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EXISTENCE CONDITIONS IN
GENERAL QUASIMONOTONE VARIATIONAL INEQUALITIES

D. AUSSEL AND D.T. Luc

In this paper we study a general variational inequality model with set-valued quasi-
monotone operators, a model which includes several variational inequalities and equi-
librium problems. We establish unifying conditions for existence of solutions in a
topological vector space setting. Applications to parametric equilibrium models and
to a contact problem are given.

1. INTRODUCTION

Throughout this paper we shall make use of the following notations. X and Y are
real Hausdorff topological vector spaces, AT is a nonempty subset of X, 0 is a real function
on Y x K which is sometimes called a coupling function between Y and K, and T is a
set-valued operator from K to Y. The topological dual of X is denoted by X' and the
pairing function between X and X' is written in the form (x*,x) for x e X and x* € X'.

The variational inequality model that we are going to study in this paper is the
following:

(V) Find x0 € K such that

4>{xl,x) - Hx*o,xo) > 0,Vx 6 K,Vx*0 € T(x0).

This model is quite simple, albeit general and includes several variational inequalities
and equilibrium problems. Here are some of them that can be found in [4, 7, 10, 22, 25].

A. The standard variational inequality introduced by Stampacchia: Find x0 G K

such that
(f{xo),x-xo) >0,Vx€K,

where / is an operator from K to X'. This problem is a particular case of model {V)
when T{x) = f(x), Y = X' and 4>{x',x) = (x*,x).

B. The mixed variational inequality problem: Find x0 € K such that

(*;, x - x0) + h{x) ~ h{x0) > 0, Vz e K, \fx*0 € T(xo),
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where h is a real function on K. This problem is obtained from (V) by setting Y = X'

and <t>(x',x) = (x*,x) + h{x).

C. The general variational inequality problem: Find x0 € X with g(xo) € D such

that
(f(xo),g(x) - g{x0)) ^ O . V i e l with g(x) € D,

where g is a transformation on X. To derive this problem from (V) it suffices to set

Y = X\ K = {x € X : g(x) € £>}, 4>{x\x) = ( i ' , 5 ( i ) ) and T(x) - f(x).

D. The equilibrium problem: Find x0 € K such that

/ (x o ,x ) + h(x) - h{x0) ^ 0,Vx e K,

where / is a real-valued function on K x K with f(x, x) = 0 for every x G K and /i is a
real-valued function on K. To express this problem in form of variational model (V) it
suffices to set Y - X, T(x) = x and <f>(x*,x) = f(x*, x) + h(x) for x' € Y and x G K.

E. The parametric equilibrium problem: Find XQ £ K such that

f(x0,x) + h(z,x) - h{z,x0) ~2 0,VxeK,z€ Z,

where Z is a nonempty set, / is a real-valued function on K x K with f(x,x) — 0 for
every x 6 K and /i is a real-valued function on Z x K. To formulate this problem
in form of variational model (V) it suffices to set Y = K x Z, T(x) — {x} x Z and
<j>({y, z),x)= f(y, x) + h{z, x) for (y, z) 6 Y and x e # .

Together with model (F) we are also interested in the following auxiliary models:

(Vo) Find x0 e K such that for some XQ 6 T(x0),

<j>{x*o,x)-<t>(x'o,x0)>0,Vx€K;

(Vw) Find x0 € K such that for every x € K, there is some x*Q € T(x0) verifying

and the so-called Minty variational inequality.

(M) Find x0 G K such that

<A(x*,x) - <A(x*,x0) ^ o,Vx e K,VX* € r ( x ) .

We refer the interested reader to [4, 8, 10, 16, 22, 23, 26] and many references
given therein for historical developments, general theory and applications of variational
inequalities.

The aim of the present paper is to establish sharp criteria for existence of solutions
of the above unifying variational problems when the operator T is quasimonotone. Our
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results are proven by elementary techniques and a t the same time enjoy certain degree

of generality which makes them applicable to a number of variational inequalities and

equilibrium models. By this they unify and strengthen several theorems of recent works

on the topics, including [2, 4 , 5, 7, 9, 2 1 , 2 5 , 27] and some others.

The paper is organised as follows. In the next section we introduce new concepts of

generalised monotonicity and generalised continuity of set-valued operators with respect

to the function <j>. These include almost all part icular cases studied in the literature on

variational inequalities. In Section 3 relationships between solutions sets of the models

(V) - (M) are presented. Section 4 is devoted to sufficient conditions for existence of

solutions of the above models. An application to a generalised complementarity problem

is considered. Other applications are given respectively in Sections 5 and 6 for equilibrium

problems and a frictionless contact problem.

2. G E N E R A L I S E D M O N O T O N I C I T Y AND G E N E R A L I S E D C O N T I N U I T Y

Following the notations of the introduction T is a set-valued operator from K to Y.

D E F I N I T I O N 2 . 1 : The operator T is said to be <£-quasimonotone (respectively,

weakly <£-quasimonotone) at x € K if strict inequality

(1) <t>(y', x) - <j>(y*, y) > 0, for some y € K and for some y* <E T{y)

(respectively, for some y € K and for all y* € T{y)) implies

(2) <f>{x',x) - 4>{x',y) > 0, for every x' e T(x).

When inequality

(3) <j>{y\ x) - 4>(y", y) ^ 0, for some y € K and for some y* € T(y)

(respectively, for some y € K and for all y' € T(y)) implies (2), we say that T is
0-pseudomonotone (respectively, weakly <£-pseudomonotone) at x.

When Y — X' and <j> is the pairing function (.,.) between X and X', and when
T is single-valued, the above definition reduces to the concept of quasimonotone oper-
ators and pseudomonotone operators that were first introduced by Karamardian [13],
Karamardian and Schaible [14] for vector-valued functions. Extensions for set-valued
operators can be found in [18, 19, 20] (see also [1, 5, 9, 24]). We notice that the no-
tion of /i-quasimonotonicity (respectively, /i-quasi-semi-monotonicity) introduced in [4]
corresponds to 0-pseudomonotonicity (respectively, weak </>-pseudomonotonicity) when
<j>(x',x) is given by (x",x) + h(x).

DEFINITION 2.2: The operator T is said to be properly <£-quasimonotone on K if

for every convex combination x of x\,.. •,xn e K, there exists some i 6 { 1 , . . . , n} such

that <j>{x\,Xi) - 4>{x'itx) ^ 0 for all x\ e T{x{).
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The notion of proper quasimonotonicity was introduced by Daniilidis and Hadjisav-
vas in [5] when <f> is given by (.,.). An earlier version under the name of diagonal qua-
siconcavity was introduced in [28]. It is easy to see that a (^-pseudomonotone operator
is properly <^>-quasimonotone, which in its turn is ^-quasimonotone. The converse is not
always true even when X = Y' and <j> is the pairing function (.,.)• An equivalent form of
generalised monotonicity can be given as follows. The operator T is 0-quasimonotone (re-
spectively, weakly <£-quasimonotone) at x 6 K if for every y € K, for every (respectively,
for some) y* e T(y) one has

for every x* e T{x)\
T is (^-pseudomonotone (respectively, weakly ^-pseudomonotone) at x € K if for every
y € K, for every (respectively, for some) y* £ T(y) one has

mm{<j>(x', y) - <f>{x*,x),<j>(y*,x) - 4(y*,y)} < 0

for all x* € T{x) with <j)(x*,y) / 4>(x*,x). Finally T is properly <£-quasimonotone on K

if for any convex combination x of elements X\,..., xn € K, one has

min sup (<t>{x*ity) - 0(x*,Xi)) ^ 0.
i=i,...,nx.eTlXi)*

When Y — X' and T is a subdifferential (in certain sense) of a function, generalised
monotonicity is used to characterise generalised convexity of the function (see [1, 20, 24]
for instance). It was noticed in [5] that when T is a subdifferential operator in the sense
of Clarke—Rockafellar of a lower semicontinuous function, it is properly quasimonotone
if and only if it is quasimonotone, and if and only if the function is quasiconvex.

DEFINITION 2.3: We say that T is ^-hemicontinuous (respectively, weakly <̂ >-hemi-
continuous) at x0 € K if for every x e K, inequality

(4) 4>(x\tx0 + t(x - a*)) - <t>(x*t,xa) > 0, V*; e T(x0 + t(x - xQ))

for all t sufficiently close to 0, implies

(5) 4>{x*0, x) - 4>(x*0, x0) 2 0, VzS E T(x0)

(respectively, for some XQ € T(x0))-

We note that when Y — X', T{XQ) is compact and <p is given by (.,.), weak
0-hemicontinuity corresponds to upper sign-continuity of [2]. Below we present some
particular cases in which T is <#-hemicontinuous or weakly (^-hemicontinuous. Recall that
T is said to be upper semicontinuous (respectively, lower semicontinuous) at x € K if for
every open set A C Y with T(x) C A (respectively, T(x) n A •£ 0), there is some neigh-
bourhood U of x such that T(x') C A (respectively, T(x')C\A ^ 0) for every x' eUnK.

In our paper this definition is not applied to real-valued functions for which the notions
of lower and upper semicontinuities are understood in the usual sense.
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PROPOSITION 2 . 4 . Each of the conditions (i)-(iii) below is sufficient foiT to

be <p-hemicontinuous:

(i) 4> is continuous, T is lower semicontinuous on segments;

(ii) Y = X',<t> = (...) and for every x,y 6 K, the function

t >-¥ inf (x*,y — x) is upper semicontinuous on [0,1] a t t = 0;

(iii) Y = X', <t> = (.,.) and T is single-valued continuous on segments.

Each of the conditions (iv)-(v) below is sufficient for T to be weakly <j>-hemicon-

tinuous:

(iv) <p is continuous and T is upper semicontinuous on segments and compact-

valued;

(v) Y = X',4> = (.,.) and T is w*-compact-valued and for every x,y e K, the

function t *-+ sup (x*, y — x) is upper semicontinuous on [0,1] a t
x'6T(i+t(y-i))

t-0.

PROOF: Direct verification achieves the proof. D

3. RELATIONSHIP BETWEEN SOLUTION SETS

In this section we are going to establish some links between the solution sets of
variational inequality models (V), (V6), {Vw) and of the Minty problem.

The solution sets of problems (V), (Vo), (Vw) and (M) are denoted respectively
by S{V), S{V0), S(VW) and S{M). If there is a neighbourhood U of x0 such that the
inequality in problem (M) holds for all x e K n U, then x0 is called a local solution of
the Minty variational inequality. The local solution set of (M) is denoted by LS(M).

PROPOSITION 3 . 1 . Assume that K is nonempty and convex. Then one has

(i) LS(M) — S(M) provided that <f> is lower semicontinuous and convex in x

and T is weakly <j>-pseudomonotone on K;

(ii) LS(M) C S(V) provided that T is <j>-hemicontinuous;

(iii) LS(M) C S(VW) provided that T locally admits a weakly (f>-hemicontinuous
suboperator.

PROOF: Let us prove (i). The inclusion S(M) C LS(M) being obvious, we need to
prove the converse inclusion only. Let x0 £ LS{M), that is, there is some neighbourhood
U of x0 such that

(6) <f>(x',x)-</>(x',xo)>O

for every x G K n U and x* 6 T{x). Let y € K be given. There is some t0 € (0,1) such
that x0 + t{y - x0) 6 K D U for t 6 [0, to]. For each x* eT(xo + to(y - x0)) the convexity
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of the function t >-* <j)(x*,xo + t(y - x0)) yields

<f>(x*,y) - <f>(x*, Jo + to(y - x0)) > <f>(x*,x0 + to(y - x0)) - <t>{x\x0)

1 - to " to

which together with (6) gives

By the weak 0-pseudomonotonicity of T we derive

(7) . 4>(y', y) - 4>{y\ x0 + to(y~ x0)) ^ 0

for every y* 6 T(y). The same argument shows that (7) is true when t0 is replaced by

any t € (0,t0). The function (j>(y*,x0 + t(y - xo)) being lower semicontinuous in t we

deduce that

for every y* € T(y). By this, x0 E S(M).

For the second assertion, assume that x0 G K is a local solution of (M), that is (6)

is satisfied. Let y 6 K be given. For Xt := io + t(y - x0) e /C PI i7 with t 6 [0, t0] we have

(8) <j>(x*t,xt)-(t>(xlxo)ZO

for every x*t € T(x(). It follows from the 0-hemicontinuity of T that

(9) 4>{x'0,y)-4>{xlx0)>Q

for every XQ 6 T ( X 0 ) . This means that x0 is a solution of (V).

Finally, if T admits a weakly ^-continuous suboperator 7\ in a neighbourhood of

xQ, then (8) holds for t sufficiently close to 0 and for all x*t € T\{xt). By the weak <j>-

hemicontinuity of T\, (9) is still true for some x*0 6 Ti(xQ) C T(xQ). Consequently, x0 is

a solution of (V^). D

PROPOSITION 3 . 2 . Assume that K is nonempty and convex. Then the follow-

ing assertions hold:

(i) S(V) C S(V0) C S(VW). Equalities are true when T is single-valued;

(ii) Let x0 € K be a solution 0/(1^). It is also a solution of (Vo) provided

that T(xo) is compact and convex, and that the function {x*,x) >-> ^>(x*, x)

— <j){x*,XQ) is convex in x and upper semicontinuous, concave in x*.

P R O O F : The first assertion is obvious. The second assertion is a consequence of the

standard minimax theorem [6]. D

COROLLARY 3 . 3 . Let xo € K be a local solution of(M). Then it is a solution

of {VQ) when the following conditions hold:
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(a) T admits a suboperator in a neighbourhood of xo which is convex com-

pact-valued and weakly <j>-hemicontinuous at x0;

(b) The function (x*, x) *-> <f>{x", x) — <t>(x*,x0) is convex in x and upper semi-
continuous, concave in x".

P R O O F : Let T\ be a suboperator mentioned in (a). Define an operator Ti on K by

K ' \ T{x) ifx^KHU.

Then XQ is a local solution of problem (M) with T2 instead of T because T-i is asuboperator
of T. According to Proposition 3.1, x0 is asolution of problem (Vw) for T2. By Proposition
3.2, it is also a solution of problem (Vo) for T-i, hence for T as well. D

It is worthwhile noticing that when K is a nonempty and convex set in a locally
convex space, Proposition 3.2 and Corollary 3.3 remain true if <j> is lower semicontinuous,
quasiconvex (instead of being convex) in x.

4. EXISTENCE OF SOLUTIONS

We are now ready to establish sufficient conditions for existence of solutions of
the variational inequality models described in Section 1 with relatively simple proofs.
Recall that a real-valued function / on K is said to be quasiconvex if for x, y G K and
t G (0,1) one has f(tx + (1 - t)y) ^ max{/(z) , / ( t / )} . It is said to be semistrictly
quasiconvex (respectively, strictly quasiconvex) if f(tx + (1 - t)y) < max{f(x),f(y)}

whenever f(x) ^ f(y) (respectively, x ^ y).

The following proposition provides an existence result for problem (M). If K is
nonempty, convex and compact and if the operator T is nonempty valued on K then
this proposition can be derived from [3, Proposition 2.1] by considering the real valued
function / on K x K defined by f(x,y) := sup (<j>(x*,y) — <f>(x*,x)).

x-er(x)
Although the proof of Proposition 4.1 uses quite standard arguments we include it

here since no assumption of nonemptiness is made on the value of the operator T.

PROPOSITION 4 . 1 . Problem (M) has a solution if the following conditions
hold:

(a) K is nonempty convex and closed;

(b) <j> is lower semicontinuous in x on K;

(c) T is properly <f>-quasimonotone on K\

(d) There is a compact set Ko Q K and x0 G Ko such that for every x G K \ Ko

one has <j>{x'Q, x) - 4>{x'o, x0) > 0 for some xl G T(x0).

Moreover, if additionally <j> is quasiconvex in x, then the solution set of (M) is closed,

convex and included in KQ.
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PROOF: We consider the following set-valued map G from K to itself:

G(x) :={y£K : <j>{x',x) - 4(x',y) > 0,Vx* 6 T(x)}.

By hypothesis, G{x) is nonempty and closed. It follows from (d) that G(x0) is a
compact set. Moreover, G is a KKM map in the sense that for x\,...,xn G K

n
one has co{xi , . . . , xn} C \J G(xt), which is immediate from the definition of proper
</>-quasimonotonicity. By applying Ky Fan's theorem [6] to this map, we have f] G{x)

xeK
/ 0. Any element of this intersection is a solution of problem (M). It is clear that any

solution of (M) belongs to the intersection, hence to G(x0) C Ko. The convexity and the
closeness of the solution set are immediate from condition (b) and the quasiconvexity of
cf> in the second variable. 0

It turns out that if in the model (M) one sets Y — K, <t> = f and T(x) — x for

x G K, then one obtains a dual equilibrium problem of type

{DEI) Find x0 e K such that / (x , x0) < f{x,x) for all x G K.

In general, each solution of (DEI) is .a solution of the dual equilibrium problem

considered in [3], and the converse is not true. Hence the conclusion of Proposition 4.1

is stronger than the corresponding one of [3] (under a bit stronger hypothesis). In the

case when / (x ,x ) = 0 for x G K, these results are equivalent.

It is interesting to note that in the above proposition proper <£-quasimonotonicity can
not be replaced by 0-quasimonotonicity even when 0 is the pairing function (.,.) and T
is a single-valued and continuous operator from K to X' (see [12, 17]). The argument of
[12] can be adapted to show the equivalence between the existence of solutions of problem
(M) on compact subsets of K and the proper <£-quasimonotonicity of T on K. Namely
the following corollary is an extension of [12, Theorem 1] to our model. The remark we
have made after Proposition 4.1 is also available for this corollary in comparison with [3,
Theorem 2.1] on the dual equilibrium problem.

COROLLARY 4 . 2 . Assume that <(> is lower semicontinuous and quasiconvex in x
on K. Then the following conditions are equivaient:

(a) T is properly <j>-quasimonotone on K;

(b) The set-valued map G defined in the proof of Proposition 4.1 is KKM on

K;

(c) For every nonempty convex and compact set D C K, problem (M) has a

solution on D;

(d) For every closed convex set D Q K if there are some compact set D 0 C C

andx0 € Do such that for everyx G D\D0 one has <f>(xl,x) — 0(x5,xo) > 0

for some XQ G T(XQ)1 then problem (M) has a solution on D.

P R O O F : The equivalence between (a) and (b) is obvious. Moreover, according to

Proposition 4.1, (a) implies (d), while (d) obviously implies (c). So it remains to prove
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that (b) follows from (c). We do it by induction on the number n in the inclusion
c o ^ , . . . , xn} C | J G(xi). The conclusion is evident when n = 1. Assuming that it is

i=l,...,n

true for any n —1 points of K, we consider xi,.. .,xn£ K. Denote by D = co{xi,. . . , £„}
and by y G D a solution of (M) on D which exists by condition (c). Let x G D. If
x — y, there is nothing to prove. If x / y, then the ray starting from y and going
through x meets the relative boundary of D at some point z. By induction there is some
1 ^ k ^ n such that 2 € G(xfc). Since y G G(xfc) and G(xfc) is convex, we derive that
x € [y, 2] C G{xk) C U G(ii) which shows that G is KKM. D

t=l,...,n

For variational inequality models, as solutions of problem (Vo) can be obtained from
those of (Vw) by Proposition 3.2, we shall focus on problems (V) and (Vw) only. The next
lemma is a generalisation of Aussel and Hadjisavvas' recent result ([2, Proposition 2.1])
which shows that under a continuity hypothesis, a quasimonotone operator is properly
quasimonotone whenever the associated Minty problem has no local solutions.

LEMMA 4 . 3 . Assume that K is nonempty and convex, and that <j> is lower semi-
continuous and quasiconvex in x on K. IfT is <j>-quasimonotone on K, then either it is
properly (p-quasimonotone, or problem (M) has a local solution.

P R O O F : Suppose that T is not properly ^-quasimonotone. There exist X\,...,xn

£ K and a convex combination x of these points such that, for any i — 1 , . . . , n, (£(£,*, x)

— <p(x*,Xi) > 0 for some x* € T(xi). Since <fi is lower semicontinuous in the second
variable, there is a neighbourhood U of x such that for any i — l , . . . , n , <j>(x*,y)

- 0(i*,Zj) > 0 for every y 6 K D U. It follows from the ^-quasimonotonicity of T
that cf>{y',y) - (j>(y*,xt) ^ 0 for every y* € T{y),y € K n U and i = 1 , . . . ,n. The
quasiconvexity of 4> yields 4>{y*,y) — cj>(y*,x) ^ 0 for all y* e T(y),y G K n U. Thus, x
is a local solution of problem (M). D

THEOREM 4 . 4 . Problem (V) has a solution if the following conditions hold:

(a) K is nonempty, convex and closed;

(b) <p is lower semicontinuous and quasiconvex in x on K;

(c) T is (j>-quasimonotone and (j>-hemicontinuous;

(d) There is a compact set Ka C K and x0 € Ko such that for every x S K\K0

one has (J>(XQ, X) - <j>{x*0, x0) > 0 for some x% G T{x0).

In addition, if either T is weakly cj>-pseudomonotone or <f> is strictly quasiconvex in x,

then the solution set of (V) is included in KQ.

P R O O F : The first part of the proposition is obtained from Lemma 4.3, Propositions
3.1(ii) and 4.1. To prove the second part, let x G K \ KQ. If it was a solution of (V),
then (d) would imply 4>{x',x) - <j>[x',x0) = 0 for every xm G T(x). When T is weakly
0-pseudomonotone, we derive that <^(x3,x0) — <j>{x*Q,x) ^ 0 which is a contradiction with
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(d). When 4> is strictly quasiconvex, for z between x and x0, we have <p(x*,x) - <f>(x*,z)
> 0, which is again a contradiction with the assumption that x is a solution. D

PROPOSITION 4 . 5 . Problem (Vw) has a solution if the following conditions

hold:

(a) K is nonempty, convex and closed;

(b) 4>ls lower semicontinuous and quasiconvex in x on K;

(c) T is <j>-quasimonotone on K and locally admits a weakly (j>-hemicontinuous
suboperator;

(d) There is a compact set Ko C K and xo € Ko such that for every x € K\K0

one has <j>{x*0, x) — <t>(xg, x0) > 0 for some xj G T(x).

In addition, if either T is weakly (j>-pseudomonotone or <j> is strictly quasiconvex in x,
then the solution set of(Vw) is included in Ko.

PROOF: Apply Lemma 4.3, Propositions 3.1(iii) and 4.1 to obtain the first part of
the proposition. For the second part, use the same technique as the proof of the preceding
theorem. D

We observe that unlike the model (M), the solution set of (V) is not necessarily
bounded when T is properly quasimonotone and <\> is quasiconvex in x, as seen by the
next example.

E X A M P L E 4.6. Consider problem (V) with X = Y = Rn,K = M^,(f>{x',x) = (x*,x)
and T is given by

' K

•{T{X) ~ 1 {0} else.

Direct verification shows that conditions (a) through (d) of Theorem 4.4 are true. De-
spites of this, the solution set of this problem is the unbounded set K. In this example
T is properly quasimonotone, but not pseudomonotone, and cj> is linear, but not strictly
quasiconvex in x.

In the remaining of this section we assume that X is a locally convex space. In this
context milder coercivity conditions can be developed to ensure the existence of solutions
of variational inequalities. We recall that a set A C X is said to be locally compact if for
every x 6 X there is a neighbourhood U of x such that U D A is a compact set.

PROPOSITION 4 . 7 . Problem (V) has a solution if the following conditions hold:

(a) K is nonempty, convex and locally compact;

(b) cfi is lower semicontinuous and semistrictly quasiconvex in x on K;

(c) T is <j)-quasimonotone and <j>-hemicontinuous;

(d) There is a compact set Ko C K such that for every x 6 K \ KQ one can

find x0 € Ko with <t>(x*, x) - 4>(x*, x0) ^ 0 for all x* e T[x).
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Moreover, condition (d) is also necessary for problem (V) to have a solution provided

that T is 4>-pseudomonotone.

PROOF: Let us take any point a € K. By definition, there is a convex neighbourhood
V of the origin such that the intersection of a + V with K is compact (and nonempty).
We may suppose that V is a closed neighbourhood. For t > 1 sufficiently large, a + tV
is a neighbourhood of the origin. Moreover, the intersection of this neighbourhood with
K is compact, because

{a + tV)nK] Ca + tU(a+V)nK) - a ] .

Set U = a + t(intV). It is a convex open neighbourhood of the origin whose intersection
with K is nonempty and relatively compact. As Ko is compact, there is a positive n > 1
such that KQ C {nil) D K. Consider the closure Kn of the set {nU) D K. This set is
nonempty and convex. It is also compact because when t > 0 is sufficiently small, one
has a + t(Kn - a) C (VnK), which implies that the set a+ t(Kn-a) is compact, hence
so is Kn. By Theorem 4.4, the problem (V) on Kn admits a solution y0. If y0 € Ko, we
are done. If not, in view of (d), there is x0 € Ko such that 0(2/J,yo) - 4>{yo>xo) ^ 0 for
every y^ e T(y0). Actually this inequality is equality because y0 is a solution of (V) on
Kn. For every y € K \ {xo}, there is t 6 (0,1) such that XQ + t(y — XQ) € Kn. Since <j> is
semistrictly quasiconvex, we have either (j>{yo,xQ) = <j>{yo,y) or

<t>(Vo, xo + t(y - x0)) < max(<t>(yo, x0), <j)(yo, y))

which leads to <j>{yl,y) ^ <A(yo>2/o) for every J/Q G T(y0). By this y0 is a solution of
problem (V).
When T is </>-pseudomonotone, by setting Ko = {zo} where x0 is any solution of problem
(V) we deduce condition (d). D

COROLLARY 4 . 8 . Under conditions (a), (b) and (c) of Proposition 4.7, the fol-

lowing condition is sufficient for problem (V) to have a nonempty and bounded solution

set

(d') There is a compact set Ko Q K such that for every x 6 K \K0 one can

find x0 € Ko with <f>(x',x) - <j>(x*,x0) > 0 for all x' e T(x).

This condition is also a necessary condition provided that <j> is strictly quasiconvex in x

and T is <j>-pseudomonotone.

P R O O F : Under the hypothesis of this corollary, Proposition 4.7 shows that the so-
lution set of problem (V) is nonempty. Moreover, condition (d) shows that all solutions
of (V) belong to Ko, hence the solution set is nonempty and bounded. Conversely,
assume that the solution set of (V) is nonempty and bounded. Let Ko be its closure
which is compact. For every x € K \ Ko, we have <^(x5,x) - ^(x5,x0) ^ 0 for every
x0 € K0,XQ € T(x0) which implies <f>(x',x) - <f>(x',x0) ^ 0 for every x0 G K0,x' e T(x).
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If equality holds for some xo € KQ and x* G T(x), then due to the <£-pseudomonotonicity
of T one has <f>(xo,x0) = <1>(XQ,X) for all XQ € T(x0). One arrives at a contradiction be-
cause <f>(x*0,z) — <J>(XQ,XQ) < 0 for all z between XQ and x due to the strict quasiconvexity
of 0. D

PROPOSITION 4 . 9 . Problem (Vw) has a solution if the following conditions

hold:

(a) K is nonempty, convex and locally compact;

(b) <$> is lower semicontinuous and semistrictly quasiconvex in x on K;

(c) T is <j>-quasimonotone on K and locally admits a weakly <j>-hemicontinuous

suboperator;

(d) There is a compact set KQ C K such that for every x € K \ KQ one can

find xo G Ko with <j>{x*,x) - # r* ,x 0 ) ^ 0 for all x* € T(x).

Moreover, condition (d) is also necessary for problem (V) to have a solution provided
that T is <j>-pseudomonotone.

PROOF: Use the same argument as that of the proof of Proposition 4.7. D

COROLLARY 4 . 1 0 . Under conditions (a), (b) and (c) of Proposition 4.9, the fol-

lowing condition is sufficient for problem (Vw) to have a nonempty and bounded solution

set

(d') There is a compact set KQ C K such that for every x € K \ KQ one can
find x0 e Ko with 4>{x*,x) - <0(x\zo) > 0 for all x* € T(x).

This condition is also a necessary condition provided that <j> is strictly quasiconvex in x
and T is <j>-pseudomonotone.

P R O O F : By the same technique as Corollary 4.8. D

To conclude we notice that the results of this section generalise several existence
conditions given in recent works [2, 4, 5, 9, 17, 21, 25, 27] and some others for mixed
variational inequalities with set-valued pseudomonotone operators and for standard vari-
ational inequalities with set-valued quasimonotone operators. For instance, by setting
Y = X' and 0(x*,x) = (x*,x), [5, Theorem 5.1], [9, Theorem 3.1], [17, Theorem 4.1,
4.2], [21, Theorem 4.3] are derived from Corollary 4.10 while a theorem analogous to [2,
Theorem 2.1] can be obtained from Proposition 4.5 and Corollary 3.3 as a special case;
[4, Theorem 4.5], [25, Theorem 3] are obtained from Theorem 4.4 by setting Y = X' and
(j)(x*,x) = (x',x) + h(x) where h is a lower semicontinuous convex function on X (ac-
tually this particular case of Theorem 4.4 gives a stronger result than the corresponding
one of [4] and [25] because of using quasimonotonicity instead of pseudomonotonicity).
Finally, complementarity models in which the pairing function (.,.) is replaced by a cou-
pling function (j> can also be studied and existence results can be obtained. For instance,
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let us consider the problem of finding xo € K such that

<j>(x'o, x0) = 0 for all x*0 G T(x0).

The next result is immediate from Theorem 4.4.

COROLLARY 4 . 1 1 . Assume that the following conditions hold

(i) K is a convex and closed cone;

(ii) <j> is lower semicontinuous and linear in x;

(iii) T is <j>-quasimonotone, <j>-hemicontinuous;

(iv) There exist a compact set Ko C K and x0 € Ko such that for all x € K\K0,

one has <j>(x*0, x — x0) > 0, for some xj$ € T(x0).

Then the complementarity probJem has a solution.

The counterparts of Theorem 4.5, Propositions 4.7 and 4.9 for the complementarity
problem are derived in a similar way.

5. PARAMETRIC EQUILIBRIUM PROBLEMS

Let us now consider the parametric equilibrium problem already mentioned in the
introduction:
(E) Find x0 G K such that

/(x0, x) + h(z, x) - h(z, x0) > 0, Vx e K, z € Z,

where Z is a nonempty set, / is a real-valued function on K x K with f(x, x) = 0 for
every x € K and h is a real-valued function on Z x K. The equilibrium model studied in
[7] is a particular case of problem (E) when Z — K and inequality is required for z = XQ
only.

The equilibrium problem (D) is clearly a particular case of (E) and is covered by
model (V). It is to note that conversely, by suitably choosing the function / and h we can
also derive models {V) and (M) from this equilibrium problem (D). Indeed, by taking
h = 0 and respectively

and
/(*,») =

we obtain the models {V) and (M). A model a bit more general than (Vw) can also
be deduced from the equilibrium problem with h = 0 and f(x,y) = sup (cj)(x',y)

x'tT(x)

- 4>{x',x)). This mutuality between variational inequality formulations and equilibrium
formulations are useful in deriving results for one from the other.
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PROPOSITION 5 . 1 . Problem (E) has a solution ifthe following conditions hold:

(a) K is nonempty and convex;

(b) For every y € K and z e Z, the function x >-¥ f(y,x) + h(z,x) is lower
semicontinuous and semistrictly quasiconvex on K;

(c) For every x,y € K, strict inequality f(y,x) + h(zo,x) - h(zo,y) > 0 for
some zo € Z implies h(z, x) — h(z, y) — f(x, y) ^ 0 for all z € Z;

(d) h is lower semicontinuous in x on K and for every x,y € K the function
t € [0,1] i—> f(x + t(y — x), y) is upper semicontinuous at t = 0;

(e) There is a compact set Ko C K and XQ € Ko such that for every x e K\K0

one has f(xo, x) + h(z, x) — h(z, x0) > 0 for every z € Z.

Moreover, the solution set of problem (E) is included in Ko if additionally either of the
following conditions holds:

(b') For every y € K and z 6 Z, the function x i-> f{y,x) + h(z,x) is lower

semicontinuous and strictly quasiconvex on K;

(c') For every x,y € K, inequality f(y,x) + h(zo,x) - h(zo,y) ^ 0 for some
zo € Z implies h(z, x) - h(z, y) - f(x, y) ^ 0 for all z € Z.

PROOF: We wish to apply Theorem 4.4 to this problem. Remember that (E) can
be written in form of (V) by setting

Y = Kx Z,T(x) = {x}xZ

and

4>((y, z),x) = f(y, x) + h(z, x)

for every (y, z) G Y and x € K. We observe that conditions (a) and (b) of Theorem
4.4 are proved obviously, and condition (c) of the present proposition shows that T is
(^-quasimonotone. We now prove that T is </>-hemicontinuous. Let x, x0 e K verifying
h(z, xt) — f(xt,xo) — h(z,x0) ^ 0 for all z € Z and for t > 0 sufficiently close to 0,
where xt — x0 + t(x — x0). Then due to condition (b), h(z,xt) ^ f(xt,x) + h(z,x) for
every z € Z. In view of condition (d) this yields f(xo,x) + h(z,x) - h(z,xo) ^ 0 for
all z € Z. By this T is <£-hemicontinuous and Theorem 4.4 yields the first part of the
proposition. For the second part, it suffices to observe that condition (c') shows that T
is c/^pseudomonotone. D

When X is a locally convex space the coercivity hypothesis (e) can be relaxed as in

Proposition 4.7.

PROPOSITION 5 . 2 . Assume that X is a locally convex space. Problem (E)

has a solution if the following conditions hold:

(a) K is nonempty, convex and locally compact;
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(b) For every y € K and z 6 Z, the function x *-t f(y,x) + h(z,x) is lower

semicontinuous and semistrictly quasiconvex on K;

(c) For every x,y € K, strict inequality f{y,x) + h(zo,x) — h(zo,y) > 0 for

some z0 € Z implies h(z, x) — h(z, y) — f(x, y) ^ 0 for all z € Z;

(d) h is lower semicontinuous in x on K and'for every x,y G K the function

t € [0,1] !->• f(x + t(y — x), y) is upper semicontinuous at t = 0;

(e) There is a compact set Ko Q K such that for every x e K \K0 one can

find XQ € Ko with h(z, x) — f(x, XQ) — h(z, XQ) ^ 0 for every z € Z.

Moreover, condition (e) is also a necessary condition when (a), (b), (d) and the following

condition holds

(c') For every x,y E K, inequality f(y,x) + h(zo,x) - h(zo,y) ~2 0 for some
ZQ € Z implies h(z, x) - h(z, y) - f(x, y) ^ 0 for all z 6 Z;

PROOF: Invoke the proof of Proposition 5.1 and Proposition 4.7. Furthermore,
condition (c') shows that T is <£-pseudomonotone. Hence Proposition 4.7 is applicable. D

The boundedness of the solution set can also be assured under stronger conditions.

COROLLARY 5 . 3 . Under conditions (a), (b), (c) and (d) of Proposition 5.2, the
following condition is sufficient for problem (E) to have a nonempty and bounded solution
set

(e') There is a compact set Ko C K such that for every x € K \K0 one can

Gnd x0 € KQ with h(z,x) — f(x,xo) - h(z,x0) > 0 for every z £ Z.

It is also a necessary condition provided that

(b') For every y 6 K and z £ Z, the function x t-> f{y,x) + h(z,x) is lower

semicontinuous and strictly quasiconvex on K;

(c') For every x,y € K, inequality f(y,x) + h(zo,x) — h(zo,y) ^ 0 for some
ZQ € Z implies h(z, x) — h(z, y) — f(x, y) ^ 0 for all z € Z;

PROOF: Invoke to Corollary 4.8. D

We notice that Proposition 5.2 provides a strengthened version of [7, Theorem 4.3]
for two reasons. Firstly, in [7] condition that f{x,y) + f(y,x) ^ 0 is required which
is stronger than conditions (c) and (c1). Secondly, in [7], it is considered only the case
Z = K and the inequality in (E) is required to hold for some z G K only; thus the
solutions obtained by Proposition 5.2 are stronger than those of the model of [7].

6. FRICTIONLESS CONTACT PROBLEM

In this section we apply our results to the Signorini frictionless contact problem (see
[15, 11], for example). The classical way to obtain existence results for contact problems
is to assume some strong monotonicity and Lipschitz continuity of the elasticity operator.
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The results of Section 4 enable us to derive existence criteria for this problem under weaker
conditions.

To facilitate the reading, we follow the notations of the above references. Let fi be
an open, bounded and connected region in R* with k = 1,2, or 3, which represents the
interior of an elastic body. Let F be its boundary which is assumed to be Lipschitz and
partitioned into three parts cl(Ti), cl(T2) and cl(T3). It is supposed that Fi, F2 and F3 are
disjoint, Fi is fixed and of strictly positive measure in F. The body is fixed on Fi and is in
a frictionless contact with a fixed foundation on F3. In the model proposed by Signorini
that we are considering it is assumed that surface tractions of density / 2 £ [L2(T2)]

k act
on F2 and volume forces of density f0 € [£2(fi)] act on fi. We shall make use of the
following notations

S* = {a = (<7tf)y € K*xfc : a{j = aj{} = Rj**

W = {veHl{Q)k : ^ O o n T ! }

Q={q = (Qa) € L2(fi)*x* : Qij = qju l^i,j^k}= L*(n)k
s*

k

W2 = {v 6 W : vv < 0 almost everywhere on F3}

where vu is the normal component of v. In the sequel e stands for the (linear) deformation
operator e : Hl(Q)k ->• Q defined by

Equipped with the inner products

/ )qij{x)dx= /
Jn
/
Jn

(u,v)w = (e{u),e{v))Q

the spaces W and Q are real Hilbert spaces and W2 is a nonempty closed convex set of

W (see [11] for example).

Let T : fi x S* -> S* be a given elasticity operator. We define the stress function

a : Hl(Q)k —> Q which associate to any vector-valued function u : fi -> Rfc of Hl(Q)k its

stress field defined by
a(u): fi -> Sfc

x ^ F(x,e(v){x)).

With the above notations the equilibrium problem of this elastic and frictionless

contact can be formulated as follows.
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Find a displacement field u : Q -> R such that

-Div a(u) - /o in 0

(P) u = 0 on I \

a(u)u = f2 on T2

uu ^ 0, CF{U)V ^ 0, a(u)vuv = 0, a(u)T = 0 on F3

where v is the unit outward normal vector on F while au and aT denotes respectively the
normal and the tangential components of a.

Following the classical approach of Stampacchia an variational problem can be for-
mulated:

(P) Find u€ W2 such that (a(u),e(v) -e(u))Q ^ (f,v-u)w, VD G W2

where / denotes an element of W defined by

(f,v)w = / fo-vdx+ / f2.vda.
Jn Jri

As in ([15]) it can be shown that any solution of (P) (element of W2) is also a solution of

(P). The converse is true if the solution found for (P) is an element of C2(fi). Otherwise

a solution of (P) is a weak solution of (P) in a sense described in [15, Theorem 6.3].

Let us define the operator <f>: Q x W -* K by

<i>{q,v) = (q,e{v))Q - (f,v)w-

PROPOSITI ON 6 . 1 . Assume that the stress function satisfies the following pro-
perties

(i) the map a is <j>-quasimonotone and (p-hemicontinous on W2.

(ii) there exist a compact subset Wo ofW2 and a function u0 ofW0 such that

(a(uo),e{u) - e(uo))Q > {f,u- uo)w for every u G W2 \ Wo.

Then the variational contact problem (P) admits a solution.

P R O O F : By applying the Riez representation theorem we may define an operator
A:W2-^W2 such that

(10) (A(u),v)w = (a(u),e(v))Q, Vu,«eW2.

Now the variational problem (P) corresponds to the model (V) of Section 1 by considering
X = Y = W, K = W2, with <t>: W x W2 -> R and T : W2 -» W defined by

<t>(u, v) = (u- f, v)w and T(u) = A{u).
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We notice as above that the subset W2 is nonempty convex and closed in W. The
operator <p is clearly continuous and linear with respect to the second variable. Moreover
hypothesis d) of Theorem 4.4 is satisfied since, from (ii), there exists Wo C W2 compact
and u0 e Wo such that, for any u € W \ W2,

<j){T{uo),u)-^{T{uo),ua) = {a(uo),e(u) - e{uo))Q - (f,u-uo)w > 0.

Thus, in order to apply Theorem 4.4 it is now sufficient to observe that the
</>-quasimonotonicity and the ^-hemicontinuity of the operator a implies the 0-quasimono-
tonicity and the ^-hemicontinuity of T on W2. D
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