
O N T H E H E C U B A G A P 

S.FERRAZ-MELLO 

Institute Astronômico e Geofisico, Universidade de Säo Paulo, 
Caixa Postal 9638, 01065-Säo Paulo, SP, Brasil 
sylvio@vax. iagusp. usp. br 

A b s t r a c t . An asteroid captured in the Hecuba gap (2/1 resonance with 
Jupiter) may remain there for a long time before escaping. However, the 
study of the diffusion of orbits in the gap indicates an escape timescale in 
the range 10 7 — 10 9 years. The short-period perturbations of Jupiter's orbit 
play a determinant role in the creation of the stochasticity responsible for 
the escape. 

1. T h e H e c u b a g a p 

The Hecuba gap is the minimum in the asteroid distribution located at 
the place where the asteroids have a mean-motion resonance with Jupiter 
in the ratio 2:1. An asteroid captured in this resonance may remain there 
for a long time before escaping. However, the study of the diffusion of or-
bits in the gap, indicates an escape timescale of the order of 10 8 years or, 
more precisely, in the range 10 7 — 10 9 years, providing evidences linking 
the Hecuba gap with the global stochasticity of the 2/1 asteroidal res-
onance (Ferraz-Mello, 1994a,b; Franklin, 1994; Ferraz-Mello et ai, 1995) 
This scenario contradicts previous ideas in several respects. First of all, it 
is well known that the inner chaotic region of the 2/1 resonance, in the 
planar elliptic restricted three-body problem, is shielded from the outside 
by an extended bunch of regular motions (see the Poincaré maps in Ferraz-
Mello 1994a,b). It is also known that, when the long-period perturbations 
of Jupiter's orbit are taken into account, these regular barriers are not de-
stroyed (Morbidelli and Moons, 1993). The assumptions extending these 
facts to the exact model led to accept the impossibility of a chaotic diffu-
sion able to drive these orbits off this region in a time of the order of the 
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age of the asteroid belt, making necessary ad-hoc cosmogonie hypotheses to 
explain the almost absence of asteroids in the gap. But all Lyapunov times 
computed in the resonant region with an exact Sun-Jupiter-Saturn-asteroid 
model (Ferraz-Mello, 1994a; Franklin, 1994) point to a global stochasticity 
whose origin may be searched in the Chirikov regime created by the com-
plex overlap of low- and high-order secondary resonances. 

The most serious criticisms to this scenario cames from the scarcity 
of precise simulations actually showing the diffusion. In fact, only a few 
results of numerical integrations of fictitious asteroids in the 2/1 resonance 
are available. They are 5 early numerical integrations reported by Wisdom 
(1987), one by Scholl (see fig. 7 in Ferraz- Mello, 1994b) and some more 
recent ones obtained by Henrard et al (1995). Notwithstanding the limited 
timespan of these integrations (the longest reaching only 12 Myr) , half of 
them show important diffusing orbital processes, and the later one shows a 
possible path, through moderate inclinations, leading from the inner chaotic 
region (e ~ 0.1) to high eccentricities. Some more long runs were done by 
Franklin (1994) in the frame of a planar model. In these runs most of the 
solutions escaped, but three solutions remained in the resonance zone for 
more than 120 Myr. 

The aim of this communication is to present some results concerning 
the stochasticity of the 2/1 resonance obtained by means of a planar sym-
plectic mapping and show that the failure of the existing averaged mod-
els in showing a stronger chaotic behaviour cames from the fact that the 
long-period perturbations of Jupiter's orbit are not able, alone, to produce 
such chaos in a planar model. The situation changes drastically when we 
add, to the model, the short-period perturbations whose arguments are 
c o s ( 2 A j u p — 5Asat) and c o s ( À j u p — 2Às at)« 

2. T h e m a p p i n g 

The mapping used is a modified form of the symplectic mapping introduced 
by Hadjidemetriou (1988, 1991). The equations of this mapping are those 
of the canonical transformation spanned by the Jacobian generator W = 
1 + TH where H is the given averaged Hamiltonian, X the generator of 
the identical transformation and r is the map step. The transformation is 
such that the mapping has the same fixed points - with the same stability 
characteristics - as the surface of section of the averaged system. 

The original Hadjidemetriou formulation of the mapping was modified. 
The classical Laplacian expansion of the averaged potential of the dis-
turbing forces, problematic in high eccentricities, was substituted by the 
asymmetric expansion of Ferraz-Mello and Sato (1989) which gives a good 
representation of it even in high eccentricities provided that the motion is 
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T A B L E 1. Main long- and short-period oscillations in ei.e'Wi 

Term Amplitude Frequency 

95 + 0.0441872 4.257493 arcsec/yr 

96 - 157002 28.245530 

-9s + 2^6 - 5735 52.233567 

205 — 96 + 142 -19 .730544 

97 + 18139 3.086756 

~95 + 0 6 + 0 7 + 1982 27.074793 

05 + 06 — 07 + 1936 29.416267 

—λι + 2X2 + G&l 0.000646 G7i - 2 1 2 6 4 . 4 arcsec/yr 

-2Xi + 5λ 2 + TBI 364 C71+1467.2 

a libration of moderate amplitude. 

We consider, generically, an asteroid in a resonance (p + q) : ρ with 

Jupiter and moving in the same plane as the planet. We introduce the 

long-period angular variables: 

ψ = 1±1χ1 + 1χ, σ = φ _ ζ υ 

q q 

and their canonical conjugate actions, respectively Ρ and J. The basic 

function of Hadjidemetriou's mapping is the Jacobian generator 

+ ψηΡη+Ι + rH(Jn+\ , P „ + l , σ η , ψη, tn) 

where r is the map step and Η is the averaged Hamiltonian 

μ 2 + 9 o . 

L = y/μα = — ( J + Ρ ) , μ is the square of the Gaussian constant, rt\ is the 

mean motion of Jupiter and R is the disturbing potential averaged over the 

synodic period. All results in this paper were obtained taking the step r 

equal to the initial synodic period of the asteroid with respect to Jupiter. 

When the orbit of Jupiter is kept fixed, the only possible secular reso-

nance is associated with the angle w — vo\ (with vo\ = const. ) . This secular 

resonance is responsible for the corotation zone seen in the middle of the 

resonance, at high eccentricities (see Ferraz-Mello, 1994a). When the ac-

tual perihelion of Jupiter is introduced, the corotation zone remains almost 

the same since its motion is very slow. However, the resulting increase in 

the number of degrees of freedom may give rise to chaotic regions which 
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were not apparent in the restricted model (Morbidelli and Moons, 1993). 
Table I gives the amplitudes of the long- and short-period perturbations 
in the complex quantity e\.elWl used in this investigation, according with, 
respectively, Nobili et al. (1989) and Simon and Bretagnon (1975). In this 
table #5 ,#6 and #7 represent the proper perihelion of Jupiter, Saturn and 
Neptune, respectively; λ 2 is the mean longitude of Saturn. For the sake of 
allowing a direct comparison of the long- and short-period perturbations 
of Jupiter's perihelion, the perturbation equations of the eccentricity and 
perihelion given by Simon and Bretagnon (1975), which are actually used 
in the mapping, were slightly modified. 

We consider, also, the most important perturbations in the mean lon-
gitude of Jupiter, corresponding to the near commensurability 5:2 of its 
mean-motion with Saturn's According with Simon and Bretagnon (1975), 
these perturbation are given by 

δλτ = ^5.164 χ 10" 4 cos(2Ai - 5 λ 2 ) - 51.502 χ HT 4 s in(2Äi - 5 λ 2 ) . 

3. Scaled models 

In order to go over the barriers that a slow chaos puts to investigation, 
we may introduce artificial parameter variations able to accelerate that 
mechanisms. We have used scaled models related to the real problem by 
a mass gauge. In the case of the restricted model, it is simply a factor 
multiplying the mass of Jupiter. The main frequencies of the planar model 
- the frequency of the perihelion motion and the libration frequency - are 
expected to be roughly multiplied, respectively, by this gauge and by its 
square root. The structure of the resonance web will be altered. Thus, in 
order to keep this alteration small and avoid new secondary resonances to 
appear and create artificial domains with different diffusion patterns, we 
limit ourselves to gauges close to 1. 

In what concerns the motion of Jupiter, the frequencies of the long-
period perturbations are amplified in the same proportion while the am-
plitudes remain the same. A mass gauge is likely expected to amplify only 
the amplitudes of the short-period perturbation of Jupiter's orbit; how-
ever, in order to preserve the resonance web, as much as possible, also the 
frequencies are linearly amplified in the scaled model. 

One must kept in mind that no perfect scaling is possible in a non-linear 
problem. Therefore, results got with a scaled model cannot be considered 
as true before verified with non-scaled models. This rule is followed in this 
investigation. 
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Figure 1. Median times to reach e = 0.56 in three cases: (a) Jupiter orbit with 
short-period perturbations only; scaled Mg = 1.4. (b) Jupiter orbit with short- and 
long-period perturbations; scaled Mg = 1.4. (c) Jupiter orbit with short- and long-period 
perturbations; non scaled (Mg = 1.0). In each histogram the initial eccentricity varies 
from 0.11 to 0.35, from left to right, with a 0.03 step. 

T A B L E 2. Solutions reaching the limit value e = 0.56 (Mg = 1.4) 

Perturbations in Limit reached Limit reached 

Jupiter's Motion in less than 10 9 yrs in less than 10 8 yrs 

Long-period only 15% 10% 

Short-period only 68% 32% 

both 95% 72% 

4. Results and Conclusions 

Thanks to the speed of the mapping, we have been able to made a great deal 

of different experiments. A more systematic study was done selecting a grid 

of initial conditions delimited by initial eccentricities in the interval 0.1 Ι -

Ο.35 and semi-major axes in the interval 3.272-3.284 AU (the middle of the 

resonance lies close to 3.276 A U ) . Initial values of σ and w — w\ were fixed 

at 0° . Scaled models were computed in a net of 40 points in this domain 

with many different combinations of the perturbations included in Jupiter's 

orbit. Table II summarizes results obtained using a mass gauge 1.4 (that 

is, the mass of Jupiter and the frequencies of the perturbations introduced 

in Jupiter's orbit were multiplied by 1.4) and including all perturbations of 

table 1. 

Table 2 shows that, when the model adopted for Jupiter's orbit include 

both short- and long-period perturbations, the transition allowing its eccen-

tricity to increase happened in 95% of the studied cases. The limit e = 0.56 

was set arbitrarily (it corresponds to a perihelion distance 1.44 A U ) . The 

results show clearly that, in the long run, in the planar reduction of the 
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2/1 resonance, the perturbations of Jupiter's orbit whose frequencies are 

5^2 — 2wi and 2r&2 — n\ are more important than the long-period pertur-

bations of Jupiter's orbit. The distribution of the times necessary to reach 

the limit e = 0.56 as a function of the initial eccentricity, from 0.11 to 0.35 

in steps of 0.03, are shown in Fig. 1 (a) and (b ) . 

The important role played by the short-period perturbations of Jupiter's 

orbit are confirmed when the experiments are done without any scaling 

(mass gauge Mg = 1.0). When both short- and long-period perturbations of 

Jupiter's orbit are considered, 38% of the solutions reached e = 0.56 in less 

than 10 8 years and 87% reached it in less than 10 9 years. The distribution 

of the times necessary to reach the limit e = 0.56 as a function of the initial 

eccentricity, from 0.11 to 0.35 in steps of 0.03, is shown in Fig. 1(c) . 

These results show that the global stochasticity verified with numerical 

4-body models, including Saturn, does not came from the direct action of 

Saturn, as it was sometimes suspected, but from the main short-period 

perturbations of Jupiter's orbit. 
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