function A is understood. Also, we write a(Q.) to mean the area of the combinatorial map,
i.e., the number of two-cells of ii.

By the cyclic boundary word of a Howie diagram we shall mean the cyclic word
obtained by reading the images (in A'1) of the directed edges and the exterior corner
labels in order around a boundary cycle tracing the boundary of the planar complex once
in the direction of the preferred orientation of the plane.

Recall that the Howie function is defined in terms of A%. The following proposition
relates Howie diagrams and the Howie function. See [3, Theorem 2.6] for a related result.

PROPOSITION 2.1. Let W be a non-trivial inessential cyclic word in 'S. There exists a
Howie diagram f.Q^X with corner labelling function A whose cyclic boundary word U is
equivalent to W and with a(Q) =

Proof. The essence of the proof is a "bunch of lollipops" construction as in [6].
However, as there are some subtle technical considerations involved with Howie diagrams
(for example, the resulting diagram has boundary word only equivalent to the original
word), we provide a detailed proof.

Choose a word (c,/x) representing W, say where c = xtx2... x,, and /x =
(\,g\,. • • ,g,,)- It should be noted that c is non-trivial, by the developability assumption.
Let vv, be an edge-path in Kl(r) representing g, for each /. Then the closed edge-path
.vftV|.v*w2... x*w,, determines a circuit w in K{ such that Word(w) = W.

Since W is inessential, we can choose a sequence ru r2,... , rm of r,,'s or their inverses,
such that the element of H represented by (C,/JL) is a product of conjugates of
r,, r2,... ,r,,,. Corresponding to r, is an attaching circuit u, of a 2-cell of K such that
Word(«,-) is a cyclic word representing rh

A standard construction yields a transverse singular disk (D,j) in K spanning w
having subdisks D\,D2,. • • , Dm where O, maps to the two-cell of K with boundary «,-.
Now the composition /; ° /: D —»X is a singular disk in X. Let £ be the preimage of the set
of midpoints of 1-cells of X; thus £ is a compact 1-manifold properly embedded in D. Put
A = dD U ( U A ) U£, the "picture" of (D,p°j). Since CS is developable, each vertex
group % embeds in G. Now if A were not connected, we could find a loop w in D\A
separating A. And then we could use the injectivity of 7r1(/?~'(u)) in n^K) to redefine the
map p ° j on the interior of w so that the new map has picture missing this interior. Hence
we may assume that A is connected. Then taking the complex dual to the picture we get a
van Kampen diagram /:Q—>X. Observe that we can take Q to be embedded in D with
one vertex in each component of D\A and with a 1 -cell dual to each component of £.

The proof is completed by defining a corner labelling function A satisfying the
conditions (HI) and (H2) and showing that the boundary word U is equivalent to W.

Suppose v is a vertex of Q and a is a corner incident at v. Then v is contained in
some component V of D\A and a corresponds to an arc y in dlAQ1 joining two points P,
and P2 of Q 'n£ . Now f(v) is a vertex in Xx. Consider the closed neighborhood
S = star,vi(/(u)) of f(v) in X\ Observe that the inclusion map of Kf{u)<-*p~\S) induces
an isomorphism of $,,„) onto n^(p~\S)). Recall that the basepoint of Kf(v) is/(u)*. We
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also take f(v)* to be the basepoint of p~\S). For each point P of £2' D £, choose a path
j8/» joining f(v)* to P. Then the loop (3Pl . y. PT>2

] is a loop in 5 based at /(u)*, and so
represents an element of <§fiv). Define the label of the corner a to be this group element.

By construction, the product of the corner labels around the vertex v is homotopic to
j(dV), a null-homotopic loop in p~'(5). And if x is a two-cell of Q, then the cyclic
boundary word of x is equivalent to Word(w,-), the cyclic word around a 2-cell of X. And
finally, the cyclic boundary word U of Q is equivalent to Word(w) = W, as required. •

An immediate consequence of this proposition is the characterization of the minimal
spanning area of an inessential cyclic word W as

= min{fl(Q) | where Q is a Howie diagram with boundary word equivalent to W}

And the Howie function of *& is given by

h<o(n) = sup{A<<;(U
/) | W is an inessential cyclic word of length at most n).

We now turn to a lemma that helps us handle equivalent cyclic words. Recall that we
are writing S for the maximum of the Dehn functions, Su's, of the vertex groups.

LEMMA 2.2. Let w and u be circuits in K] such that Word(tv) and Word(u) are
equivalent cyclic words. Let I be the maximum of the lengths of w and u. Then there exists a
singular annulus (A,j) in K with one boundary component mapped to each of w and u
such that

l +8(4.1)^8(5.1).

Proof. The hypothesis implies that w and u may be expressed as edge-paths:

... x*wn and xfulx^u2.. .x*un

where p(x*) = x{,... ,p(x*)=x,, are directed edges. Let g, and h-t be the vertex group
elements determined by the w, and w,, respectively. By the definition of equivalent cyclic
words, there exist elements a, E % satisfying

hi = a?gia7+] (indices modulo n).

It follows that for each i, the circuit MfV'iv/fl^1, is null-homotopic in the appropriate
vertex complex Kv. Hence, we can form a singular annulus A mapping into K as depicted
in Figure 1 (the case n - 4 is shown) such that

<n + 8(\w\ +

< / + 8(4. /)

as required.
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AT,

Figure 1

3. Bounding the Dehn function. We now come to our result about the Dehn
function of (S. We recall some of our notation in the statement of the theorem.

THEOREM 3.1. Let (X, % <j>) be, as above, a developable complex of groups, with
underlying complex X a finite complex, vertex groups finitely presented, and edge groups
finite groups. Write G for the fundamental group of the complex of groups. Let 8 be the
maximum of the Dehn functions of the vertex groups. Then

Proof. Since K is a finite complex with fundamental group G, it is enough to show
that there are positive integers C,, C2, C3, such that

For this implies that

8K(I) < C, . MO + UC2.1 + C3 • MO).

8K (id + 5)

Recall that for each 2-cell a of X, there is a corresponding 2-cell of K attached, say,
along the circuit wtr. Let C = max{|tv(T|:o- is a 2-cell of X). Then we shall verify that the
above inequality holds with the constants:

C, = 1 + 5(15 . C), C2 = 18, C3 = 3 . C.

To this end, let w be a null-homotopic edge-loop in K such that |w|</. Then
Word(iv) is an inessential cyclic word.

Let H be the fundamental group of the graph of groups on A1'. First of all, assume
that Word(iv) is trivial. Then w represents the identity in H. Since the edge groups are
finite, it follows from [1] that there exists a singular disk for w with area at most 8(1).

So assume that Word(w) is non-trivial. Then, by virtue of Proposition 2.1, there
exists a Howie diagram (Q,/, A) whose cyclic boundary word U is equivalent to
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Word(w), and a(Q.) = A«(Word(w)) < M 0 - We construct a singular disk (D,j) in K
spanning w by replacing the vertices of the Howie diagram with singular disks and
attaching an annulus to the outer boundary component.

Start with the graph Q'; remember that it is embedded in the plane. Choose small
disjoint closed balls Vu... , Vk in the plane, one centered about each vertex of Q'. The
boundaries of these balls are unions of arcs that correspond to the corners of Q; define j
to map each arc (in a piecewise linear fashion) to an edge-path in the appropriate Ku

representing the label assigned by A to the corresponding corner of Q. Then, by the
definition of a Howie diagram, it follows that the boundary of each ball, Vh is mapped to a
null-homotopic edge-loop, «,, in some Kv; extend the map j over the interior of V, to a
least area singular disk in Kv; thus a{Vi) < 8u(|u,-|). Let Do = Q' U (U V,), and extend the
map j over Do in the essentially unique way so that the remnants of the edges of Q1 are
mapped (in a PL fashion) onto edges of K.

Let 2 , , . . . , I,,, be the bounded components of R2\D0; notice that m ^ MO- Then
the boundary of each S, is mapped to a circuit w, in K} such that, by the definition of a
Howie diagram, Word(w,) is equivalent to Word(n>,,) for some 2-cell a of X (recall that
wa is the boundary of a two-cell in K). We may assume that u>, is gotten from w,T by
interleaving elements from the various edge groups. Each element of each edge group was
chosen as a generator (recall that the edge groups were all finite groups). Hence if the
A'-path of w,T was of length n, then the length of w, is no more than 2n larger than that of
HV. It follows that K| < 3 . \w,,\ < 3 . C.

So, by Lemma 2.2, there is a singular annulus in K of area at most 5(15 . C) with one
boundary component mapped to each of w, and wlT. Furthermore, the boundary
component mapped to w,r can be capped off with a disk mapped to a 2-cell in K, thus
giving a singular disk in K with area bounded above by 1 + 5(15 . C) = C,.

Similarly, the boundary of the unbounded component of (R2\D(I is mapped to a
circuit, wK, in Kx such that Word(tv3C) is equivalent to Word(w), and |H>K|<3. |M>|<3. /.
Again, invoking Lemma 2.2, we see that there is a singular annulus in K of area at most
5(15. /) with one boundary component mapped to each of H>* and w.

The singular disk D spanning w is now obtained from Do by attaching a singular disk
of area at most C, to the boundary of each S, and by attaching a collar (i.e., an annulus)
of area at most 5(15./) along the boundary of the unbounded component of IR2\D0.
Hence,

But since 5 is subnegative and increasing,

< 5 ( 3 . / + 3C.a(Q)).

We conclude that

a(D) < C, . a(Q) + 5(18. / + C3. fl(fl)) =£ C, . M O + ^(C2.1 + C3. h*(
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Taking the supremum over all null-homotopic edge-loops w in K with |w|^/ yields
the desired inequality.

4. Group actions and Dehn functions. Turning now to group actions, we make the
following restriction: Let G be a (discrete) group. Then a G-complex shall mean a
CW-complex Y, whose 2-cells are attached along non-trivial circuits in V1, upon which G
acts cellularly such that the cells of Y are permuted without inversions. Hence, given a
G-complex V, the quotient Y/G has a natural cell structure such that the orbit map is
combinatorial. We say that a G-complex V is cocompact if Y/G is compact.

Our considerations only depend on the 2-skeleton of a G-complex. Thus, we shall
henceforth assume that all G-complexes are 2-dimensional. Indeed the following situation
is our primary concern: let Y be a (2-dimensional) connected G-complex such that:

• the stabilizer of every vertex is finitely presented,
• the stabilizer of every 1-cell is finite
• Y is cocompact.

These are the circumstances that correspond to the type of complexes of groups we have
been considering.

First of all, we construct an associated complex of groups. Let X = Y/G with cell
structure inherited from Y. Form a graph f, called the principal face graph of X, by
taking as vertex set the cells of X and attach an edge between a pair of vertices,
corresponding to cells of codimension one, for each occurrence of the lower dimensional
cell in the attaching region of the other cell. We view f as being embedded in X in the
obvious piecewise linear fashion with the vertices of f at the "centers" of the cells of X.
Likewise, let F be the principal face graph of Y, embedded G-equivariantly in Y so that
TIG = f.

Choose a maximal tree T of F, and orient each 1-cell y of F so that its origin
corresponds to a cell of X of greater dimension than that of its terminus. We write o(y)
and t(y) for the origin and terminus, respectively, of this orientation of y. Then, by [7],
there is a section s: cells T-*cells F of the orbit map, and an element g(y) e G for each
1-cell y of F satisfying:

(1) o(sy) = so(y);
(2) t(sy) = g(y). st(y);
(3) g(y) = 1 for all y in T.

(Hence the restriction of s to T determines an embedding into F.)
We use the section s on T to define a complex of groups on X. Recall that a vertex of

F corresponds to a cell of X, and an edge of F corresponds to a pair of cells (a cell and a
principal face). We assign to the vertex b of F, i.e., b a cell of X, the stabilizer subgroup
%, = G,{h). We assign to the 1-cell y of F, i.e., the pair of cells b cc where b = t(y) is a
principal face of c = o{y), the monomorphism %-*% given by a^aK(y) = g(y)~*ag(y).
Note that y corresponds to an occurrence of b in the attaching map of c—there may be
other occurrences. Note that ^ ' ^ c % by condition (2) above.
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To define the corner labeling function, we associate to each directed corner a of A" at
a vertex v the unique edge-path yiy2T3y4 in F (of length four) with endpoints at v going
around the corner in the appropriate direction. The label on a is then defined as

It can be readily verified that (X, % </>) is a complex of groups and is developable.
Let p: K —> X be a complex of spaces, constructed as in § 1, for (X, % (/>). Recall that

each cell of X has a canonical "lift" to K, i.e., the preimage of each n-cell of X contains a
unique Az-cell of K. In this way, the principal face graph f cX can be "lifted" to K;
identify F with the image of such an embedding into K. Let n^{K) be the fundamental
group defined using the tree T as an "extended base point" (in an analogous fashion to
that of [7] for graphs of groups). Then n^K) is generated by the edges of T\T and the
edges of the vertex spaces Kv, v e X[.

Given a directed edge z in Kv, denote by g(z) the image of the element it represents
in 7T|(/() via the natural homomorphism nt(Kv)—>GV <= G. And for each directed edge z
of F, let g(z) be as above. Then the function z»—>g(z) determines a homomorphism

Let H = kerh. Incidentally, it can be shown [2] that ker/z is isomorphic to n
Denote by 7i:K,,—>K the (regular) covering space corresponding to H, and identify G
with the group of covering transformations as follows: Since T is contractible, its preimage
in K,, is a disjoint union of homeomorphic copies of T that are permuted transitively by
the covering group. Let f be a fixed choice of such a lift of T. Given any directed edge z,
in the set of generators specified above, let z denote the unique lift of z to K,, with origin
in T. Then identify g(z) with the unique covering transformation such that g(z) • t
contains the terminus of z. It is easily seen, by elementary covering space theory, that this
identification is merely the isomorphism of G with the group of deck transformations.

To complete our set-up, we observe that there is a unique G-equivariant map
p : KH —> Y such that p(t) = s(T) and the diagram:

is commutative (see also a similar construction in [4]). To see this, let e be an open cell of
X and put p~'(e) = Ke. Note that 7t~](Ke) is a disjoint union of copies of a covering space
of Ke that are permuted transitively by G. Denote by Ke the component of rt~\Ke) that
meets T. Then for g e G, the component g(Ke) is mapped by p onto the cell g. s(e) of Y
in the unique way that induces p on the orbit spaces.

We say that a circuit )3 in V' and a cyclic word W over (X, % </>) are related if there
exists a circuit w in K\, such that p(w) = /3 and Word(;r(>v)) = W.

LEMMA 4.1. Let /3 be a circuit in Y1 and let W be a cyclic word related to j8. Then j3 is
null-homotopic in Y if and only if W is inessential, in which case
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Figure 2

Proof. Fix a circuit w in K), such that p(w) = j8 and Word(;r(w)) = W.
Suppose W is inessential. If W is a trivial word, then n(w) is a (null-homotopic)

circuit in some vertex space Kv, so w lies in some component of n~\Kv). However, since
each such component is mapped to a vertex of Y, p(w) = B is a trivial circuit. Thus

Having dealt with the trivial case, now assume that W is non-trivial. By Proposition
2.1, there is a Howie diagram (Q,/, A) whose cyclic boundary word U is equivalent to W
and fl(Q) = A.«(W). Since W and U are equivalent, Acs(W) = A«(t/). Our goal is to "lift"
this Howie diagram to a singular disk, of the same area, spanning /3.

Initially, we embed Q in the interior of the standard closed unit ball B2 and form a
handle decomposition of B2, dual to Q, as follows. Let o-,,... , a,,, be the open 2-cells of
Q, thus m = a(O), and choose an embedded disk (0-handle) D, in cr, for each /. Let
2° = SB2 U (U £>,)• As 1-handles, we choose a collection of disjoint "bands" (homeomor-
phic to [0,1] X [0,1]) in B2, one dual to each 1-cell of Q, as depicted in Figure 2. Denote
by £' the union of 2° and all the 1-handles. Note that the closure of each component of
B2\E' is a disk (2-handle) containing a unique vertex of Q.

Define a map ja:1
n—» K such that

• for each 1-handle E, say dual to the 1-cell e of Q, the components of EDS"
(attaching regions of E) are both mapped homeomorphically onto the unique 1-cell
f{e)*otKmp-\f{e));

• for each 0-handle £>,, jo | dD, is a piecewise linear representation of the attaching
circuit of the 2-cell p~'(/(o",)), and /',,|IntD, is a homeomorphism onto this open
2-cell of K;

• /„ | dB2 is a piecewise linear representation of the circuit n(w).

Next we define y'i :£' —» K, extending/,,, as follows. Let C be the closure of a component
of B2\Q\ say with boundary cycle e] ... e,,. Then 2 ' n C is the union of a 0-handle D^ (or
dB2) and a collection £ , , . . . , £ „ of 4-gons (halves of 1-handles), where £, connects dDA.

https://doi.org/10.1017/S001708950003233X Published online by Cambridge University Press

https://doi.org/10.1017/S001708950003233X


44 STEPHEN G. BRICK AND JON M. CORSON

Figure 3

(or dB2) to e,; refer to Figure 3(a). By the definition of a Howie diagram (or because the
boundary word is equivalent to W), there exists a sequence (au... , a,,), a, e %., such that
for each directed corner a of Q, say from e, to ei+i, \(a) = aXi4>(f(a))a~+s where
Xi =/(e,). Recall that each nontrivial element of ®v. is a generator, thus an edge in Ko{x.y
Then ;, | £, is, defined to be, the combinatorial map into K indicated in Figure 3(b).

Finally, we define j2:B
2^>K, extending;,, thus: Let V be a 2-handle in B2, say dual

to the vertex v of Q. Note that /, | dV is a null-homotopic loop in Kv representing the
product of the corner labels around the vertex v. Hence we can extend to a map of V into
Kv c K. Let j2 be the extension of y',, defined in this way.

Recall that j21 dB2 is a piecewise linear representation of the circuit n(w). Hence
there is a unique lift j2:B

2—*K,.,, covering j2, such that j2\dB2 is a piecewise linear
representation of the circuit w. Now (B2,j), where j = p ° j2:B

2^> Y, is a singular disk in
V spanning p(w) = B. So & is null-homotopic. Moreover, note that the restriction of j to a
1- or 2-handle of B2 contributes no area, as the image of such a handle, via /, is an edge or
vertex of V, accordingly. Hence, the area of (B2J) equals m, the number of 0-handles,
which is the area of Q. Consequently, Av(/3) < AW(W).

Conversely, suppose B is null-homotopic in Y and let (B2,j) be a minimal area,
singular disk in Y spanning B. Denote by £>,,..., Dm the collection of disjoint disks whose
interiors formy'~'(y\ Y'), and let £ be the preimage of the set of midpoints of edges of Y;
so £ is a 1-manifold. Put A = dB2 U (U A) U £ and form a 2-complex Q, embedded in B2,
dual to A.

First we construct a singular disk (B2,j,,) in K,, for w in the following manner.
Initially, for each /, we define jH \ Dj so that Int D, is mapped homeomorphically onto an
open 2-cell in p~\j(D)) such that on the finite set of points D, D £, p °j,, \ (Z), n £) =
j | (D, n £). Likewise, j , , | dB2 is chosen to be a piecewise linear map representing the
circuit iv such that p °jH | (SB2 f~l £) = ; | (dB2 D | ) .

Next we define jH | ̂ . Let £ be a component of ^, and let P be the midpoint of a
1-cell of V such that E<zj~\P), Then we choose a path in p~\P) joining the points
j,i(dE); it should be remembered that p~\P) is path connected.

Having defined j , , on A, let V be the closure of a component of B2\A. Then
j(V)<zNv where Nv is the closed neighbourhood in Y\ of a vertex v, consisting of the
initial half of each directed edge y such that o(y) = v. Thus ///(dV) cp"'(iVu), which we
claim is 1-connected. To see this, note that q(Nv) = Nq<v) is such that Kq(v) is a strong
deformation retract of p~\Nq(v)). It follows that the homomorphism induced on
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fundamental groups by the inclusion p~](Nc/(v))-^> K is injective. Hence every component
of the preimage of p~'(Nl/(v)) in KH, for example p~\Nv), is a copy of its universal cover.
Therefore, by the claim, jH \ dV extends to a map of V into p~[(Nv). It is in this way that
we extent the definition of jH to all of B2.

Projecting, via n, gives a singular disk (Bz,j) in K spanning K(W) where j = n° j H .
Now we construct a Howie diagram Q. with cyclic boundary word equivalent to
Word(7r(w)) = W as in the proof of Proposition 2.1. Note that a(Q) = m, the number of
subdisks in A, as J(B2\A) <= X\ It follows that W is inessential and that A ^ W ) < Av(j8),
thus completing the proof. •

THEOREM 4.2. / / Y is a connected G-complex and (X, % <j>) is an associated complex
of groups, then 8Y = 8,£.

Proof. Since a circuit, j 3 c V ' and a related cyclic word W have the same length, the
result follows directly from Lemma 4.1. •

Using Theorem 4.2 and Theorem 3.1, we immediately get the following:

COROLLARY 4.3. Suppose G is a group. Let Y be a cocompact, 1-connected G-complex
where each vertex stabilizer is finitely presented and each edge stabilizer is finite. For each
vertex v of Y, let 8V be a Dehn function for the stabilizer subgroup Gv, and let
8 = max{8v | v e V'}. Then

8C « 8 ° 8Y.

A short argument gives the following result:

COROLLARY 4.4. Let Y be a \-connected cell complex, acted upon properly discon-
tinuously and cocompactly by a group G. Then 8C = 8y.

Proof. The hypothesis implies that each cell stabilizer—in particular for the vertices
as well as the edges—is a finite group, and that there are only finitely many such groups,
up to isomorphism. As we showed in the proof of Theorem 3.1 (here we take 8G to be the
Dehn function of the constructed complex K)

8G(I) < C, . MO
for some constants C,, C2, C,. The function 8 is linear here. Hence it follows that
8(: < hVj. Combining this with Theorem 4.1 yields 8C < 8y.

For the converse, we note that in our construction of K, we can take the generating
set of each vertex stabilizer % to be the finite set ^ \ { 1 } . It follows that given a cyclic
word W of length n, there is a circuit w in K of length at most 2n such that Word(w) = W.
Moreover, if W is inessential then A<A(Wr)< Sj-dwQ; see the construction in the proof of
Proposition 2.1 of a Howie diagram from a singular disk spanning w. Thus, /i<4(«)<
8K(2n) for all n E N\{0}, and hence h^< 8K. But 8C = 8K, by construction, and 8Y = h%,
by Theorem 4.2, thus giving the desired inequality.
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