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ABSTRACT. We investigated relations among solar activity, climate and cosmogenic radiocarbon in a time series of various 
astrophysical, geophysical, archaeological and historical data. We studied records of tree-ring thickness, aurora borealis, the 
catalog of visible sunspots, sedimentary deposits from lakes and oceans, global glacial advance and retreat chronology, polar 
ice cores and human migrations. In these data, we searched for evidence of medium- and long-term solar cycles. Application 
of different spectral techniques to the atmospheric 14C concentration time series indicates the existence of spectral lines at a 
few dominant periodicities ranging from 11 yr to ca. 2 ka. Different laboratories have confirmed the presence of the ca. 210- 
and 2000-yr spectral features in long 14C series in tree rings. The ca. 210-yr 14C cycle is probably caused by heliomagnetic 
modulation of the cosmic-ray flux. The extrema of both the ca. 210-yr 14C period and solar activity correlate with the cold and 
warm epochs of global climate, at least for the past millennium, and this correlation has the correct sign. The periods of low 
solar activity are well correlated with the Little Ice Ages. The cause of the ca. 2 ka 14C period is, as yet, uncertain, but evidence 
from the analyses of various natural records shows that it could have a solar origin. In this study, we obtained powerful man- 
ifestations of solar activity and climate warming epochs at ca. 1500, 3800, 6100, 8200, 10,500 and 12,600 BP. A similar fea- 
ture occurs in epochs of minimum amplitude in the 14C content in tree rings. Thus, solar activity may affect both the 14C 

content in the Earth's atmosphere and climate. 

INTRODUCTION 

Detailed studies of radiocarbon content in tree rings provide a unique data set for precise 14C age cal- 
ibration of materials formed in isotopic equilibrium with atmospheric CO2. We focus here on the 
Holocene, i. e., the last 10 ka. The beginning of this interval corresponds to an uncertain calendar age, 
because the observed atmospheric calibration curve flattens near 10 ka. De Vries (1958) was the first 
to demonstrate evidence for secular variations of natural '4C content in the Earth's atmosphere. Wil- 
lis, Tauber and Munnich (1960) showed that atmospheric 14C activity appears to be cyclical, with a 
period of ca. 200 yr over the past 1300 yr. Suess (1965) showed that tree rings contain quantitatively 
short-term wiggles and secular variations in the content of cosmogenically produced 14C in the atmo- 
sphere. However, it has long been assumed that the measured short-term fluctuations, with ampli- 
tudes of <1% in the natural 14C concentration, represent random variations. The precise measure- 
ments needed to define the short-term fluctuations induced by solar activity will require high 
precision as well as sensitivity (Damon et al. 1978). Accuracies of the 14C measurements were insuf- 
ficient to demonstrate the irrefutable existence of the wiggles. These earlier measurements of 14C 

concentration were subject to large laboratory uncertainties and statistical fluctuations. After numer- 
ous interlaboratory checks on measurements of 14C content in identical samples in different coun- 
tries, methodological flaws were largely identified and eliminated. One must be cautious in separat- 
ing and interpreting short-term cyclical fluctuations from the 14C content, because spectral analysis 
of series of data with high noise components raises the question of extracting the true harmonics 
from the spurious spectral lines. However, reliable experimental material now accumulated in the 
14C content in samples of known age suggests the possibility of selectively separating, from the 14C 

data, information generated by a complex of interfering astrophysical and geophysical processes. 
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High-precision measurements of the 14C content in tree rings of known age to study causes of 
changes in atmospheric 14C concentrations in the past began ca. 20 yr ago in different world labora- 

tories. Many measurements have been made, both of continuous annual series of tree-ring samples, 

covering time scales from decades to hundreds of years, and of continuous samples of decadal or 

bidecadal rings, spanning several millennia (see, e.g., Stuiver and Kra 1986; Stuiver and Becker 

1986; Pearson et at. 1986).14C measurements show not only three types of fluctuations: short-term 

(years to several decades); medium-term (decades to several hundreds of years); and long-term 

(thousands of years), but also their details. These fluctuations are characterized by a different ampli- 

tude of change in the 14C concentration: fractions of a percentage, 1-2% and as much as 11%, respec- 

tively, for short-, medium- and long-term fluctuations (see Fig. 1, Stuiver and Kra 1986). 

We examine here the medium-term variations of a period of ca. 210 yr and long-term variations of 
a period ca. 2 ka in terrestrial 14C concentration, and the relation between the 14C record and some 
cyclical natural processes. 

MANIFESTATION OF MEDIUM- AND LONG-TERM 14C FLUCTUATIONS 

By examining 14C content, one is able to draw important conclusions about the 14C activity level in 
wood samples of known age. First, it is important to note Suess' (1978) experimental data that 
extended to ca. 7 ka BP from which he plotted his calibration curve. A characteristic feature of these 
data is the almost identical uncertainty in all the measurements (ca. 0.4%). Admittedly, considerable 
gaps exist in his series at different intervals. At the University of Arizona, Damon et al. (1980) com- 
piled >1200 determinations of 14C activity in blocks of rings of bristlecone pine and giant sequoias 
extending beyond 7 ka BP, in a compendium of results from various laboratories (Klein et a1.1980). 

High-precision 14C measurements of dendrochronologically dated wood samples, each covering 10 

yr, are now available for AD 1950-6000 BC (Stuiver and Becker 1993). The U.S. bristlecone pine 
and the German oak chronologies covering the last 9150 cal yr (Stuiver, Pearson and Braziunas 
1986) have recently been extended to ca. 11,400 BP (Kromer and Becker 1993). 

One can observe the physical manifestation of the ca. 210-yr cycle in the relative deviations of the 
measured 14C activities upon removal of the long-term trend. Figure 1 shows these ca. 210-yr 14C 

concentration oscillations during the last two millennia derived from several results summarized in 

Stuiver and Kra (1986). Note that the magnitude of these 14C content oscillations are sensitive to 
geomagnetic field intensity changes. Most data on the behavior of the intensity of the archaeomag- 
netic field indicate that values of the dipole moment peaked 2000-2500 yr ago (e.g., see Merrill and 
McElhinny 1983). 

The mathematical manifestation of this 210-yr period can be obtained by applying statistical tech- 
niques of time series analysis. The classical method analysis, Fourier harmonic and Blackman- 
Tukey spectral analysis, have been applied first to the cosmogenic 14C data. Using Fourier analysis 
of the 14C content variations, Houtermans (1971) reported the ca. 200- and 2000-yr periodicities. 
The Fourier spectrum of 14C variations during the period 5300 BC-AD 150 in bristlecone pine sam- 
ples measured in La Jolla showed a conspicuous spectral line at ca. 200 yr (Suess 1980). Neftel, 
Oeschger and Suess (1981), and even more conclusively, Sonett and Suess (1984) confirmed this 
period in the La Jolla spectrum. 

Figure 2 shows changes in the 14C content based on tree-ring data, ranging back to ca. 11,400 BP. 

Note that the major anomalies occur every ca. 2 ka and represent the strongest feature in the 14C 

record on a long-term scale. This feature becomes more pronounced when filtering the raw data, 
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Fig. 1. Changes in 14C concentration relative to an average value (Stuiver and Kra 1986). The intervals indi- 
cate a repetitive pattern of medium 14C oscillation. 

according to Dergachev (1992). The maximum amplitude of the large-scale oscillations occurs at ca. 
450, 2700, 4950, 7200 and 9450 BP, and minimum amplitude of these oscillations occurs at ca. 550, 
3800, 6100 and 8300 BP. Four larger medium-term fluctuations (Hallstattzeit maxima) occur every 
2100-2400 yr in the 14C concentration for the past seven millennia, based on compendia of results 
from various laboratories (Damon, Cheng and Linick 1989; Damon and Sonett 1992). These max- 
ima occur at 250-450, 2700, 4870 and 7150 BP. The strongest feature in the 14C record with the long 
period of ca. 2 ka was extracted from La Jolla data (Suess 1978) after removing the long-term sinu- 

Fig. 2. Bidecadal values of 14C content changes to ca. 11,400 BP (Stuiver and Reimer 
1993). Arrows show anomalously high values of 14C content. 
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soidal trend curve with a period of ca. 10 ka (Dergachev and Akhmetkereev 1990). The long-term 

trend can be determined in various ways (e.g., sine equations, moving averages, splines). 

Much fruitful research has been done in recent years in applying statistical techniques to 14C data. 

High-precision 14C data from tree rings have a well-defined spectrum, consisting of numerous peri- 

ods of detrended data ranging from 11 yr to ca. 2400 yr. After Houtermans (1971), who reported a 

periodicity of ca. 2 ka, this large-scale variation of terrestrial 14C was established by analyzing the 

spectral characteristics of the high-precision data with different techniques of time series analysis 

(e.g., Damon, Cheng and Linick 1989; Sonett and Finney 1990). At present, most experimental 

workers are not skeptical about the existence of periodicities in the natural 14C content, and mean- 

ingful spectral lines at several periods in the 14C sequences are not widely accepted. These periodic 

occurrences constitute an important source of scientific information. 

A LINK BETWEEN CYCLICITY OF 14C AND FLUCTUATIONS OF SOLAR-TERRESTRIAL PHENOMENA 

The 210-Year Period 

Let us observe the appearance of the ca. 210-yr period in various natural processes. The Maunder, 

Wolf and Sporer minima of solar activity are well-documented periods, separated by the ca. 200-yr 

intervals. Schove (1955) was among the first to observe the 210-yr cycle with the naked eye. He 

showed that the aurorae are more numerous in the even centuries than in the odd centuries. Chisty- 

akov (1985) observed less solar activity during the odd 17th century than in the even 16th century. 

Xu (1990) found clear evidence of the 210-yr cycle in the historical solar record of ancient China. 

The 200-yr trend is being documented on a global scale. Alexeev (1987) determined the variations 

for periods of 10.5 ± 0.5 yr, 85 ± 10 yr and 220 ± 20 yr in meteorite falls (although causally related 

correlations with solar variability are not evident). In his analysis of the rate of change of the angle 

of geomagnetic field direction, using contemporary and historical archaeomagnetic data, Tarling 

(1988) showed the periodicity to be ca. 200 yr. Goncharov (1993) showed that the invasions of great 

nomadic tribes from the Central Asian Steppe into agricultural regions of Europe, China and South 

Asia from the 4th to the 16th centuries were connected with the 210-yr cycle. These invasions 

occurred in middle latitudes after a dip in solar activity. Castagnoli et a!. (1991) reported that the 

spectral analysis of three carbonate profiles from the Ionian Sea showed periodicities similar to 

those detected in the 14C spectra. An important group is a triplet at 206 yr, amplitude-modulated of 

2000 yr. High-precision 14C data are now well established for most of the Holocene, where 

medium-term 14C variation is attributed to changes in the 14C production rate. 

Ribes et al. (1990) proposed a simple model describing the convective processes at the time of low 

sunspot activity, and estimated the change of solar luminosity through the 11-yr and longer cycles, 

such as the Maunder minimum. With this model, the mean variation of the solar constant over sev- 

eral decades could cause changes of 0.5%. The model, then, is a plausible physical mechanism link- 

ing the Maunder minimum to the Little Ice Age and to changes in solar activity. 

Most of the observed variability of atmospheric 14C concentration of at least the last ca. 11,000 cal 

yr can be attributed to helio- and geomagnetic modulation of the 14C production rate induced by the 

cosmic-ray flux. The influence of glacial-interglacial climate change on atmospheric 14C concentra- 

tion had a secondary effect (Akhmetkereev and Dergachev 1981). Stuiver and Braziunas (1993) also 

showed that the differences among glacial, deglacial and interglacial conditions had only secondary 

effects, as follows from two facts; 1) the model-derived 14C production history agrees with the 14C 

rate derived from documented changes in the geomagnetic field over the past 30 ka; and 2) the 

global-scale 14C reservoirs respond relatively quickly to changes in ocean mixing processes, such 
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that the new atmospheric 14C level will have recovered after ca. 2 ka (ocean turnover time). But rel- 
atively quick changes in ocean exchange between the mixed layer and deep sea could cause rather 
large changes in 14C concentration.) Major changes in the rate of deep-ocean ventilation occurred 
prior to 12,500 BP. 

The 2000-Year Period 

It is difficult to analyze numerous time series of natural data containing information on the 2 ka 
cycle. Bray (1968) detected the 2 ka wave in glacial advances of the 14th-18th and 4th-7th centuries 
BC. He associated them with depressions of solar activity. The appearance of giant peaks in 1375 and 
1328 BC as well as in AD 1185 and 1239 (from the historical records of solar eclipses) indicates the 
extraordinary power of phenomena on the Sun (Chistyakov 1991). This example is direct evidence 
of the existence of the 2 ka cycle in the solar processes. 

Apart from the transitions from glacial to interglacial, the 2 ka period is fixed in numerous terrestrial 
examples of climate change. By studying Barbados corals, Bard et al. (1990) established two rises 
of ocean level at ca. 12,300 and 10,000 BP. These results agree with epochs of 14C concentration 
minima. From studies of the ocean sediments off the coast of Portugal, Bard et al. (1989) determined 
a significant rise in ocean level from 14,500-13,500 BP. Two warm periods in Scotland, England and 
Ireland ca. 13 and 10 ka BP were documented by Atkinson, Briffa and Coope (1987). Chappelar et 
al. (1990) found distinct oscillations of methane in air bubbles of ice cores from the Vostok station 
at 13 and 10 ka BP. The methane concentration minimum occurred from 12-11 ka BP, corresponding 
to the cold period in the Younger Dryas. 

Both thermoluminescence determinations on fine-grained sediment and 14C determinations on var- 
ious organic fractions of paleosols from the profile of the Loess Plateau in central China (Zhou et al. 
1992) indicate a weakened summer monsoon during the last glacial maximum followed by strength- 
ening of the summer monsoon, beginning ca. 13 ka BP. The next increase of Asian summer monsoon 
circulation began from ca. 10,200 BP. Hertelendi, Sumegi and Szoor (1992) reconstructed the cli- 
mate of the Great Hungarian Plain based on mollusk fauna and isotope geochemical data from 7-32 
ka BP. The warmest climates with high July temperatures occurred ca. 8500, 12,500 and 17,000 BP. 
Comparing these paleotemperatures with temperatures of existing climate curves shows the same 
climate periods. 

The maxima and minima of extreme changes of mean annual ocean temperatures in the Atlantic dur- 
ing the past 16 ka can be estimated from Arabadzhi's (1988) results. Maxima appear at 15,600, 
13,300, 11,100 and 6200, 4100,1050 BP. Minima are at 14,600, 12,800, 10,500 and 5100,2800,400 
BP. From 11,100-6200 BP (for maxima) and 10,500-5100 BP (for minima), the temperature curve 
reaches an extremely high peak; it seems that these intervals cover two fluctuations within a ca. 2 ka 
period. The mean interval between temperature extrema is 2400 ± 230 (12 events). 

Using pollen data from France (Guiot et a1. 1989) for the past 140 ka, Dergachev and Chistyakov 
(1992a) compiled a series of temperature maxima (estimated from a theoretical series of tempera- 
tures of ca. 2 ka). The temperature maxima of this series coincides well with the ocean temperature 
maxima in the Atlantic and with the low minima of the 14C content. Pestiaux, Berger and Duplessy 
(1987) also found these quasiperiodicities in the 180 record in ice cores and foraminifera from ocean 
cores. Secular climatic variations affect all living things. Archaeology offers important evidence of 

1Purely oceanic forcing is difficult to explain, involving exchange processes and complex ocean chemistry. Consideration of 
this problem is beyond the scope of this paper. 
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climate change and durations of both favorable and unfavorable intervals for human settlements. 

Dergachev and Chistyakov (1993) found that the most northern Paleolithic and Neolithic settle- 

ments, between which the typical period of abandonment averaged ca. 2 ka, correlate well with the 

warming periods. 

ON THE STRUCTURE OF THE 2000-YEAR CYCLE 

We established that the interval of the ca. 2 ka cycle includes alternating warm and cold periods (lit- 

tle climatic optima and little ice ages). We observed these alternations before, during and after gla- 

cial periods (Dergachev and Chistyakov 1992b). Increased solar activity is accompanied by climate 

warming and vice versa. Weak and strong peaks (several decades' duration) are superimposed on the 

2 ka trend in the variations of 5180 concentration (Johnsen, Dansgaard and Clausen 1970). Oscilla- 

tions in 5180 and A14C correlate well during the interval from AD 13001900 (Schove 1981.). Eddy 

(1976) noted that two episodes of strongly decreasing solar activity (the Maunder and Sporer min- 

ima) were preceded by the medieval maximum of solar activity. These episodes correspond to the 

last Little Ice Age and the Little Climatic Optimum. 

From the mean temperature change curve of the Atlantic Ocean (as discussed above), one can esti- 

mate the mean interval between two extrema, which is T = 2400 ± 200 yr. Minima appear (900 ± 300 

yr) (AT) after maxima. We propose that the durations of the warm and cold phases equal AT and the 

duration of the quiet phase is 8T - 800-1300 yr. 

It is well known that climate warming is accompanied by transgressions of the World Ocean and 

regressions of lakes and seas with closed basins. From the data of Kalinin, Breslav and Klige (1975) 

on level fluctuations of the World Ocean and Caspian Sea, Dergachev and Chistyakov (1993) esti- 

mated the mean intervals of the 2 ka cycle structure: T = 2500 ± 300, AT = 700 ± 200, ST =1100 ± 

500 (Fig. 3). The analysis of detailed data on the sharp switch-over of warm and cold climate periods 

and the influences of these changes on human life for the last millennia enable us to represent the 

structure of the 2 ka solar and climatic cycle. Figure 3 shows these three phases: 1) the active (+) 

phase with a high level of solar activity and the little climatic optimum; 2) the depression (-) phase 

with a decrease in solar activity like the Maunder and Sporer minima and the Little Ice Age. This 

phase follows the active phase with the time shift of AT; 3) the quiet phase 8T. Chistyakov (1993) 

estimated the duration of this phase as ST Z 800 yr. Reliable 14C data enable us to trace both the sep- 

arate elements in and the whole structure of the 2 ka cycle. 

T 

eT 

Fig. 3. The structure of the ca. 2400-yr cycle of solar activity and climate. T= 

full period; ST = time from the maximum active phase to the minimum 

depression phase; ST = quiet phase; t = current time; o = the present. 

CONCLUSION 

The last dip of solar activity (the Maunder minimum) ended at the start of the 18th century. In sub- 

sequent centuries, solar activity increased and the climate warmed. The strongest solar cycle was the 

19th cycle with the sunspot maxima in 1957. In subsequent cycles, activity decreased. The last min- 

imum of the 210-yr period in solar activity occurred at the end of the 19th century. The maximum 
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of this cycle should occur in the early 21st century. Climate warming accompanies increasing solar 
activity. Multicentury increases of solar activity are no longer possible. The present levels of solar 
activity and climate correspond to the quiet phase, 8T, which will continue for several centuries. We 
found the possible fluctuations of the Sun's luminosity during the maximum of its activity to be 
small (Dergachev and Chistyakov 1992a). Thus, we conclude that the Sun is a stable system. Much 
effort has been made to find solar cyclicity in the geophysical records. Evidence for a statistically 
significant 11(22)-, ca. 210- and ca. 2000-yr periodicity in various terrestrial indices is increasing. 
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