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APPLICATIONS OF THE GAUGE-INVARIANT UNIQUENESS
THEOREM FOR GRAPH ALGEBRAS

TERESA BATES

We give applications of the gauge-invariant uniqueness theorem, which states that
the Cuntz-Krieger algebras of directed graphs are characterised by the existence of
a canonical action of T. We classify the C*-algebras of higher order graphs, identify
the C*-algebras of cartesian product graphs with a certain fixed point algebra and
investigate a relation called elementary shift equivalence on graphs and its effect on
the associated graph C*-algebras.

1. INTRODUCTION

In the last few years various authors have considered analogues of the Cuntz-Krieger
algebras associated to infinite directed graphs. In [14, 13] these graph C*-algebras were
studied using a groupoid model and the deep results of Renault on the ideal structure
of groupoid C*-algebras. In [18, 10] they were viewed as the Cuntz-Pimsner algebras of
appropriate Hilbert bimodules, as introduced in [16]. In [3] an elementary approach was
adopted which enabled the authors to generalise the results of [4, 5, 13, 14, 18, 10].

In this paper we consider applications of the gauge-invariant uniqueness theorem

proved in [3](see also [2] for a version for arbitrary graphs).

This theorem states that the C*-algebra of a directed graph is uniquely characterised
by the existence of a canonical action of T called the gauge action. The gauge-invariant
uniqueness theorem allows us to establish many of the basic properties of graph C*-
algebras without any extra hypotheses on the graph. This is of interest because for
many years authors have assumed that their {0, l}-matrices A satisfied condition (I) of
[5] merely to ensure that the Cuntz-Krieger algebras OA were well-defined. In order to
obtain the results proved in this paper we need to restrict our attention to row-finite
graphs. However, this is a significant improvement upon the consideration of only finite
graphs with {0, l}-adjacency matrices that satisfy condition (I).

We begin with a brief review of some key facts about graph C"-algebras in Section 2.
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58 T. Bates [2]

In Section 3 we give the main results. We introduce the concept of higher order

directed graphs (Ep, Eq) and show that, up to isomorphism, their C*-algebras are classified
by the gap q - p. This work generalises [7, Theorem 3] and [3, Corollary 2.4] (see also
[15, Proposition 4.1]).

In Section 4 we give a new proof of a result from [11] which identifies the graph
C*-algebra of a type of cartesian product graph with a certain fixed point algebra. The
proof given in [11] relies on the theory of groupoid C*-algebras.

In Section 5 we investigate a relation called strong shift equivalence on directed
graphs. This relation was introduced by Ashton in [1]. We extend this relation to
arbitrary, directed graphs and prove that row-finite strong shift equivalent graphs have
Morita equivalent graph algebras (a result that was proved for finite graphs in [1]).

2. T H E C*-ALGEBRAS OF GRAPHS

A directed graph E = (E°, El,r, s) consists of countable sets E° of vertices and E1

of edges, and maps r, s : E1 -* E° describing the range and source of the edges. A vertex
v £ E° which emits no edges is called a sink, and a vertex v £ E° which receives no edges
is called a source. The graph E is row-finite if the set s-1(v) C E1 is finite for every
v£E°.

For n ^ 2, we define

En := {a = (au ..., an) : a{ £ E1 and r(ttj) = s{ai+i) for 1 < i ^ n - 1}

and the finite path space E* — (J En. For a £ En, we write |a| = n. The maps r,s

extend naturally to Em; for v £ E°, we define s(v) = r(v) = v. A path /j. £ E* is a loop if
it satisfies s(fi) — r(n). The loop fi is simple if the vertices r(ni) for i £ { l , . . . , |/z|} are
d i s t i n c t . F o r a,fi£E* s a t i s f y i n g s(fi) = r(a), we define afj. := (au..., a\a\, Hi,..., n^).

Following [13], if E is a row-finite directed graph we say that a Cuntz-Krieger E-

family in a C*-algebra B consists of a set {pv : v £ E0} of mutually orthogonal projections
and a set {se : e £ E1} of partial isometries satisfying

s*ese = pr(e) for e £ El and pv - ^ ses'e for v £ s(£'1).

Note that this last equation does not apply if v is a sink, so the projection pv can be
non-zero. The above relations need to be weakened for graphs which are not row-finite
(see, for example [2]). However, as we shall see, the results we prove in this paper do
not hold in this more general setting, and so we shall focus our attention on row-finite
graphs.

In [13, Theorem 1.2], it is proved that for every row-finite directed graph E there
is a universal C*-algebra C*{E) generated by a Cuntz-Krieger ^-family {se,pv} with all
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[3] Applications of gauge-invariant uniqueness 59

projections non-zero. For a = ( a i , . . . , an) G En, sa := sQl . . . san is a partial isometry
with initial projection s*asa = pr(Q) and final projection saSa ^ ps(a). We also set sv := pv

for v G E°. Using this notation, we can write C*{E) = spanjs^s* : n, v G £*} .

The gauge action a of T on C*(E) is a strongly continuous action which satisfies
az(se) = zse and az(pv) = p v . The gauge-invariant uniqueness theorem [3, Theorem 2.1]
(see also [2, Theorem 2.1]) states that C*(E) is characterised by the existence of such a
canonical action of T.

3. H I G H E R ORDER GRAPHS

Let E = (E°,El,r,s) be a directed graph which contains no sinks. For q > p
we define maps rp,sp : Eq —¥ Ep by rp(a) :— aq-p+\...aq and sp{a) := ot\...ap.

For p, q € N U {0} satisfying p < q we can construct a higher order directed graph
{Ep, E", rp, s") from E. We note that if E is a row-finite graph, then (Ep, E", rp, s") is
also row-finite. We denote the universal C*-algebra of the directed graph (Ep, Eq, rp, sp)
by C'(Ep,Eq), and note that C*(E) = C*{E°,El).

The graph E := (E1, E2, r1, sl) appears quite frequently in the literature. Following
[17], we shall call this graph the dual graph. [3, Corollary 2.5] states that if E is a row-
finite graph with no sources or sinks, then C*(E) = C*(E). The following theorem is a
generalisation of this result.

THEOREM 3 . 1 . Let E = (E°, El,r, s) be a row-finite directed graph which con-
tains no sinks. Let p, q G N satisfy p < q. Let {sa,ps : a G Eq,6 G Ep) and
{t\, qg:\e Eq+1,0 G Ep+1} be the canonical Cuntz-Krieger (Ep, Eq) and (Ep+l,
families. For 0 G Ep+l, define

and for A G Eq+l define

Then {rp,U\} is a Cuntz-Krieger (Ep+l, Eq+1)-family and there is an isomorphism ip :
C'iE^E") -> C'(Ep+l,E<l+1) such that tp(r0) = q0 and ip{ux) = tx for 0 G Ep+l and

X G Eq+l. Moreover, for p. G Eq, we have ip(Sn) = J3 ^A- The isomorphism ip restricts

to an isomorphism of the fixed point algebras under the canonical gauge actions.

PROOF: We show that [3, Theorem 2.1] can be applied to obtain the required iso-

morphism between C'(EP,E") and C{Ep+1,Eq+1).

First, we claim that {ux,rp : X G Eq+1,0 G Ep+1} is a Cuntz-Krieger (Ep+1,Eq+1)-

family in which each r@ is non-zero. Since there are no sinks in E, there are no sinks in
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(Ep,Eq). Hence there is always at least one path of length q extending each path /? of
length p + 1, and rp / 0 for every ft € Ep+1. Also, for all /3 € Ep+1, rp is a projection in
C*(EP, Eq) since it is the sum of orthogonal projections sas*a. For A € Eq+l, we have

7, 7
4P+1 (7)=a**1 (J)=rP+1 (A) JP+1 (7)=rP+> (A)

which is a projection in C*{EP, Eq), and thus u\ is a partial isometry in C*(EP, Eq). For
/? € £ p + 1 , we use the Cuntz-Krieger relations for C*(EP, Eq) to obtain

Tp = ^ SSSS = 22

since (Ep,Eq) contains no sinks and the condition rp+1(A) = sp+1(7) ensures that there
is a unique A 6 Eq+1 corresponding to each 6 G Eq from the preceding sum. Thus
rp — Yl u\u\> establishing our claim.

Next, we claim that {ux,rp : A € Eq+1,p € Ep+l) generates C*{Ep,Eq). Since
{Ep, E") contains no sinks, C'(EP, E") = C*({sa : a € E«}). Let a £ £;«. Then

5a = SapTP(a) = 5 Z S°S7S7 = ^ Z SS,(A)S7S* = ^ U\,
76E*

5"(7)=r'(o)

and our claim follows.

Last we show that the gauge action on C*(Ep,Eq) satisfies the required properties
for the application of [3, Theorem 2.1]. Let tiP and ap+1 denote the canonical gauge
actions on C*(Ep,Eq) and C*(Ep+1, Eq+1) respectively (see [3, Section 1]). Then for
z e T and A e Eq+l, we have aP(ux) = zux, and for p € Ep+1, ap(rp) = r> Thus we
may apply [3, Theorem 2.1] to obtain the required isomorphism %p of C{Ep,Eq) and
C*{Ep+\Eq+l).

To prove the final statement we note that since ap, ap+l are strongly continuous,
ip is norm continuous, and for all z € T, ap

s
+1 o ij> and tp o ap agree on the canonical

Cuntz-Krieger (Ep, Eq)-{a.mi\y, we must have tp o ap = aP+1 o ip. It follows that i[> o (j>p

= <f>p+i oip where <j>p : b <-¥ f ap(b)dm(z) and <j>p+i : b i-> /a P + l (b)dm(z) are the canonical
expectations of C'(EP, Eq) and C*(Ep+l, Eq+l) onto their respective fixed point algebras
(see [3, Section 1]). Thus the isomorphism ip restricts to an isomorphism of the fixed
point algebras, establishing our result. D

REMARK 3.2. It is not clear how one would define a higher order directed graph
(Ep, Eq) for a graph E which contains sinks. Indeed, there may be no paths of length p

or q in E.
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We may apply Theorem 3.1 inductively to obtain the following Corollary.

COROLLARY 3 . 3 . Let E = (E°,El,r,s) be a row-Bnite directed graph which

contains no sinks. Let p,q,l,m G N U {0} satisfy the conditions that p < q, I < m and

q-p = m-l. Then C*(EP, E") S C'{El, Em).

The following example shows that we cannot weaken our hypotheses to include
graphs which are not row-finite.

E X A M P L E 3.4. Consider the directed graph

E:= w
Since E satisfies condition (K) (every vertex lies either on 0 or 2 loops), the results of [2,
Section 3] tell us that C*(E) is not simple: there is a non-trivial ideal generated by the
projection associated to the vertex v.

However, E has dual graph

E:=

which is row-finite and C*(E) is simple by [3, Proposition 5.1]. Thus C*{E) £ C*(E).

Note that one can also obtain examples of non-row-finite graphs which contain no

sources and for which C{E) £ C*(E).

REMARK 3.5. For unequal gaps q — p and m — I, we may not always have C*(Ep,Eq)

= C'(El, Em) for a given directed graph E. For example, if E is a simple loop of length
n, then C*{E) S M n (C(T)) by, for example, [9, Lemma 2.4], but C*{E°,En) S C(T)n

2C*(E).

Even for graphs with simple C*-algebras we may not have C*{E) = C*(EP, Eq) for
q — p ^ 1. Consider the directed graph

F:=

which has higher order graph

Here C'(F) is simple by [14, Corollary 6.8], but C*(F°, F2) can be written as the direct
sum of the C*-algebras of the two connected components of (F°,F2), and hence is not
simple.
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It is natural to ask whether graphs E and F which satisfy C*(E) = C*(F) also
satisfy C'(Ep,Ei) g* C*(F",Fq) for all p , ? e N U {0} such that p < q. The following
example shows that this is not the case.

E X A M P L E 3.6. Consider the graphs

G:=

and the directed graph F discussed in Remark 3.5. Both C*(F) and C*(G) are simple by
[14, Corollary 6.8] and have trivial K-theory by [14, Corollary 6.12]. It follows by [19,
Theorem 6.5] that C*(F) = C*{G) = O2. However, C*(F°,F2) is isomorphic to a direct
sum of two simple C*-algebras, but the graph C*-algebra of

(G°,G2) =

is simple by [3, Proposition 5.1]. Thus C'{F°, F2) and C'{G°,G2) cannot be isomorphic.

REMARK 3.7. The above example also illustrates the fact that the K-theory gives us
little insight into whether C*(E) = C*(EP,E") for p,q € Nu {0} satisfying p < q. In
both cases the K-theory of the graph C*-algebra and the K-theory of the higher order
graph C*-algebra are trivial by [14, Corollary 6.12], and hence isomorphic. However,
C'(F) and C'{F°,F7) are not isomorphic.

4. CARTESIAN PRODUCTS OF DIRECTED GRAPHS

Following [12], if E and F are two row-finite directed graphs, we define the Cartesian
product graph

E x F:=(E° x F°,El x F\r,s)

where for (e,/) 6 E1 x F\ r(e,f) := (r(e),r(/)) and s(e,f) := (s(e),s(/)). We
warn that this is not the standard graph-theoretic definition for the Cartesian product
of directed graphs (see, for example, [8, Definition 1.3.3]). However, the graph E x F
is of interest as its C*-algebra appears quite frequently as a crossed product. See, for
example, [12].

As in [11], given C*-algebras A and B and a compact Abelian group G with actions
H : G —> Aut A and u : G -> Aut B, we define A <8>G B to be the fixed point algebra
(A <S> B)x under the action A : G —> Aut(A<B>B) defined by A9(o<8>6) = ng{a) ® i/g-i (b).

PROPOSITION 4 . 1 . ([11, Fact 2.7]) Let E and F be row-finite directed

graphs with no sinks. Then there is an isomorphism

4>: C*(E x f ) - » C(E) ®T C*[F)
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which is equivariant for the gauge action a® id on C*{E x F). In particular, for integers

m, n ^ 1, one has Omn S Om <S»T On and, for non-negative integer matrices A, B with no

zero row or column, one has OA%B — OA ®j OB-

PROOF: Let {se,pv} be the canonical Cuntz-Krieger i?-family and let {t/,qw} be
the canonical Cuntz-Krieger F-family. We construct a Cuntz-Krieger E x F-family in
C'(E) <g> C*(F) in the following manner. For (e, / ) € E1 x F1, we define

u(ej) ~ se <g> tf

and for (v, in) G E° x F°, we define

r(v,w) •= Pv

Routine calculations show that {u(e,/),?>,„,)} is a Cuntz-Krieger E x F-family. Its ele-
ments are non-zero partial isometries and projections by construction.

We claim that C*({r{VyW),u{eJ)}) = C*(E) ®T C*(F). Let A denote the action on
C*(E) <g> C*{F) induced by the canonical gauge actions on C*(E) and C*(F). Then for
all z G T we have \z(v,(ej)) = u'(e,/) f°r all (e> / ) G E1 x F1 and Xz(r^VtW)) = r^^ for all
(v,w) £ E° x F°. It follows by the linearity, multiplicativity and strong continuity of A
that C'({r{VtW), «(e,/)}) C (C*(E) ® C'(F))X. We prove the reverse inclusion.

Consider the conditional expectation P : C{E)®C*{F) -> C*(E) ®jC*(F) defined
by P(t) = / Xz(t)dm(z). Let t e C*(E) ® C'(F). Then t may be approximated by a
finite linear combination of elementary tensors of the form sas*p ® tyt}. Now

P(sas} 9 t,fs) =

which is non-zero if and only if \a\ — \/3\ = \j\ — \S\, in which case, P(saSp <S) tytg)

= sas*0 ® t 7 t j . So, if a = P{a) € C*(£) ®T C*{F), the continuity of P implies that a can
be approximated by linear combinations of {sas*p ® t7tf : a,P G E",j,6 € F*, |a | — |̂ 9|
= | 7 | - \S\}. To show that {aos j ® V S • a,0 e E',j,S e F*,\a\ - \0\ = | 7 | - |<J|}
C C*({u(ej),r(utu)}), we note that since the graphs E and F contain no sinks, we may
repeatedly apply the Cuntz-Krieger relations to extend paths a, /3,7,5 as necessary, and
thereby write each term sQs£ ® t 7 ^ as a finite linear combination of terms sa'S*p, ® tyt*s,

where a',/?' € £ " and j',6' G F* satisfy \a'\ = |Y| and |^'| = \5'\. It follows that
C*(E) ®ir C"(F) C C ' d ^ e , / ) , ^ ^ ) } ) , establishing our claim.

The gauge action ( a ® id) on C*(E)®TC*(F) satisfies (az<8)id)(u(ej)) = zu(ej) and
(az ® id)(r(tvfl)) = ?"(«,»)• Our result follows by [3, Theorem 2.1]. D

REMARK 4.2. The map <f> : C*(E x F) -4 C*{E) <g>T C*(F) will not, in general, be
surjective for graphs containing sinks or infinite valence vertices. We cannot extend paths
ending at sinks or sum projections at infinite valence vertices to prove that C*(E) ®T

C' (F)CC7' ({u ( e i / ) , r ( r i l B ) } ) .
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5. ELEMENTARY STRONG SHIFT EQUIVALENCE

Generalising [1] (see also [6] for some related work using the adjacency matrices of
the graphs) we give the following definition of elementary strong shift equivalence for
directed graphs.

DEFINITION 5.1: Let E{ — (Ef, E\, r\ s') for i — 1,2 be directed graphs. Suppose
there is a directed graph E3 — (E3,El,r3,s3) which has the following properties:

(a) El = E°U J5§, and E° n £§ = 0.

(b) E\ = E\2 U E\Y where E], := {e G ^ : s3(e) € £?,rs(e) € £ ° } .

(c) For i G {1,2}, there exist source and range-preserving bijections 9t : E]

-> Ei(E°,E?) where for i € {1,2}, £?(£?,£?) := {a € £3
2 : s3(a)

Then we say that Ex and £2 are elementary strong shift equivalent (Ei ~ES E2) via E3.

We define strong shift equivalence (denoted by ~s) to be the equivalence relation on

row-finite directed graphs generated by elementary strong shift equivalence.

A version of the following theorem was proved in [l] for finite graphs which satisfy
condition (L) (every loop has an exit). Our result holds for general row-finite graphs.
Note that if {se,pv} is the canonical Cuntz-Krieger i?-family for some row-finite graph
E, then it follows easily from [3, Lemma 1.1], that for any subset X C E°, the infinite
sum J2 pv converges strictly to a projection P G M{C*{E)).

USA-

T H E O R E M 5 . 2 . Let Ei, E2 and E3 be row-finite directed graphs which contain no
sinks and which satisfy the conditions that Ei ~ES E2 via E3. Let 0i : E\ -» E3(E°,E®)
denote the canonical bijection. Suppose {se,pv} is the canonical Cuntz-Krieger E3-family
and that {tf, qw} is the canonical Cuntz-Krieger Ei-family. Then there is an isomorphism

where P — YL Pv *= -M(C*(E3)). This isomorphism satisfies the conditions that

0(s0i(e)) = te for all e € E\ and <p(pv) = qv for all v e E\. Moreover, PC*{E3)P is

a full corner in C*(E3) and C*(Ei) ~SME C"(i?2). If E\ and E2 are row-finite graphs

which satisfy Ex ~ s E2, then C*(EX) ~ S M E C*(E2).

PROOF: We begin by constructing a Cuntz-Krieger ^-family in C'(E3). Let e € E\,

write #i(e) = exe2 and define ue := se,(e) = seise2. For v € E\, we define the projection
Tv '-= Pv Then {ue,rv} is a family of partial isometries and projections in C*(E3) with
rv 7̂  0 for all v G E® and the ueu"e pair-wise orthogonal. We claim that {ue,rv} is a
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[9] Applications of gauge-invariant uniqueness 65

Cuntz-Krieger ^-family. Let v G s(E\). Then v G s(E$) and

rv = Pv - 2 J SeS«SeS«

{*gE}:s,(fc)=t;}

where we have repeatedly used condition c) Definition 5.1. Also, for e € E\, we have

u'eue = S*9i(e)sei(c) = Kie2
seie, = Pr3(eie2) = PT3(ei(e)) = Pri<e> = ^ ' ^

since 6\ is a range-preserving bijection, establishing our claim.

Next we claim that {ue,rv} generates PC*(E3)P. Note that since PueP = ue for

all e G E\ and PrvP = ru for all v € Sf we have C*({ue,r,,}) Q PC*{E3)P. We prove

the reverse inclusion.

Since {s^s* : /x, 1/ G £̂ 3} spans a dense subalgebra of C*(£13), it is enough to show

that Ps^slP G C*({ue, e«}) for all paths /x, 1/ G S3. Now

0 otherwise.

Since r3(n) = r3(v) for s^s^ ^ 0, then /x, u G E% either both end and start in E°, or start
in E° and end in E%. So either both \fi\ and \u\ are even or both are odd by construction
of E3. If both are \fi\ and \u\ are odd, then since E3 contains no sinks we can write
siiK = ^2 SiieKe> where each of the paths fie and ue has even length. Thus in

both cases we can write s^sl as a finite sum of products of uet (/) and rv for / G E\ and

v G E° and hence s^sl G C*({ue,rv}). It follows that that {ue,rv} generates PC'{E3)P.

Define a strongly continuous T-action a on C*{E3) by

zse if e G E\2
<*zSe = \

if e G E\x

and
&zPv = P«

for 2 G T. Then for z G T we have az(ue) = zue and az(rv) = rv. The gauge action 7 fixes
each partial sum of P and so P remains fixed under the extension of 7 to M(C"(E3)).
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It follows that P[C*{E3))P carries a gauge action which satisfies the properties required
for an application of the gauge-invariant uniqueness theorem. By [3, Theorem 2.1] there
is an isomorphism <f> : PC*(E3)P —> C*{E\) which satisfies the properties required for
pur result.

To see that the corner PC'(E3)P is full in C*(E3) we note that E° is the smallest
saturated hereditary set containing E°. It follows from [3, Theorem 4.4] that any ideal
containing the corner PC'(E3)P must also contain C"{E3). Thus PC*(E3)P is full in
C'(E3).

A symmetric argument shows that C*(E2) is isomorphic to a full corner in C*(E3)
and the strong Morita equivalence of C*{E\) and C*(E2) follows. The final statement
follows by induction. D

REMARK 5.3. We can also talk about elementary strong shift equivalence for graphs
with sinks, but no isolated vertices. However we need to modify our definition of E3

slightly to ensure that both graphs E\ and E2 involved have the same number of sinks.
If we modify the third condition in Definition 5.1 to

(c) There are range and source preserving bijections:

: E\ U {sinks} -> E\{E°, E°) U {e e E\2 : r(e) a sink }

and
02 : E\ U {sinks} -> El(E2, E2) U {sinks}

then the proof above will carry over with only slight modifications.

The following example shows that we cannot expand the hypotheses for Theorem 5.2 to
include arbitrary graphs which are not row-finite.

EXAMPLE 5.4. Consider the graphs

E:= •-

and

F:=

We have F ~ E S E via E3 where

However C* (E) is simple and C* (F) has a non-trivial ideal generated by the projection
associated to the vertex v. Thus C*(E) ^SMEC'(F).
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