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§1. Introduction

It is an honour to be invited to contribute a survey article on the work

of George Lusztig in celebration of his 60th birthday.

George Lusztig came from the town of Timisoara in the mixed Roma-

nian-Hungarian speaking part of Romania. He studied at the University of

Bucharest and, after leaving Romania, worked with Michael Atiyah at the

Institute for Advanced Study, Princeton for two years and also completed
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a Ph. D. at Princeton University with William Browder as formal adviser.

Subsequently he came to Warwick University, first as a postdoctoral re-

search worker, then as a lecturer, and finally as a Professor. After seven

years at Warwick he accepted a chair at M.I.T., where he has been working

since.

Lusztig’s exceptional mathematical ability became evident at an early

stage of his career at Warwick. He gave a remarkable 30 lecture M. Sc.

course on the modular representation theory of the general linear group in

which, during the second half, he was working out the theory while giving

the course. There were a few occasions when he was apologetic that the

lecture lasted only 40 rather than 50 minutes because he had not made

sufficient progress since the previous lecture!

His early experience as a mathematician was not without certain diffi-

culties. There was a period during which, for financial reasons, he preferred

to live in a tent outside the Mathematics Research Centre houses at War-

wick University rather than in the houses themselves. He also experienced

problems with the passport authorities in a number of countries so that, for

a brief period, he had no entitlement to live in any country. However these

difficulties did not prevent him from developing rapidly as a mathematician.

§2. The central theme

The central theme of Lusztig’s mathematical work has been to approach

the basic questions which arise in the representation theory of the structures

which appear in Lie theory, such as reductive algebraic groups over the

complex field, real field, p-adic fields, or finite fields; and also their Lie

algebras, enveloping algebras and quantized enveloping algebras.

The methods he has used to achieve solutions to these basic questions

include techniques from algebra and Lie theory, algebraic geometry and

topology, including `-adic cohomology, intersection cohomology and equiv-

ariant K-theory.

The interrelation between different areas of mathematics is one of

Lusztig’s favourite themes, and his use of techniques from such diverse

areas has led to quite spectacular success in determining the characters of

the irreducible representations of the various Lie theoretical structures. We

shall elaborate on this theme in the subsequent exposition.
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§3. Early papers in representation theory

After a number of early papers in topology published between 1965

and 1972, Lusztig’s first substantial work on representation theory was his

1974 book on the discrete series of GLn over a finite field. The irreducible

characters of the finite general linear groups GLn(q) had been obtained

by J. A. Green in 1955. A key role in this theory is played by certain

irreducible representations of degree (q − 1)(q2 − 1) · · · (qn−1 − 1) called

discrete series representations. Lusztig’s work gives an explicit construction

of a module giving a discrete series representation. Other discrete series

representations are obtained by applying Galois automorphisms to this one.

Lusztig’s module is a free module over the Witt ring W (Fq) of the finite

field Fq, which is constructed by homological methods. Suppose q is a power

of the prime p. By using the properties of this module Lusztig was able

to obtain an explicit Brauer lifting of the natural GLn(q)-module V , i.e., a

virtual representation of GLn(q) over W (Fq) whose reduction mod p under

the projection W (Fq)→ Fq gives the modular character of GLn(q) on V .

A second work on representations of general linear groups also appeared

in 1974, written in collaboration with R. W. Carter. The paper ‘Modu-

lar representations of general linear and symmetric groups’ by Carter and

Lusztig studied the polynomial representations of GLn(k) over an infinite

field k. When k has characteristic 0, there is a classical theory due to

I. Schur in which the irreducible representations are obtained. They are in

bijective correspondence with partitions with at most n parts. When k has

prime characteristic p the irreducible representations are still parametrised

by such partitions but their dimensions are mainly unknown. Carter and

Lusztig investigated modules called Weyl modules associated with such

partitions. The irreducible modules are obtained as irreducible quotients

of Weyl modules. It was shown that the structure of the Weyl modules is

influenced by the affine Weyl group, which acts as a reflection group on the

lattice of weights. For each pair of partitions related by a reflection in one

of the reflecting affine hyperplanes and satisfying appropriate additional

conditions, Carter and Lusztig proved the existence of a non-trivial homo-

morphism between the corresponding Weyl modules. Similar results were

obtained about homomorphisms between Specht modules in the modular

representation theory of symmetric groups.

The ideas introduced in this paper have proved quite influential in sub-

sequent work on modular representations of reductive algebraic groups and

symmetric groups.
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§4. The Deligne-Lusztig paper of 1976

There followed in 1976 a paper with P. Deligne which marked the fun-

damental breakthrough in understanding the irreducible characters over an

algebraically closed field of characteristic 0 of reductive groups over finite

fields. These groups include the finite Chevalley groups and their twisted

analogues discovered by Steinberg, Tits, Suzuki and Ree. Such groups can

be obtained as subgroups of connected reductive algebraic groups which are

fixed by a Frobenius endomorphism or its variant.

Thus let G be a connected reductive group over the algebraic closure

K of the field with p elements. Any such group G is isomorphic to a closed

subgroup of GLn(K) for some n. Let Fq be the endomorphism of GLn(K)

given by Fq(aij) = (aq
ij) where q is a power of p. A map F : G→ G is called

a Frobenius map if there exists an embedding of G in GLn(K) such that

F is the restriction of Fq for some q. Let GF be the subgroup of F -stable

elements of G. The Deligne-Lusztig theory investigates the representations

of the finite groups GF .

A key role in this representation theory is played by the maximal tori

of G and GF . A torus in G is a closed subgroup isomorphic to a direct

product of copies of the multiplicative group of K. Any two maximal tori

of G are conjugate. There exist F -stable maximal tori of G, and each F -

stable maximal torus T of G gives a subgroup T F of GF , called a maximal

torus of GF . The F -stable maximal torus T of G is called maximally split

if it lies in an F -stable Borel subgroup (i.e. maximal soluble connected

subgroup) of G. The Weyl group W of G is defined by W = N(T )/T

and is a finite Coxeter group. Assume that T is maximally split. The

F -action on T gives rise to an F -action on W and w1, w2 ∈ W are called

F -conjugate if w2 = w−1w1F (w) for some w ∈W . Then there is a bijective

correspondence between conjugacy classes of maximal tori T F in GF and

F -conjugacy classes of W .

Let θ be a linear character of T F with values in an algebraically closed

field of characteristic 0. Deligne and Lusztig showed how to obtain a gen-

eralized character of GF (i.e., a Z-combination of irreducible characters)

associated with T and θ. They defined this generalized character RT,θ us-

ing the `-adic cohomology of certain algebraic varieties. If θ is a character

of T F in general position then ±RT,θ is an irreducible character of GF . This

gives a number of families of irreducible characters of GF , one family for

each GF -conjugacy class of maximal tori T F , such that different families
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are disjoint. The degrees of these irreducible characters are

±RT,θ(1) = |GF : T F |p′

i.e., the part of the index of T F in GF which is prime to p.

If we consider characters θ of T F not necessarily in general position

we obtain generalized characters RT,θ of GF which can be expressed as Z-

combinations of irreducible characters. In fact each irreducible character of

GF occurs as a component of some RT,θ. Two irreducible characters are

said to be related if they are components of the same RT,θ. This relation

generates an equivalence relation on the irreducible characters of GF which

divides them into equivalence classes called Lusztig series.

We shall assume that the centre of G is connected. Under this as-

sumption each Lusztig series contains just one irreducible character whose

degree is prime to p. Such irreducible characters are called the semisimple

characters of GF . The characters in the same Lusztig series as the unit

character are called unipotent characters of GF . The semisimple characters

have elegant properties, for example there is a simple formula for their de-

grees, but the unipotent characters have turned out to be more difficult to

understand.

§5. The Jordan decomposition of characters

Lusztig showed that a knowledge of the semisimple characters and

unipotent characters of finite reductive groups gives a knowledge of all ir-

reducible characters, by establishing a so-called Jordan decomposition of

characters. This can be seen as analogous to the Jordan decomposition

of elements. Given an element g ∈ GF there exists a unique semisimple

element s ∈ GF and unipotent element u ∈ GF such that g = su = us.

An element of GF is semisimple if and only if its order is prime to p and

unipotent if and only if its order is a power of p. Thus g ∈ GF determines

a semisimple element s ∈ GF and an unipotent element in the centralizer

of s.

In order to understand the Jordan decomposition of characters we need

the concept of the dual group of G. For each connected reductive group G

there is a dual group G∗ in which roots and coroots are interchanged. G∗

is often called the Langlands dual of G. Given a Frobenius map F : G→ G

there is a corresponding Frobenius map F ∗ : G∗ → G∗ on the dual group.

Thus we have a dual (G∗)F
∗

of our finite group GF and these two finite
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groups have the same order. Also there is a bijective correspondence be-

tween semisimple characters of GF and semisimple conjugacy classes of

(G∗)F
∗

. If χs is a semisimple character of GF corresponding to the semisim-

ple conjugacy class containing s∗ ∈ (G∗)F
∗

then we have

χs(1) = |(G∗)F
∗

: CF ∗

|p′

where C is the centralizer of s∗ in G∗. C is also a connected reductive

group.

Now suppose we are given an arbitrary irreducible character χ of GF .

Then there is a unique semisimple character χs in the same Lusztig series as

χ. Let s∗ be a corresponding semisimple element in (G∗)F
∗

with centralizer

CF ∗

. Then there is a bijective correspondence between characters in the

Lusztig series containing χs and unipotent characters of CF ∗

. In particular

the character χ of GF corresponds to a unipotent character χu of CF ∗

. The

degrees of the characters χ, χs, χu are related by

χ(1) = χs(1)χu(1).

This gives the Jordan decomposition of characters. The irreducible charac-

ter χ of GF determines a semisimple character χs of GF and a unipotent

character χu of the centralizer of a semisimple element of (G∗)F
∗

corre-

sponding to χs.

Since the semisimple characters of GF are rather well behaved, the

Jordan decomposition of characters focussed attention on the unipotent

characters. The main thrust of Lusztig’s subsequent work on finite reductive

groups was to gain an understanding of the unipotent characters.

§6. The Harish-Chandra approach

In order to obtain the unipotent characters of GF Lusztig made use

of Harish-Chandra’s ideas for obtaining irreducible characters of finite re-

ductive groups by induction from parabolic subgroups. Any two Borel sub-

groups of the connected reductive group G are conjugate, and a parabolic

subgroup of G is a subgroup which contains some Borel subgroup. Let P

be an F -stable parabolic subgroup of G. Then P has a semidirect decom-

position P = UP L where UP is the unipotent radical of P and L is a Levi

subgroup of P . L is also a connected reductive group, and it is possible

to choose such a Levi subgroup which is also F -stable. Then P F has a

semidirect product decomposition P F = UF
P LF .
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Let φ be an irreducible character of LF . Then φ can be lifted to a

character φP F of P F with UF
P in the kernel. This lifted character can be

induced to GF to give the character IndGF

P F φ. The irreducible components of

this induced character are irreducible characters of GF . This is a method of

obtaining irreducible characters of GF starting with an irreducible character

of LF , which will usually be smaller than GF . An irreducible character χ of

GF is called cuspidal if χ does not appear as a component of IndGF

P F φ for

any proper parabolic subgroup P of G and any irreducible character φ of LF .

Harish-Chandra’s theorem asserts that given any irreducible character χ of

GF there exists a parabolic subgroup P F of GF with Levi decomposition

PF = UF
P LF and an irreducible cuspidal character φ of LF such that χ

appears as a component of IndGF

P F φ. Moreover the pair (LF , φ) is determined

up to conjugacy.

The decomposition of the induced character IndGF

P F φ into irreducible

components was determined by Howlett and Lehrer, who showed that these

irreducible components are in natural bijective correspondence with the

irreducible characters of a certain Coxeter group determined by L and φ.

In particular the unipotent characters of GF arise from cuspidal unipo-

tent characters of LF by this process of lifting, inducing and decomposing.

Lusztig obtained his results on unipotent characters by first determining

the cuspidal unipotent characters and then applying the Harish-Chandra

induction process. When G is a classical group of type A, B, C or D then

GF has at most one cuspidal unipotent character. In exceptional groups

there can be more than one, and Lusztig displayed considerable virtuosity in

determining them. A useful degree formula can be obtained for irreducible

components χ of IndGF

P F φ in terms of the degree of φ and the so-called

generic degree of the irreducible character of the Coxeter group determined

by L and φ. In this way Lusztig was able to obtain the degrees of all

unipotent characters of GF

§7. Families of unipotent characters

Having obtained the degrees of the unipotent characters of GF Lusztig

found that these characters fall into families in a remarkable way. In order

to describe this theory we shall assume for convenience that G is simple and

GF is of untwisted type, i.e., a Chevalley group. The results for twisted

groups are broadly similar but more complicated to describe in detail.

We recall that an F -stable maximal torus T of G is maximally split if

T lies in an F -stable Borel subgroup B of G. If T is maximally split the
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Deligne-Lusztig generalized character RT,1 is the induced character IndGF

BF 1.

The irreducible components of this induced character are called unipotent

characters in the principal series. The endomorphism algebra of the module

with this induced character is isomorphic to the group algebra of the Weyl

group W of G. Thus there is a bijective correspondence between principal

series unipotent characters of GF and irreducible characters of W .

The simplest case occurs when G has type A`. In this case every unipo-

tent character of GF lies in the principal series. For any irreducible char-

acter φ of W the corresponding unipotent character of GF is given by

Rφ =
1

|W |

∑

w∈W

φ(w)RTw ,1

where Tw is an F -stable maximal torus of G corresponding to the conjugacy

class of W containing w.

In general the situation is more complicated. Not every unipotent char-

acter of GF lies in the principal series. Also, given an irreducible character

φ of W , the class function Rφ given above is not necessarily an irreducible

character of GF . However Lusztig showed that each unipotent character of

GF is an irreducible component of Rφ for some irreducible character φ of

W . By using this fact it is natural to introduce an equivalence relation on

the unipotent characters. We say that two unipotent characters are related

if they are components of a common class function Rφ, and consider the

equivalence generated by this relation. The equivalence classes obtained in

this way are called families of unipotent characters of GF .

Similarly the irreducible characters of W may be divided into families.

Two irreducible characters φ, φ′ of W are related if Rφ, Rφ′ contain a

common unipotent character of GF as component, and we consider the

equivalence generated by this relation.

We now have a bijection between families of unipotent characters of

GF and families of irreducible characters of W . It is possible to describe

distinguished representatives both of the families of irreducible characters

of W and of the families of unipotent characters of GF . For each irreducible

character φ of W we may define two polynomials Dφ(t) and Pφ(t). Dφ(t)

is the polynomial such that the degree of the principal series unipotent

character χφ is Dφ(q). Pφ(t) is the polynomial such that the degree of Rφ

is Pφ(q). Dφ(t) is called the generic degree polynomial and Pφ(t) the fake

degree polynomial of φ. φ was called by Lusztig a special character of

W if the highest power of t dividing Dφ(t) and Pφ(t) is the same. It was
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shown by Lusztig that each family of irreducible characters of W contains

a unique special character φ and each family of unipotent characters of GF

contains a unique character of form χφ where φ is a special character of W .

The properties of the special characters can be used to determine the

number of unipotent characters in each family, and also to give a formula

for their degrees. Let φ be a special character of W . The generic degree

Dφ(t) has form

Dφ(t) = cta + terms of higher degree in t

where c 6= 0. There are only a few possible values for the constant c. If G

has type A` c is always equal to 1. If G has type B`, C` or D` c has form

1/2e for some e ≥ 0. If G has type G2, F4, E6, E7, E8 c always takes one

of the values

1, 1/2, 1/6, 1/24, 1/120.

This led Lusztig to associate a certain finite group Γ with the given special

character φ. Γ lies in the class

{1, C2 × · · · × C2, S3, S4, S5}

and is uniquely determined by the property

c = 1/|Γ|.

This group Γ gives the key to understanding the unipotent characters in

the family containing χφ.

Let x ∈ Γ and C(x) be the centralizer of x. Let σ be an irreducible

character of C(x) and M be the set of pairs (x, σ) modulo the action of Γ.

We have

|M | = 1, 22e, 8, 21, 39

for the above possible groups Γ. It was shown by Lusztig that the unipo-

tent characters of GF in the family containing χφ are parametrised by the

elements of M . He also gave a formula for the degree of each unipotent

character in the family in terms of a certain |M | × |M | matrix called the

non-abelian Fourier transform matrix. (This non-abelian Fourier transform

was rediscovered some ten years later by Physicists!). The class functions

Rφ can be expressed in terms of the unipotent characters χF
(x,σ) in the family

F containing χφ by means of this non-abelian Fourier transform matrix.
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For example the group GF = E8(q) has 166 unipotent characters. These

characters fall into 46 families; 23 of which contain 1 character, 18 contain

4 characters, 4 contain 8 characters, and 1 contains 39 characters.

The class functions Rφ are called almost characters. We consider

Rφ = R(χφ) as the almost character corresponding to the principal series

unipotent character χφ. Lusztig defined the almost character R(χF
(x,σ)) for

any unipotent character by an analogous formula. Then by using the Jor-

dan decomposition of characters he defined an almost character R(χ) for

any irreducible character χ of GF . The almost characters form a basis of

the space of class functions and, like the irreducible characters, satisfy the

orthogonality relations. The almost characters have a geometrical signifi-

cance which will appear later.

This remarkable theory of characters of finite reductive groups is un-

doubtedly one of the highlights of Lusztig’s achievement. It is expounded

in Lusztig’s 1984 book ‘Characters of Reductive Groups over a Finite Field’.

Other useful expositions of this theory can be found in the books by

R. W. Carter ‘Finite groups of Lie type, Conjugacy classes and complex

characters’ and by F. Digne and J. Michel ‘Representations of finite groups

of Lie type’.

§8. The Kazhdan-Lusztig paper of 1979

The paper ‘Representations of Coxeter groups and Hecke algebras’ by

D. Kazhdan and G. Lusztig in 1979 marked another fundamental break-

through in understanding the representations of Lie theoretical structures,

for in this paper the celebrated Kazhdan-Lusztig polynomials were defined

and their significance explained.

The purpose of the paper is to construct certain representations of

Hecke algebras. We again assume that GF is a finite Chevalley group with

Borel subgroup BF , and consider the induced representation IndGF

BF (1) over

C. Let H be the algebra of endomorphisms of the corresponding induced

module. H is called the Iwahori-Hecke algebra. The dimension of H is

the number of double cosets of BF in GF , and this is equal to the order

of the Weyl group W . H has a basis Tw for w ∈ W . Let S be the set of

fundamental reflections which generate W as a Coxeter group. Then the

multiplication of basis elements of H is determined by the conditions

Ts Tw = Tsw if `(sw) = 1 + `(w)

T 2
s = qT1 + (q − 1)Ts
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for s ∈ S, w ∈W , where ` is the length function on W and q is the number

of elements in the finite field over which GF is taken.

This definition of an Iwahori-Hecke algebra can be generalized in a

number of ways. In the first place q can be replaced by an indeterminate

t, to give the so-called generic Hecke algebra over C(t). Secondly it is

convenient to introduce a square root of t and to work over C(t1/2). Thirdly

one can restrict scalars to the ring

A = Z[t1/2, t−1/2]

of Laurent polynomials in t1/2 with integer coefficients. Finally one can

replace the Weyl group W by any Coxeter group. Thus we shall now con-

sider H to be a free A-module with basis Tw and multiplication relations

as above.

The idea of Kazhdan and Lusztig was to introduce a second basis {Cw}

of H with striking properties. They first defined an involution θ on H. The

base ring A admits an involution a → a interchanging t1/2 and t−1/2 and

the involution θ on H is defined by

θ
(

∑

awTw

)

=
∑

aw

(

Tw−1

)−1

Kazhdan and Lusztig obtained a basis of θ-stable elements of H. They

showed there exists a unique Cw ∈ H such that

θ(Cw) = Cw

and

Cw =
∑

y≤w

ε(w)ε(y)t
1
2
`(w)−`(y)Py,w(t−1)Ty

where ε(w) = (−1)`(w) and Py,w(t) ∈ Z[t] satisfies

Pw,w(t) = 1

and

deg Py,w(t) ≤
1

2
(`(w) − `(y)− 1) if y < w.

Here < is the Bruhat partial order on W generated by w < sw whenever s

is a (not necessarily simple) reflection in W and `(sw) = 1 + `(w).

Py,w(t) is called a Kazhdan-Lusztig polynomial and the Cw form

the Kazhdan-Lusztig basis of H. In particular we have C1 = T1 and

Cs = t−1/2Ts − t1/2T1 for s ∈ S.
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We have the product rule

CsCw =















Csw +
∑

z<w
sz<z

µ(z, w)Cz if sw > w

(v + v−1)Cw if sw < w

where v = −t
1

2 and µ(z, w) is the coefficient of t
1

2
(`(w)−`(y)−1) in Py,w(t).

There is an analogous expression for CwCs.

We write w →
L

w′ if CsCw involves Cw′ for some s ∈ S, and w ≥
L

w′ if

there exist elements

w = w1, w2, . . . , wk = w′

with wi−1 →
L

wi for each i. We write w ∼
L

w′ if w ≥
L

w′ and w′ ≥
L

w. Then

the relation ∼
L

is an equivalence relation on W whose equivalence classes

are called left cells. There is an analogous definition of right cells of W .

We write w ≥
LR

w′ if there exist elements

w = w1, w2, . . . , wk = w′

as above such that, for each i, either wi−1 →
L

wi or wi−1 →
R

wi. We write

w ∼
LR

w′ if w ≥
LR

w′ and w′ ≥
LR

w. The relation ∼
LR

is an equivalence relation

on W whose equivalence classes are called two-sided cells.

Each left cell X of W gives rise to a left H-module VX defined as follows.

VX =
∑

w≤
L

x

ACw

/

∑

w<
L

x

ACw

where w <
L

x means w ≤
L

x and w 6∼
L

x. This definition is independent of

the choice of x ∈ X. VX has basis Cw with w ∈ X and gives rise to a

representation of H called a left cell representation.

By replacing the indeterminate t by 1 we obtain left cell represen-

tations of the Coxeter group W . The left cell representations are not in

general irreducible. However, when the Coxeter group W is a Weyl group,

each left cell representation contains a unique irreducible component which

is a special representation of W , and two left cells lie in the same two-sided

cell if and only if this special component is the same for both. Thus there is

a natural bijection between special representations of W and two-sided cell

of W . This in turn gives a bijection between families of unipotent characters

of a Chevalley group GF and two-sided cells of W .
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§9. The use of intersection cohomology

In a second paper of Kazhdan and Lusztig in 1980 it was shown that the

Kazhdan-Lusztig polynomials Py,w(t) have a geometrical significance. This

is related to the intersection cohomology of algebraic varieties. Intersection

cohomology was originally introduced by Goresky and MacPherson in the

context of topological spaces in order to provide an analogue of Poincaré

duality for singular spaces. As part of their more general theory they defined

middle intersection cohomology groups IH i(X) for any algebraic variety X

over C.

An algebraic description of these middle intersection cohomology

groups was subsequently given by Deligne. Let X be an algebraic variety

over C and Xreg its set of non-singular points. We consider the category of

bounded complexes of sheaves of C-vector spaces on X. Let DbX be the

derived category, whose objects are equivalence classes of such complexes

under the relation of quasi-isomorphism. This relation preserves the coho-

mology sheaves of the complexes. Deligne defined an element IC•(X) of

DbX, the intersection cohomology complex, whose cohomology sheaves IHi

are constructible and which, on restriction to Xreg, gives the complex

· · · −→ 0 −→ 0 −→ C −→ 0 −→ 0 −→ · · ·

where the constant sheaf C appears in degree 0. The hypercohomology

groups of the intersection cohomology complex are the intersection coho-

mology groups of Goresky and MacPherson.

We now explain how the Kazhdan-Lusztig polynomials can be given in

terms of intersection cohomology. Let G be a simple algebraic group over

C and W be its Weyl group. Then G has a Bruhat decomposition

G =
⋃

w∈W

BwB

into double cosets with respect to a Borel subgroup B. Let

B = G/B

be the flag variety of G. We have

B =
⋃

w

Bw

where Bw = BwB/B is a Bruhat cell. The closure of Bw is given by

Bw =
⋃

y≤w

By.
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By is a Schubert variety.

We consider the intersection cohomology of this Schubert variety. Each

point of Bw lies in By for some y ≤ w, and we consider the stalk of the in-

tersection cohomology sheaf IHi at such a point. This stalk will be denoted

by IHi
By

(Bw), being independent of the choice of point in By. It is known

that

IH2i+1
By

(Bw) = 0

for all i. The geometric significance of the Kazhdan-Lusztig polynomials is

given by the formula

Py,w(t) =
∑

i≥0

dim IH2i
By

(Bw)ti.

In particular we see that when the Coxeter group W is a Weyl group the

coefficients of a Kazhdan-Lusztig polynomial Py,w(t) are non-negative inte-

gers.

The connection between representation theory and intersection coho-

mology revealed by the Kazhdan-Lusztig papers has proved to be of crucial

importance. Lusztig has shown in subsequent papers that intersection coho-

mology is the key to solving a number of basic questions in different aspects

of representation theory.

§10. Perverse sheaves and character sheaves

We next describe how ideas from intersection cohomology were used by

Lusztig to give a geometrical approach to the study of irreducible represen-

tations of the finite reductive groups GF . Lusztig defined a set of character

sheaves on a connected reductive group G. This is a subclass of the class

of objects in the category of perverse sheaves on G. The category of

perverse sheaves on an algebraic variety X was introduced and studied by

Beilinson, Bernstein and Deligne in Astérisque 100. In order to describe

the irreducible objects of this category we introduce some generalizations

of the intersection cohomology complex IC•(X).

Deligne’s description of the intersection cohomology complex on X also

makes sense for algebraic varieties over an algebraically closed field of char-

acteristic p. In this case one takes `-adic sheaves on X where ` is a prime

different from p, i.e., sheaves of Q`-vector spaces where Q` is the algebraic

closure of the field of `-adic numbers.

Now let X0 be an open dense non-singular subvariety of X and L a local

system on X0. Thus L is a locally constant sheaf on X0, and determines
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a representation of the fundamental group of X0. Then one can define

an object IC•(X,L) of DbX which, when restricted to X0, gives the local

system L in degree 0 and zero in other degrees. When X0 = Xreg and L is

the constant sheaf Q` we have

IC•(X,L) = IC•(X).

More generally let V be a locally closed non-singular irreducible subva-

riety of X and L an irreducible local system on V . Then we have a complex

IC•(V ,L) supported on the closure V of V as above. This can be extended,

by zero outside V , to a complex on X also denoted by IC•(V ,L). This is

called the DGM-extension (i.e., Deligne, Goresky, MacPherson exten-

sion) of L to X. The elements of DbX obtained in this manner are, up to

a degree shift, the irreducible objects in the category of perverse sheaves

defined as follows.

There is a duality operation (Verdier duality)

D : DbX −→ DbX.

The complexes K in DbX satisfying the condition

dim(suppH i(K)) ≤ −i

for all i ∈ Z form a subcategory DbX≤0. The complexes K in DbX such that

DK ∈ DbX≤0 form a subcategory DbX≥0. LetMX be the full subcategory

whose objects are the complexes K which lie in both DbX≤0 and DbX≥0.

MX is called the category of perverse sheaves on X. It is an abelian

category whose objects all have finite length. The duality operation maps

MX to itself. The irreducible objects ofMX are precisely the elements

IC•(V ,L)[dim V ]

where V is a locally closed non-singular irreducible subvariety of X, L is

an irreducible local system on V , and [dimV ] denotes degree shift by the

dimension of V . These irreducible perverse sheaves are permuted by the

operation of Verdier duality. In the case where a connected algebraic group

G acts on X, one can also consider G-equivariant perverse sheaves on X.

Lusztig showed how to introduce the concepts of Harish-Chandra theory

into the category of G-equivariant perverse sheaves on a connected reductive

group G under the adjoint action. He defined the concept of a cuspidal

perverse sheaf on G and, if P is a parabolic subgroup of G with Levi
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decomposition P = UP L, he showed how to define Harish-Chandra type

functors of restriction and induction

Res :MG −→ DbL

IndG
P :ML −→ DbG

More precisely IndG
P is only defined on the L-equivariant objects ofML.

It turns out that the cuspidal perverse sheaves are precisely the equiv-

ariant complexes K for which ResK = 0 for all proper parabolic subgroups

P of G and all Levi subgroups L of P .

If K0 is a cuspidal perverse sheaf on L then the induced object IndG
P K0

is semisimple. A perverse sheaf on G is called a character sheaf if it ap-

pears as an irreducible component of IndG
P K0 for some parabolic subgroup

P of G and some cuspidal perverse sheaf K0 of a Levi subgroup L of P .

Thus we have a Harish-Chandra theory on character sheaves analogous to

that on finite reductive groups.

In his paper ‘Intersection cohomology complexes on a reductive group’

and his sequence of papers ‘Character Sheaves I–V’ Lusztig investigates in

depth the character sheaves on any connected reductive group G. This

theory is valid for groups G over fields of arbitrary characteristic. However

in the case when G is a connected reductive group over the field K = Fp the

theory of character sheaves is shown to be relevant to the representation

theory of the finite groups GF for Frobenius map F : G → G. For a

complex K on G, F ∗K denotes the complex on G obtained as the pull-back

of K by F . In the case of a character sheaf K on G for which there is

an isomorphism φ between K and F ∗K Lusztig defines a characteristic

function

χK,φ : GF −→ Q`.

Lusztig conjectured that, under mild assumptions on the characteristic p,

these characteristic functions are scalar multiples of the almost characters

of GF discussed in Section 7. He was able to prove this in certain cases in

the papers ‘On the character values of finite Chevalley groups at unipotent

elements’ Jour. Algebra 104 (1986), 146–194, where the conjecture was

proved for the character sheaves whose supports contain unipotent elements

in the case of adjoint groups of type Bn and En; and ‘Remarks on computing

irreducible characters’ Jour. Amer. Math. Soc. 5 (1992), 971–986, where the

conjecture was proved for cuspidal character sheaves in large characteristic

assuming the decomposition of Lusztig induction into irreducible characters
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(but without assuming the connectedness of the centre). This conjecture of

Lusztig was subsequently proved by T. Shoji in his 1995 paper ‘Character

sheaves and almost characters of reductive groups’ assuming that the centre

of G is connected. Thus the theory of character sheaves gives a geometrical

construction of the almost characters of GF . The irreducible characters of

GF are obtained from the almost characters using the non-abelian Fourier

transform matrix referred to in Section 7.

One of the most significant facts about character sheaves is that one can

use them in computing irreducible character values of the finite reductive

groups GF . This is done by using an algorithm for computing the values of

the characteristic functions of the F -stable character sheaves, based on the

following ideas.

A deep result of Lusztig asserts the cleanness of character sheaves which

are cuspidal. A consequence of this is that the values of the characteristic

functions of the F -stable cuspidal character sheaves are very easy to com-

pute. Using this fact, and the Jordan decomposition of elements of G, it

is possible (though highly non-trivial) to reduce the determination of all

values of the characteristic function of an F -stable character sheaf to that

of values on unipotent elements. This in turn can be shown to involve the

determination of certain functions known as generalized Green func-

tions. A bridge connecting these generalized Green functions defined in

terms of character sheaves and the analogous functions arising in the rep-

resentation theory of the finite groups GF is constructed in Lusztig’s paper

‘Green functions and character sheaves’. Ann. Math. 131 (1990), 355–408.

Now there is an algorithm for computing the Green functions of GF ,

based on an idea of Shoji in his 1983 paper ‘On the Green polynomials of

classical groups’. Lusztig found a modified (simpler) form of this algorithm

and extended it to generalized Green functions in chapter 24 of his paper

‘Character sheaves V’. A useful description of this algorithm can be found in

Shoji’s 1987 paper ‘Green functions of reductive groups over a finite field’.

In this way one can obtain an algorithm which will compute all values of

the characteristic function of an F -stable character sheaf. This algorithm

is now known to hold in almost complete generality, i.e., for all p 6= 2 and

without restriction on the centre of G.

We now assume as before that p is a good prime for G and that G has

connected centre. Then by Shoji’s theorem the characteristic functions of

the F -stable character sheaves are scalar multiples of the almost characters

of GF . If the scalars were known, one would thus obtain the almost charac-
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ters of GF , and hence the irreducible characters of GF using the non-abelian

Fourier transform matrix. However this algorithm is not at present suffi-

cient to obtain the irreducible characters of GF , since the scalars involved

are not known in general. These scalars are known in certain special cases,

and in such cases all irreducible character values of GF can be obtained.

A good summary of the process of computing irreducible character

values of GF can be found in the 1988 article ‘Finite groups of Lie type’

Section II, by M. Geck. In this paper Geck deals with the case in which G

is simple of adjoint type.

If the centre of G is not connected the situation is more complicated.

However progress has been made even in this case for certain classical groups

by Bonnafé, Shoji and Waldspurger.

§11. Composition multiplicities of Verma modules

A remarkable application of the Kazhdan-Lusztig polynomials was con-

jectured by Kazhdan and Lusztig in 1979. This concerns the multiplicities

of irreducible modules as composition factors of certain Verma modules.

Let G be a simple algebraic group over C and g be its Lie algebra. Then

g has a triangular decomposition

g = n+ ⊕ h⊕ n−

where h is a Cartan subalgebra. Let

b = n+ ⊕ h.

Then b is a Borel subalgebra of g. Let U(g) be the universal enveloping

algebra of g.

We take a weight of h, i.e., a linear map λ : h → C. This determines

a 1-dimensional representation of b with n+ in the kernel, and so a 1-

dimensional representation of the enveloping algebra U(b). We may induce

this representation to a U(g)-module Mλ given by

Mλ = Ind
U(g)
U(b) λ.

Mλ is called the Verma module with highest weight λ. Mλ has a

unique maximal submodule Kλ, so the quotient

Lλ = Mλ/Kλ
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is an irreducible U(g)-module. Mλ has a composition series of finite length,

and each of its irreducible composition factors has form Lµ for some weight

µ.

Let Z(g) be the centre of U(g). Then Z(g) acts on Mλ by scalar mul-

tiplications, thus giving a 1-dimensional representation of Z(g) called the

central character of Mλ. Two Verma modules Mλ, Mµ have the same

central character if and only if

µ + ρ = w(λ + ρ)

for some w ∈ W , the Weyl group, where ρ is the sum of the fundamental

weights of g. It follows that all composition factors of Mλ have form Lw.λ

for some w ∈W , where

w.λ = w(λ + ρ)− ρ.

We now take a weight λ which is integral, regular and antidominant,

i.e.,

(λ + ρ)(hi) ∈ Z, (λ + ρ)(hi) < 0

for each fundamental coroot hi ∈ h. Then, as w runs over the Weyl group,

w · λ runs over a set of integral regular weights, one in each chamber with

respect to the translated action of W .

We consider the multiplicities of the composition factors of Mw.λ. All

such composition factors have form Ly.λ for some y ∈ W with y ≤ w.

Let dyw be the multiplicity of Ly.λ as a composition factor of Mw.λ. The

decomposition number dyw turns out to be independent of the choice of

integral, regular, antidominant weight λ. Thus in a suitable Grothendieck

group we have

[Mw.λ] =
∑

y∈W

dyw [Ly.λ].

These equations may be inverted to give

[Lw.λ] =
∑

y∈W

ayw [My.λ].

for some ayw ∈ Z.

It was conjectured by Kazhdan and Lusztig that the integers ayw can

be described in terms of Kazhdan-Lusztig polynomials, i.e., that

ayw = ε(y)ε(w)Py,w(1).
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The Kazhdan-Lusztig conjecture was proved in 1981 by Brylinski and

Kashiwara, and independently by Beilinson and Bernstein. The proof in-

volves a remarkable series of transitions of the problem, reformulating it in

a number of different categories.

The Kazhdan-Lusztig polynomials can be interpreted in terms of the

intersection cohomology of Schubert varieties, as described in Section 9.

First of all we have an equivalence of categories

M1 ←→M2

whereM1 is a certain subcategory of holomorphic D-modules with regular

singularities on the flag variety B, and M2 is a certain subcategory of the

category of g-modules. Moreover, by the general result on D-modules called

the Riemann-Hilbert correspondence we have an equivalence of categories

M1 ←→M3

whereM3 is a certain subcategory of the category of perverse sheaves on B.

Combining these two equivalences we obtain an equivalence of categories

M2 ←→M3.

Now the g-modules Lw.λ and My.λ are objects of M2. Under the above

equivalence My.λ corresponds to the constant sheaf Cy (shifted by l(y) −

dimB) on the Bruhat cell By, whereas Lw.λ corresponds to the intersection

cohomology complex

IC•(Bw, Cw)

i.e., the DGM-extension of Cw to Bw. Thus the description of the Kazhdan-

Lusztig polynomials given in Section 9 gives rise to an equation in the

category M3 which expresses IC•(Bw, Cw) as a Z-combination of Cy as

y runs over W . This is precisely the statement of the Kazhdan-Lusztig

conjecture.

§12. Representations of real Lie groups

A somewhat similar idea was used by Lusztig and Vogan in 1981 to de-

termine the characters of the irreducible modules for a real semisimple Lie

group G with trivial central character. Here we are considering irreducible

admissible representations of G on a Banach space. Such a representation

has a character which is a distribution, called the Harish-Chandra charac-

ter. The module giving each such irreducible representation occurs as a
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submodule of a module giving a so-called standard representation of G.

The standard representations were constructed independently by Langlands

and Zuckerman. One way of obtaining them is by a process of cohomologi-

cal parabolic induction from characters of Cartan subgroups. The modules

giving standard representations are not in general irreducible but have a

unique minimal submodule. They have a composition series of finite length

and each composition factor is isomorphic to the irreducible submodule of

some other standard representation. The Harish-Chandra characters of the

standard representations were known but, before the work of Lusztig and

Vogan, the characters of the irreducible modules were not. We thus have a

situation quite analogous to that of Verma modules.

Again in this situation it is possible to insert the equations expressing

the characters of the standard representations in terms of those of the ir-

reducible representations. Lusztig and Vogan showed that the characters

of the irreducible modules could be expressed in terms of the characters of

the standard representations by means of certain polynomials which are the

analogues in the real Lie group situation of the Kazhdan-Lusztig polyno-

mials.

§13. Representations of p-adic reductive groups

Lusztig then turned his attention to the representation theory of groups

over p-adic fields or, more generally, over local fields.

Let K be a non-Archimedean local field with finite residue field. Let

A be the ring of integers in K and m the unique maximal ideal of A. Let

k = A/m be the residue field. We assume that k is a finite field with q

elements. There are two standard examples of this situation. Firstly we

could take

A = Fq[[x]],

the ring of formal power series over Fq, and

K = Fq((x))

its field of fractions. Secondly we could take A = Zp to be the ring of p-adic

integers and K = Qp the field of p-adic numbers.

There are field extensions

K ⊂ K̃ ⊂ Ksep ⊂ K

where K is the algebraic closure of K, Ksep its separable closure and K̃ the

maximal unramified extension of K. Let Ã be the ring of integers in K̃ and
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m̃ the unique maximal ideal of Ã. Let k̃ = Ã/m̃. Then k̃ is isomorphic to

the algebraic closure Fq of Fq. We have Galois groups

Gal K̃/K ∼= Gal k̃/k ∼= Gal Fq/Fq.

There is a Frobenius automorphism F ∈ Aut K̃ uniquely determined by the

properties

F (λ) = λ for all λ ∈ K

and F (λ) = λq for λ ∈ Ã/m̃ = k̃.

Now let G be a simple algebraic group of adjoint type defined over K.

Such a group is always quasi-split over K̃, but we shall assume that G is

split over K̃. We write

G = G(K̃),

the group of rational points over K̃. The Frobenius map F on K̃ induces a

Frobenius map, also called F , on G. We have

GF = G(K),

the group of K-rational points.

Lusztig considered admissible representations of GF over C (admissible

representations are those which behave well on restriction to compact open

subgroups). We have a natural homomorphism Ã → k̃ which induces a

homomorphism

G(Ã) −→ G(k̃).

The inverse image of a Borel subgroup of G(k̃) is called an Iwahori sub-

group of G. A subgroup of G containing an Iwahori subgroup is called a

parahoric subgroup.

Let B be an Iwahori subgroup of G and let G′ = [G,G]. Then B ⊂

G′ and there is a natural bijection between double cosets of B in G′ and

elements of the affine Weyl group W ′ of G. W ′ is a Coxeter group whose

Coxeter graph is the extended Dynkin diagram. We also have a bijection

between double cosets of B in G and elements of the extended affine Weyl

group W . W is not in general a Coxeter group. Instead we have

W = W ′Ω, W ′ ∩ Ω = 1

where Ω is a finite abelian group which normalizes W ′. Ω acts on the

extended Dynkin diagram I and is isomorphic to the group S(I) of special

automorphisms of I.
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Let H be the Hecke algebra of the extended affine Weyl group W . The

representations of this extended affine Hecke algebra H turn out to be of key

importance for the representation theory of groups over local fields. There is

a bijective correspondence between irreducible admissible GF -modules over

C with a non-zero BF -fixed vector, where B is an F -stable Iwahori subgroup

of G, and irreducible finite dimensional H-modules. These may be called

the principal series unipotent representations of GF . The Deligne-

Langlands conjecture asserted that these representations should correspond

to pairs (s, u) of elements in the dual group G∗ over C, where s is semisimple,

u is unipotent, and

sus−1 = uq

such pairs being taken up to conjugacy in G∗. Lusztig formulated a more

precise version of this conjecture, that the principal series unipotent repre-

sentations of GF should be in bijective correspondence with triples (s, u, ρ)

with s, u as above and where ρ runs over a certain family of irreducible

representations of the component group

C(s, u)/C0(s, u)

of the centralizer of s and u. This conjecture was proved by Kazhdan and

Lusztig in 1987. The proof used methods of equivariant K-homology.

The use of equivariant K-theory and equivariant K-homology in repre-

sentation theory is in fact one of Lusztig’s major themes. The idea of using

equivariant K-theory to attack the Deligne-Langlands conjecture was first

formulated in Lusztig’s 1985 paper on ‘Equivariant K-theory and represen-

tations of Hecke algebras’. Equivariant K-theory may be used to determine

the irreducible modules for affine Hecke algebras in which the parameters

are all equal. However this method does not work when the parameters

may be different, and this is precisely the case which one needs in the rep-

resentation theory of p-adic groups.

In the case of affine Hecke algebras with unequal parameters Lusztig

used a different method to determine the irreducible modules. In a series

of papers ‘Cuspidal local systems and graded Hecke algebras I, II, III’ he

introduced an infinitesimal version of the affine Hecke algebra called the

graded affine Hecke algebra. This is the graded algebra associated with a

certain filtration of the affine Hecke algebra. The relation between an affine

Hecke algebra and its associated graded affine Hecke algebra is analogous

to that between a reductive group and its Lie algebra. Lusztig was able
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to determine a parametrisation for the irreducible modules for the graded

affine Hecke algebras, and to show that this parametrisation also applies

to the irreducible modules of affine Hecke algebras with possibly different

parameters. (In fact the graded affine Hecke algebra is the same as the

‘degenerate affine Hecke algebra’ which has appeared in recent papers of

Cherednik, and which has significant applications in mathematical physics).

In a subsequent paper in 1995 Lusztig obtained much more far reaching

results. He classified all irreducible admissible unipotent representations of

GF in terms of triples (s, u, ρ) coming from G∗. As before we have

G = G(K̃), GF = G(K).

Let P be an F -stable parahoric subgroup of G. P has a prounipotent

radical UP which is a projective limit of unipotent groups, and is also F -

stable. Then P F/UF
P is a finite group which is the subgroup of F -fixed

points of a connected reductive group over Fq. Thus the Deligne-Lusztig

theory applies to

PF/UF
P = P

F
.

Let E be a cuspidal unipotent P
F
-module, and let

Irr(GF ;P,E)

be the set of irreducible admissible GF -modules such that the subspace

of UF
P -fixed vectors, regarded as a P

F
-module, contains a submodule iso-

morphic to E. A unipotent representation of GF is one which lies in

Irr(GF ;P,E) for some F -stable parahoric subgroup P and some cuspidal

unipotent P
F
-module E. If there is an element g ∈ GF which transforms

P to P ′ and E to E′ then

Irr(GF ;P,E) = Irr(GF ;P ′, E′);

otherwise these two sets of representations have empty intersection. Thus

the ideas of Harish-Chandra theory apply to the unipotent representations

of GF .

Now the Frobenius map F on G induces an automorphism of the ex-

tended Dynkin diagram I which is a special graph automorphism, i.e., an

element of S(I). Also S(I) is isomorphic to the group Hom(Z(G∗), C∗) of

central characters of the dual group G∗. Suppose the map F ∈ S(I) corre-

sponds to the central character χ of G∗. Then Lusztig showed that there
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is a bijective correspondence between irreducible unipotent representations

of GF and triples (s, u, ρ) mod G∗, where s ∈ G∗ is semisimple, u ∈ G∗ is

unipotent, sus−1 = uq, and ρ is an irreducible representation of the com-

ponent group C(s, u)/C0(s, u) on which Z(G∗) acts as χ. We shall call this

Lusztig’s duality theorem for reductive groups over local fields.

The proof of this theorem is very remarkable, and to explain it we must

first introduce some ideas related to the Springer correspondence.

§14. The Springer correspondence and its affine version

Let G be a simple algebraic group over C with Weyl group W .

T. A. Springer discovered a way of describing the irreducible representa-

tions of W . Let C be a unipotent conjugacy class of G and u ∈ C. Let Bu

be the variety of Borel subgroups of G containing u. Springer described an

action of W on the cohomology

H2d(Bu, C)

where d = dimBu. The fact that W acts on this cohomology module is

at first sight surprising as W does not act on Bu itself. Several different

explanations of the W -action on the cohomology have since been discovered.

The most natural and important of these is the one due to Lusztig in his

paper ‘Green polynomials and singularities of unipotent classes’ using the

methods of intersection cohomology. This action does not in general give

an irreducible W -module. However the group

A(u) = C(u)/C0(u)

also acts on H2d(Bu, C) and the A(u)-action commutes with the W -action.

Let ρ be an irreducible G-equivariant local system on C. This corresponds

to an irreducible representation ρ of A(u). The subspace

H2d(Bu, C)ρ

on which A(u) acts as ρ is a W -submodule which decomposes into a direct

sum of isomorphic irreducible W -modules. Every irreducible W -module

arises in this way from such a pair (C, ρ) and (C, ρ) is determined up to

conjugacy in G. However not every irreducible representation ρ of A(u)

arises from H2d(Bu, C). Thus we have a map

IrrW −→ {(C, ρ)}
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from irreducible characters of W to pairs (C, ρ) which is injective but not

in general surjective. This map is called the Springer correspondence.

In his 1984 paper ‘Intersection cohomology complexes on a reductive

group’ referred to in Section 10 Lusztig generalized the Springer correspon-

dence. He showed that every pair (C, ρ), where C is a unipotent class in G

and ρ a G-equivariant local system on C, determines a triple (L,C ′, ρ′)

where L is a Levi subgroup of some parabolic subgroup of G, C ′ is a

unipotent class of L, and ρ′ is an irreducible L-equivariant local system

on C ′ which is cuspidal. Moreover the triple (L,C ′, ρ′) is determined up

to G-conjugacy. The set of pairs (C, ρ) which correspond to a fixed triple

(L,C ′, ρ′) are in natural bijective correspondence with irreducible represen-

tations of the relative Weyl group

W (G;L) = NG(L)/NG(L)0.

W (G,L) is not in general a Coxeter group, but it is a Coxeter group in the

case of a Levi subgroup L which possesses a pair (C ′, ρ′) with ρ′ cuspidal.

This gives rise to a bijection between the set of pairs {(C, ρ)} and the set
⋃

IrrW (G;L)

with one term for each cuspidal triple (L,C ′, ρ′). In the special case L = T ,

a maximal torus, we have W (G;T ) = W and obtain the original Springer

correspondence. The above bijection is called the generalized Springer

correspondence.

In order to prove his duality theorem for groups over local fields Lusztig

obtained an affine version of the generalized Springer correspondence. Here

the pairs (C, ρ) are replaced by triples (s, u, ρ) where

s ∈ G is semisimple

u ∈ G is unipotent

su = us

ρ is an irreducible representation of C(s, u)/C(s, u)0.

The Coxeter group W (G;L) is replaced by an extended affine Weyl group

Wa(G;L).

There is a bijective correspondence

{(s, u, ρ)} mod G ←→
⋃

(L,C′,ρ′) mod G

IrrWa(G;L)
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and this is the affine version of the generalized Springer correspon-

dence.

Lusztig also proved a q-version of this result in which each extended

affine Weyl group is replaced by the corresponding extended affine Hecke

algebra with parameter q ∈ C, which is not a root of unity. The pairs (s, u)

with su = us are replaced by pairs (s, y) where

s ∈ G is semisimple

y ∈ LieG is nilpotent

Ad(s)y = qy.

The q-version of the affine generalized Springer correspondence

asserts that there is a bijection between triples (s, y, ρ) mod G, where ρ is

an irreducible representation of

C(s, y)/C0(s, y)

and the set
⋃

(L,C′,ρ′)

IrrH(G;L)

where H(G;L) is an extended affine Hecke algebra with parameter q. There

is one component for each cuspidal triple (L,C ′, ρ′) mod G. The quadratic

relations for H(G;L) have form

T 2
si

= qf(i)T1 + (qf(i) − 1)Tsi

where f is a certain function on the Coxeter generators si taking con-

stant values on conjugate generators. This affine q-version of the general-

ized Springer correspondence was proved by Lusztig in his 1995 paper on

the ‘Classification of unipotent representations of simple p-adic groups’, al-

though some of the ideas involved in the proof can be traced back to earlier

papers of Lusztig.

We now return to our simple algebraic group G of adjoint type defined

over the local field K. We have

G = G(K̃), GF = G(K).

The unipotent representations of GF are those which lie in

Irr(GF ;P,E)
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where P is an F -stable parahoric subgroup of G and E is a cuspidal unipo-

tent P
F
-module. One can define an induced GF -module IndGF

P F E. It was

shown by Moy and Prasad that there is a natural bijection between unipo-

tent representations in Irr(GF ;P,E) and finite dimensional irreducible rep-

resentations of the endomorphism algebra

H = EndGF (IndGF

P F E).

This endomorphism algebra H can be shown to be an extended affine Hecke

algebra whose underlying Coxeter group is a relative affine Weyl group of G

with respect to P . Thus each unipotent representation of GF corresponds

to an irreducible finite dimensional representation of one of the extended

affine Hecke algebras H = H(P,E).

On the other hand we may consider the set of triples (s, y, ρ) in the

dual group G∗ where

s ∈ G∗ is semisimple

y ∈ LieG∗ is nilpotent

Ad(s)y = qy.

ρ is an irreducible representation of C(s, y)/C 0(s, y) on which Z(G∗) acts

by the central character χ introduced in Section 13.

By the q-version of the affine generalized Springer correspondence, such

triples taken modG∗ are in bijective correspondence with
⋃

(L,C′,ρ′)

IrrH(G∗;L)

where each H(G∗, L) is an extended affine Hecke algebra and we have one

component for each cuspidal triple (L,C ′, ρ′) in G∗.

Thus the objects on both sides of Lusztig’s duality theorem for groups

over local fields are parametrised by irreducible representations of extended

affine Hecke algebras. One therefore tries to compare the extended affine

Hecke algebras which appear on both sides. In order to describe such an

algebra one must specify the underlying affine Weyl group, the function f on

the Coxeter generators giving the quadratic relations, and the finite abelian

group Ω acting on the affine Weyl group and preserving the function f .

When this comparison is made between the extended affine Hecke algebras

appearing on both sides of Lusztig’s duality theorem it transpires that they

match exactly! This is proved in a case by case manner as there is at
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present no theoretical explanation of this matching. The way in which the

matching works is truly remarkable, and results in the proof of Lusztig’s

duality theorem. This proof works for each inner form of a split group over

a non-archimedean local field. We illustrate this matching in the group

E8(Fq((x))). A further substantial paper by Lusztig in 2002 extends this

duality theorem to groups which are not necessarily inner forms of split

groups.

An example: GF = E8(Fq((x))), G∗ = E8(C).

Unipotent representations of GF

P Diagram No. of cuspidal E’s Hecke algebra

E8

E7

E6

D4

B

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦
13 dim1

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦
2

◦ 〉〈◦
q q15 Ã1

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦
2

◦ ◦ 〉 ◦
q q q9

G̃2

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦
1

◦ ◦ ◦ 〉 ◦ ◦
q q q q4 q4 F̃4

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦
1

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦

q q q q q q q q

q

Ẽ8

We have omitted the finite abelian group Ω for simplicity.
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Triples (s, u, ρ) from E8(C)

L Diagram No. of cuspidal ρ′ Hecke algebra

E8

E7A1

E6A2

D5A3

A4A4

A5A2A1

D8

A3A3A1

A2A2A2

A1A1A1A1

T

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦
1 dim1

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦
1 dim1

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦
2 dim1

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦
2 dim1

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦
4 dim1

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦
2 dim1

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦
1 dim1

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦
2 ◦〉〈◦

q q15

Ã1

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦
2 ◦ ◦ 〉 ◦

q q q9

G̃2

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦
1 ◦ ◦ ◦ 〉 ◦ ◦

q q q q4 q4

F̃4

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦
1
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦

q q q q q q q q

q Ẽ8
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§15. Quantized enveloping algebras and their representations

In 1988 Lusztig turned his attention to the theory of quantized en-

veloping algebras. These are also known as quantum groups, although the

term quantum group is also frequently used for a more general type of

mathematical structure. Quantized enveloping algebras were defined in-

dependently by V. Drinfeld and M. Jimbo in 1985, although the special

case of quantum groups of type sl2 had been studied earlier in 1981 by

Kulisch and Reshetikhin, and by Sklyanin. Quantized enveloping algebras

are quantum deformations of enveloping algebras of simple Lie algebras over

C. Lusztig’s first contribution was to observe that the irreducible integrable

highest weight modules for the enveloping algebra admit quantum deforma-

tions which give irreducible modules for the quantized enveloping algebra.

Subsequently, in 1989, he considered quantized enveloping algebras in which

the indeterminate parameter v is replaced by a root of unity. He first de-

fined an integral form over C[v, v−1] of the original algebra U over C(v).

This is analogous to Kostant’s integral form UZ of the enveloping algebra U .

Then he considered the algebra Uζ obtained from the integral form by spe-

cializing the parameter v to a primitive `th root of unity ζ. For each n-tuple

λ of non-negative integers Lusztig obtained a U -module M(λ) analogous to

a Verma module. This has a unique maximal submodule giving rise to an

irreducible U -module quotient V (λ), analogous to a Weyl module. By using

the integral form he constructed an analogous module Vζ(λ) for Uζ . Vζ(λ)

is a finite dimensional module whose character is known. It has a unique

maximal submodule, thus giving an irreducible Uζ-module quotient Lζ(λ).

Lusztig gave a conjecture for the character of the irreducible module

Lζ(λ) as a linear combination of characters of Weyl modules Vζ(µ). This

is somewhat similar to the Kazhdan-Lusztig conjecture, discussed in Sec-

tion 11. However this time the coefficients involve Kazhdan-Lusztig poly-

nomials evaluated at 1, not of the Weyl group but of the affine Weyl group.

Lusztig’s conjecture for characters of irreducible modules for the quan-

tum groups Uζ suggested that there is a connection between the represen-

tation theory of quantum groups at a root of unity and the representation

theory of affine Kac-Moody algebras. This connection was made precise in

a paper of Kazhdan and Lusztig in 1991 in which an equivalence of tensor

categories was defined between certain categories of Uζ -modules and mod-

ules with a particular negative central change for the corresponding affine

Kac-Moody algebra. The proof that the functor defined by Kazhdan and
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Lusztig is indeed an equivalence of tensor categories is very elaborate, and

was given in a series of subsequent papers by Kazhdan and Lusztig.

Once this equivalence of tensor categories has been established,

Lusztig’s conjecture on the irreducible characters of Uζ -modules becomes

equivalent to an affine version of the original Kazhdan-Lusztig conjecture for

Verma modules. This affine version was subsequently proved by M. Kashi-

wara and T. Tanisaki. Thus Lusztig’s conjectured formula for the characters

of the irreducible Uζ -modules Lζ(λ) has turned out to be true.

§16. The canonical basis

In 1990 Lusztig made another discovery of fundamental importance

by proving the existence of a remarkable basis of a quantized enveloping

algebra called the canonical basis. (This basis was also independently

proved to exist by Kashiwara using a different method, and Grojnowski

and Luzstig proved that the two bases are the same).

Let

U = U− ⊗ U0 ⊗ U+

be a quantized enveloping algebra over the field of rational functions C(v).

Let W be the Weyl group and w0 the element of W of maximal length.

Lusztig obtained a basis Bi of U− of Poincaré-Birkhoff-Witt type for each

reduced expression i of w0 as a product of Coxeter generators of W . We

shall call Bi a PBW-basis of U−. The elements of Bi have form F c

i
where

c runs over the set of N -tuples of non-negative integers where N = `(w0).

Let L be the C[v−1]-submodule of U− spanned by the basis Bi. This

can be seen to be independent of the reduced expression i for w0. Moreover

the image of Bi under the projection

L −→ L/v−1L

is also independent of the choice of i. Now there is an involution of U− which

interchanges v and v−1. Let L be the image of L under this involution. Then

the map

L ∩ L −→ L/v−1L

is bijective. The basis B of L ∩ L corresponding to the basis we have just

described in L/v−1L is the canonical basis of U−.

This canonical basis B of U− has many beautiful properties. For ex-

ample let L(λ) be the finite dimensional irreducible U -module with highest

weight λ. Then L(λ) has a highest weight vector vλ such that L(λ) = U−vλ.
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Lusztig showed that the set of elements uvλ for u ∈ B which are non-zero

form a basis for Lλ. Thus the canonical basis B of U− gives rise to bases

of all finite dimensional irreducible highest weight modules L(λ) simultane-

ously.

By specialising v → 1 we obtain a canonical basis B of the enveloping

algebra U− and bases for all finite dimensional irreducible U -modules L(λ).

Thus, although the existence of the canonical basis could only be proved in

the context of quantum groups, this basis has striking applications to the

classical representation theory of simple Lie algebras.

Lusztig described the geometrical significance of the canonical basis in

terms of the intersection cohomology of certain algebraic varieties related

to the theory of quivers. In describing this we shall assume for convenience

that the Dynkin diagram is of simply-laced type. This Dynkin diagram ∆

has a unique decomposition

∆ = ∆′ ∪∆′′

into disjoint subsets, each of which corresponds to a set of mutually orthog-

onal simple roots. We may choose a reduced expression i of w0 adapted

to this decomposition of ∆ and this gives rise to a PBW-basis Bi = {F c

i
}

of U−. Let B = {bc} be the canonical basis of U−. These two bases are

related by

bc =
∑

c′

Pc′cFc′

with Pc′c ∈ C[v−1].

Lusztig was able to describe a geometrical interpretation of the coeffi-

cients Pc′c. To explain this we first make ∆ into a quiver by introducing

arrows from elements of ∆′ to elements of ∆′′. By Gabriel’s theorem the

indecomposable representations of this quiver ∆ are in bijective correspon-

dence with the set Φ+ of positive roots. Thus any representation of ∆ has

form

V =
⊕

ri∈Φ+

ciVri

where Vα is the indecomposable representation corresponding to α ∈ Φ+.

Let {α1, . . . , α`} be the set of simple roots and {r1, . . . , rN} the set of pos-

itive roots. We have

ri =
∑

j

mijαj with mij ≥ 0.

https://doi.org/10.1017/S0027763000026830 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000026830


34 R. W. CARTER

The dimension vector of Vri
is

(mi1, . . . ,mi`)

and the dimension vector of V is d = (d1, . . . , d`) where

dj =
∑

i

cimij .

We consider the set of all representations V of ∆ with fixed dimension

vector d. These correspond to the orbits of a certain algebraic group G(d)

on an algebraic variety E(d) where

G(d) =
∏

i

GLdi
(C), E(d) =

⊕

i→j

Hom(Cdi , Cdj ).

The group G(d) acts on the variety E(d) with finitely many orbits, and

these orbits Oc are in bijective correspondence with vectors c = (ci) such

that
N

∑

i=1

cimij = dj ,

and so with representations V of ∆ with dimension vector d.

The geometric interpretation of the coefficients Pc′c is as follows. If

Pc′c 6= 0 the orbits Oc, Oc′ satisfy the condition

Oc′ ⊂ Oc

and we have

Pc′c =
∑

i≥0

dim IHi
O

c
′
(Oc)v

−i.

Thus Pc′c is a polynomial in v−1 whose coefficients are the dimensions of

the local intersection cohomology groups of the variety Oc at a point in Oc′ .

§17. Total positivity in real reductive groups

Lusztig used the canonical basis to generalize the theory of totally pos-

itive matrices to any connected reductive group which is split over R. We

recall that a matrix in GLn(R) is totally positive if all its minors are pos-

itive and totally non-negative if all its minors are non-negative. These

conditions may be expressed in terms of the canonical basis as follows.
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Let L(λ) be the irreducible finite dimensional GLn(R)-module with

highest weight λ and B(λ) be the canonical basis of L(λ). Then an element

g ∈ GLn(R) is totally positive if and only if, for each λ, the matrix repre-

senting g with respect to the basis B(λ) has all entries positive. Similarly

g is totally non-negative if and only if, for each λ, the entries of the matrix

are all non-negative.

Now let G be a connected reductive group of simply-laced type which

is split over R. We may use the above criteria involving the canonical basis

to define a subset G≥0 of totally non-negative elements and a subset G>0

of totally positive elements of G. This enables the theory of totally positive

and totally non-negative matrices to be generalized from GLn(R) to such

group G over R.

Lusztig showed that G≥0 is a closed subset of G in the standard topol-

ogy coming from R and that G>0 is a dense open subset of G≥0. All elements

of G>0 can be shown to be regular, semisimple and R-split. Furthermore

G>0 is one of the connected components of the open subset

B+w0B
+ ∩B−w0B

−

of G, where B+, B− are the Borel subgroups of G corresponding to the

positive and negative roots respectively.

Lusztig also gave definitions of totally positive and totally non-negative

elements of the flag variety B of G. He showed that the two subsets

{uB+u−1 ; u ∈ U−
>0} {uB−u−1 ; u ∈ U+

>0}

of B are equal, where U+, U− are the unipotent radicals of B+, B− and

U+
>0, U−

>0 are their sets of totally positive elements. This set is denoted by

B>0 and B≥0 is defined as the closure of B>0 in B. The subsets B>0 and B≥0

of the flag variety B can be shown to have some striking properties. For

examples B≥0 has a decomposition into cells parametrised by pairs w, w ′ of

elements of the Weyl group W satisfying w ≤ w′. The cell corresponding

to w ≤ w′ is diffeomorphic to R
`(w′)−`(w)
>0 . The cell corresponding to the

pair 1 < w0 is B>0. In fact B>0 is one of the connected components of the

variety of all Borel subgroups which are opposed both to B+ and to B−.

Although we have assumed that G is of simply-laced type this theory

of total positivity was extended by Lusztig to groups of arbitrary type, by

proving the simply-laced case first and then proceeding by descent to a

non-simply laced group of fixed points under a suitable automorphism.
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Lusztig’s 1993 book ‘Introduction to Quantum Groups’ is a highly orig-

inal account of the structure and representation theory of quantized en-

veloping algebras, and of the subject of canonical bases and total positivity.

Among other things his theory of based modules in the book readily shows

that the tensor products of tilting modules remain titlting, a fundamental

fact in the theory of tilting modules.

§18. Modular representations of simple algebraic groups

Let G(K) be a simple simply-connected algebraic group over an al-

gebraically closed field K of prime characteristic p. Then the irreducible

rational G(K)-modules are parametrised by dominant integral weights. For

each such weight λ ∈ X+ let L(λ)K be the corresponding irreducible G(K)-

module. In 1980 Lusztig formulated a conjecture for the character of L(λ)K

when p is sufficiently large.

In order to explain this conjecture we go back to the characteristic 0

situation. Let G(C) be the corresponding type of algebraic group over C

and V (λ) the irreducible rational G(C)-module with highest weight λ ∈ X+.

Let vλ be a highest weight vector in V (λ). Let g = LieG and U be the

universal enveloping algebra of g. There is a useful Z-form UZ of U defined

by Kostant. Let

V (λ)Z = UZvλ

V (λ)K = V (λ)Z ⊗K.

Then V (λ)K is a G(K)-module, called a Weyl module. It has a unique

maximal submodule, and its irreducible quotient is isomorphic to L(λ)K .

Lusztig’s conjecture relates the characters of the L(λ)K to those of the

V (λ)K , which are given by Weyl’s character formula.

The conjecture involves the action of the affine Weyl group on the

lattice of weights. Let X be the weight lattice and XR the Euclidean space

X ⊗R. Let Φ be the set of roots of G. For each α ∈ Φ, k ∈ Z we define the

affine hyperplane Hα,k by

Hα,k = {λ ∈ XR ; (λ + ρ)(hα) = kp}

where hα is the coroot of α and ρ is the sum of the fundamental weights.

Let sα,k be the reflection in the affine hyperplane Hα,k. The group Wa

of affine transformations of XR generated by the sα,k is isomorphic to the
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affine Weyl group. Its action on XR is denoted by w.λ. The connected

components of XR −
⋃

α,k Hα,k are called alcoves. The set

A1 = {λ ∈ XR ; 0 > (λ + ρ)(hα) > −p for all α ∈ Φ+}

is an alcove, called the top antidominant alcove. If A is an alcove so

is w.A for any w ∈ Wa. In fact each alcove has form w.A1 for a unique

w ∈Wa. We write

Aw = w.A1.

Thus the alcoves are labelled by the elements of the affine Weyl group.

We shall assume

ρ(hα0
) < p

where hα0
is the highest coroot. This ensures that each alcove contains a

weight in X. In particular −2ρ ∈ A1. We say that w ∈ Wa is dominant

if w.(−2ρ) ∈ X+. We say that λ ∈ X is regular if λ does not lie in

any affine hyperplane Hα,k. Suppose λ ∈ X is dominant and regular. Let

w ∈ Wa be the element such that λ ∈ Aw. Then the Weyl module V (λ)K

has composition factors L(µ)K with multiplicities given by

[V (λ)K ] =
∑

µ

dµλ[L(µ)K ].

The only weights µ which can arise in the sum are those of the form yw−1.λ

where y ∈Wa is dominant. Thus

[V (λ)K ] =
∑

y dominant

dµλ[L(yw−1.λ)K ].

By Jantzen’s translation principal the decomposition numbers dµλ depend

only upon y and w. Thus

[V (λ)K ] =
∑

y dominant

dy,w[L(yw−1.λ)K ].

for λ ∈ Aw. These equations may be inverted to give

[L(λ)K ] =
∑

y dominant

ay,w[V (yw−1.λ)K ]

for λ ∈ A, and certain ay,w ∈ Z. Suppose w satisfies the so-called Jantzen

condition

−(wρ)(hα0
) ≤ p(p− h + 2)
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which asserts, roughly speaking, that the alcove Aw lies in the lowest dom-

inant p2-alcove of XR. (h is the Coxeter number of G). Then Lusztig’s

conjecture on modular representations asserts that

ay,w =

{

ε(y)ε(w)Py,w(1) if y ≤ w

0 otherwise

where Py,w(t) is a Kazhdan-Lusztig polynomial for the Coxeter group Wa

relative to the generator set {sα, sα0,−1 | α simple}.

This conjecture has some far-reaching consequences. In the first place

Jautzen’s translation principle asserts that if the above conjecture holds for

λ ∈ Aw it also holds for weights in the upper closure of Aw. Since each

weight lies in the upper closure of some alcove, we obtain the characters of

L(λ)K for singular weights λ also. Secondly we obtain additional informa-

tion from Steinberg’s tensor product theorem. If p is not too small the set

X1 of p-restricted weights given by

X1 = {λ ∈ X ; 0 ≤ λ(hαi
) ≤ p− 1 for i = 1, . . . , `}

is included in the set of weights for which the conjecture is valid. If the

characters of the L(λ)K are known for all λ ∈ X1 they can be deduced for

all λ ∈ X+ by Steinberg’s tensor product theorem. Thus, under the given

assumptions on p, Lusztig’s conjecture would determine the characters of

all irreducible G(K)-modules L(λ)K .

Moreover Lusztig’s conjecture would also determine the characters of

the irreducible KGF -modules, where F is the Frobenius qth-power map

on G(K) and GF = G(q) is the finite Chevalley group over the field of q

elements. There are q` irreducible KG(q)-modules where ` is the rank of

G, and these modules are the L(λ)K for

0 ≤ λ(hαi
) ≤ q − 1 for i = 1, . . . , `.

Progress towards a proof of Lusztig’s conjecture on modular represen-

tations awaited the development of the theory of quantum groups. This

conjecture is very similar to his conjecture about the characters of irre-

ducible modules for quantum groups Uζ at a pth root of unity, as described

in Section 15. In fact Lusztig had proposed a programme in 1988 to relate

three types of representation theory: the modular representations of simple

algebraic groups, the representations of quantum groups at a pth root of

unity, and the representations of certain affine Kac-Moody algebras. He
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proposed that the characters of the irreducible highest weight representa-

tions with the relevant negative central charge for the affine Kac-Moody

algebras should be obtained by constructing an affine version of the proof

of the original Kazhdan-Lusztig conjecture for Verma modules. This result

should then lead to a knowledge of the irreducible representations of the

quantum groups at a pth root of unity, and finally to a knowledge of the

irreducible modular representations of simple algebraic groups.

Lusztig’s programme led to a major development in the representation

theory of algebraic groups, quantum groups, and affine Kac-Moody algebras

in the last decade of the 20th century. Thus the character formula for affine

Kac-Moody algebras was proved by Kashiwara and Tanisaki, and the con-

nection between the representation theory of affine Kac-Moody algebras and

of quantum groups at a root of unity was proved by Kazhdan and Lusztig,

as described in Section 15. The final step in Lusztig’s programme involved

a comparison of Uζ -modules and G(K)-modules by reduction modulo p.

This was achieved in a lengthy paper by Andersen, Jantzen and Soergel in

1994, which has the consequence when combined with the other results of

Lusztig’s programme, that Lusztig’s conjecture on modular representations

is indeed valid if p is sufficiently large. However it is not known how large

p must be for this to hold. Thus, apart from certain low rank cases, the

characters of the irreducible modules L(λ)K remain unknown.

§19. Modular representations of simple Lie algebras

Now let g be the Lie algebra of a simple algebraic group G over an

algebraically closed field of prime characteristic p. Consider irreducible

representations of g. These are in bijective correspondence with irreducible

representations of the enveloping algebra U(g), and are all finite dimen-

sional. g has a p-operation x→ x[p] such that xp − x[p] lies in the centre of

U(g) for each x ∈ g. Given any irreducible representation ρ of U(g) there

is a linear map

χ : g −→ K

called the p-character of ρ, such that

ρ(x)p − ρ(x[p]) = χ(x)pI

for all x ∈ g. Thus ρ gives rise to an irreducible representation of the

algebra Uχ(g) given by

Uχ(g) = U(g)/〈xp − x[p] − χ(x)p1 ; x ∈ g〉

https://doi.org/10.1017/S0027763000026830 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000026830


40 R. W. CARTER

Uχ(g) is called a reduced enveloping algebra. It is a finite dimensional

algebra of dimension pdim g. Thus each irreducible representation of g de-

termines an irreducible representation of Uχ(g) for a unique p-character χ.

The representation ρ of g is called restricted if χ = 0.

Now the characters of the irreducible restricted representations of g

can be derived from the irreducible characters of the algebraic group G

discussed in Section 18 in the case when Lusztig’s conjecture is true. (For

the p-restricted dominant highest weights there is in fact a bijective corre-

spondence between them). Thus the discussion in Section 18 on modular

representations of algebraic groups applies also to the restricted represen-

tations of g. However for non-restricted representations the situation is

different.

In his survey article ‘Representation theory in characteristic p’ based

on a lecture given in 1998, Lusztig formulated some conjectures on the

irreducible representations of g when p is sufficiently large. Any such rep-

resentation has a p-character χ which is a linear function on g, and which

corresponds to an element e ∈ g using the bijection between g and its dual

space given by the Killing form. It follows from the Jordan decomposition

that it is sufficient to understand the case when e is nilpotent. Moreover

representations associated with nilpotent elements in the same orbit behave

in the same way since Uχ(g) is isomorphic to Ug.χ(g) for each g ∈ G.

Now the set of irreducible g-modules with p-character corresponding

to a given nilpotent element e ∈ g admits an equivalence relation whose

equivalence classes are called blocks. The generic blocks are those which

contain the largest number of irreducible modules. Lusztig’s formulation of

the conjectures involves the connected reductive group GC over C with the

same root data as G. Let us denote the corresponding nilpotent element

in the Lie algebra gC of GC by the same symbol e. He conjectured that

the number of irreducible modules in such a generic block is the Euler

characteristic of the algebraic variety BC
e , the so-called Springer fibre,

of all Borel subalgebras of gC containing e. He also conjectured that the

irreducible modules in such a generic block could be understood in the

context of equivariant coherent sheaves on the variety BC
e (rather than

perverse sheaves, which appeared in his earlier work). Let (e, f, h) be the

sl2-triple in gC, C a maximal torus of the simultaneous centralizer of e, f ,

h in GC, and let H be the torus given by

H = C × C∗.
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There is a natural action of H on BC
e , which enable us to consider the group

KH(BC
e )

generated by the H-equivariant coherent sheaves on BC
e subject to the stan-

dard relations.

Now Lusztig showed how to define the concept of a canonical basis of

KH(BC
e ), up to sign, as a Z[v, v−1]-module; proved the uniqueness of such

a basis and conjectured its existence. He further conjectured that there is

a natural bijection between irreducible modules in our generic block and

elements in this canonical basis. Lusztig also made further conjectures on

the irreducible modules, based on the following considerations.

In his series of papers on cells in affine Weyl groups, Lusztig had proved

in 1989 the basic result, which he had conjectured earlier in 1980, that there

is a natural bijection between the set of nilpotent orbits of a simple Lie

algebra over C and the set of two-sided cells in the affine Weyl group of

dual type. This bijection comes from the representation theory of extended

affine Hecke algebras, for a parameter q which is not a root of unity. As

indicated in Sections 13 and 14 in our comments on Lusztig’s version of the

Deligne-Langlands conjecture, the irreducible representations of such an

extended affine Hecke algebra are in bijective correspondence with triples

(s, e, ρ) coming from the algebraic group G∗
C

of dual type, where

s is a semisimple element of G∗
C

e is a nilpotent element of Lie G∗
C

Ad(s)e = qe

ρ runs over a certain family of irreducible representations of

C(s, e)/C0(s, e)

The triples (s, e, ρ) are taken up to conjugacy in G∗
C
. Now each irreducible

representation of this extended affine Hecke algebra determines a two-sided

cell in the affine Weyl group, by the Kazhdan-Lusztig theory. Moreover

Lusztig was able to show that the two-sided cell given by the irreducible

representation corresponding to (s, e, ρ) is independent of s and ρ and de-

pends only upon the orbit of the nilpotent element e. This gives rise to

a bijection between two-sided cells in the affine Weyl group and nilpotent

orbits in the Lie algebra of G∗
C
.

Returning now to consideration of the irreducible g-modules in a generic

block, Lusztig further conjectures that there should be a surjective map

from irreducible g-modules in the given generic block to left cells in the

https://doi.org/10.1017/S0027763000026830 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000026830


42 R. W. CARTER

two-sided cell of the affine Weyl group corresponding to the nilpotent orbit

containing e, such that two irreducible modules should map to the same

left cell if and only if they are in the same orbit under the action of the

component group of the centralizer of e.

Lusztig also made a conjecture which predicts the Cartan invariants of

such a generic blocks, i.e., the multiplicities

[P (L(i)) : L(j)]

of the irreducible modules L(j) in their projective covers P (L(i)). This

holds for e = 0 if p is sufficiently large by the solution of Lusztig’s conjecture

in Section 18. It also holds for e regular nilpotent, and in many cases for e

subregular nilpotent due to Jantzen with an aid of Bezrukavnikov, Mirković

and Rumynin.

Thus the form of a beautiful modular representation theory of sim-

ple Lie algebras is beginning to emerge from Lusztig’s conjectures on this

subjects. At the time of writing (April 2005), Lusztig’s first conjecture

on the number of irreducible modules in a generic block has been proved

by Bezrukavnikov, Mirkovic and Rumynin, but the remaining conjectures

relating to such modules are still unsettled, as far as the author is aware.

§20. Summary

It will be apparent from the above exposition that Lusztig’s work is

characterized by a very high degree of originality, an enormous breadth

of subject matter, remarkable technical virtuosity, and great profundity in

getting to the heart of the problems involved. It can be no exaggeration to

say that George Lusztig is one of the great mathematicians of our time.
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