
Publications of the Astronomical Society of Australia (PASA), Vol. 30, e048, 9 pages.
C© Astronomical Society of Australia 2013; published by Cambridge University Press.
doi:10.1017/pasa.2013.26

Quantifying Resolving Power in Astronomical Spectra

J. Gordon Robertson1,2,3

1Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006, Australia
2Australian Astronomical Observatory, PO Box 915, North Ryde, NSW 1670, Australia
3Email: G.Robertson@physics.usyd.edu.au

(Received May 31, 2013; Accepted July 17, 2013; Online Publication September 03, 2013)

Abstract

The spectral resolving power R = λ/δλ is a key property of any spectrograph, but its definition is vague because the
‘smallest resolvable wavelength difference’ δλ does not have a consistent definition. Often, the FWHM is used, but this is
not consistent when comparing the resolution of instruments with different forms of spectral line-spread function. Here,
two methods for calculating resolving power on a consistent scale are given. The first method is based on the principle
that two spectral lines are just resolved when the mutual disturbance in fitting the fluxes of the lines reaches a threshold
(here equal to that of sinc2 profiles at the Rayleigh criterion). The second criterion assumes that two spectrographs have
equal resolving powers if the wavelength error in fitting a narrow spectral line is the same in each case (given equal signal
flux and noise power). The two criteria give similar results and give rise to scaling factors that can be applied to bring
resolving power calculated using the FWHM on to a consistent scale. The differences among commonly encountered
line-spread functions are substantial, with a Lorentzian profile (as produced by an imaging Fabry–Perot interferometer)
being a factor of two worse than the boxy profile from a projected circle (as produced by integration across the spatial
dimension of a multi-mode fibre) when both have the same FWHM. The projected circle has a larger FWHM than its true
resolution, so using FWHM to characterise the resolution of a spectrograph which is fed by multi-mode fibres significantly
underestimates its true resolving power if it has small aberrations and a well-sampled profile.
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1 INTRODUCTION

The spectral resolving power R = λ/δλ is perhaps the most
important single property of a spectrograph. The wavelength
increment δλ is the minimum separation for two spectral
lines to be considered as just resolved. The problem is that
the definition of δλ is arbitrary and inconsistent between
various usages. Classically, the Rayleigh criterion was used,
while in recent years by far the most common practice has
been to use the full-width at half maximum, i.e. δλ= FWHM.

It is clear that there can be no fundamental definition of the
minimum resolvable wavelength difference δλ, because with
arbitrarily high signal/noise ratio, sufficiently fine sampling
and a perfectly known instrumental response function (here
abbreviated as the line-spread function, LSF1) an observed
spectrum could be deconvolved to any desired spectral res-
olution. What spectroscopists understand by the ‘resolution’

1 This departs from the usual interpretation of ‘line-spread function’ as the
response of an optical system to a line source of infinitesimal width. What
is meant here is the system response to a monochromatic input. It would be
more accurately termed the ‘spectral line-spread function’ (Spronck et al.
2013).

of an instrument is the smallest δλ which does not require
(significant) deconvolution to obtain spectral line strengths
and locations (wavelengths). Lines of this separation can be
distinguished at moderate signal/noise levels. This arbitrari-
ness in the definition of δλ has always been recognised, from
the early use of the Rayleigh criterion.

There is in principle no problem with an arbitrary defi-
nition of δλ and hence R, provided it is consistent between
various systems that are to be compared. Thus, meaningful
comparisons could be made using δλ = FWHM provided that
the LSF has the same form in each case. However, the prob-
lem arises because this is not true: a diffraction-limited slit
spectrograph gives a sinc2 profile, a projected multi-mode
circular fibre feed gives a boxy profile (a half ellipse), a
Fabry–Perot etalon with high finesse gives a Lorentzian pro-
file, a single-mode fibre or waveguide will give a Gaussian
profile, and an LSF with significant aberrations may resem-
ble a Gaussian but in general will have its own unique form.
It is when comparing resolving power between instruments
with different forms of LSF that inconsistency arises and, as
shown below, the inconsistency can exceed a factor of two
in resolving power. This is a significant error in the context
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of scientific requirements for resolution, e.g. in stellar abun-
dance studies. Moreover, resolving power is typically one
of the formal specifications of a spectrograph, yet without
a description of the LSF and the way δλ is to be measured,
any requirement on R is necessarily imprecise in its meaning.
Likewise, the concept of signal/noise per resolution element
is vague because the ‘resolution element’ is not well defined.

Inconsistencies also occur between the well-known for-
mulas for theoretical resolving power:

(a) R = mN for a diffraction-limited slit spectrograph with
uniform illumination of all grating lines (m = diffrac-
tion order, N = number of illuminated lines) assumes a
sinc2 LSF and the Rayleigh criterion, i.e. the maximum
of a spectral line of wavelength λ occurs at the same
position on the detector as the first zero of the line at λ

+ δλ.
(b) R = mF for a Fabry—Perot instrument (m = order of

interference, F = etalon finesse) assumes separation of
the two Lorentzian LSFs by their FWHM.

(c) R = 2btan θ i/(Dtan θ s) for a slit-limited spectrograph
used in Littrow configuration (b = collimated beam
diameter, θ i = grating incidence angle, D = telescope
diameter, θ s = slit width in angular measure on the
sky) assumes rectangular LSFs (i.e. perfect images of
a uniformly illuminated slit) and two lines are regarded
as just resolved when the two slit images just touch.

There is thus a need to provide a more consistent definition
of resolving power, so that comparisons can be made with
better precision.

In this paper, I first illustrate the problem by comparing
various LSF forms with two lines separated according to the
various criteria that have been proposed. I then attempt to
provide a consistent definition of resolution across different
LSF forms.

The influence of sampling of spectra into discrete pixels
is important in practice, but will be considered separately
in a later work. For the present paper, sampling issues will
be avoided by using a sufficiently large number of pixels
so that profiles are effectively continuous. This will keep
the discussion focused on the issue of resolution itself. The
discussion here will be confined to one-dimensional spectra,
e.g. after processing to integrate over the spatial direction of
a raw two-dimensional data set.

2 RESOLUTION CRITERIA COMPARED

Figure 1 compares the different LSF profiles used in this
work and the various resolution criteria. There are a number
of points to note from this figure. Taking the rows in order:

(1) The top row shows a single spectral emission line of
each LSF form. The sinc2, rectangular and Lorentzian
LSFs were introduced above. The Gaussian is often
used as a general form of smooth profile, perhaps

caused by many small errors and aberrations smooth-
ing the ideal profile and combining via the central limit
theorem to give a Gaussian distribution. The projected
circle profile in column D applies to the case of a mul-
timode fibre, which presents a uniformly illuminated
circular image at the spectrograph entrance. When inte-
grated over the spatial direction and presented as a pro-
file along the wavelength axis, it has the form of a half-
ellipse. (This is an Abel transform; see e.g. Bracewell
1995, p. 367.)

(2) This and the subsequent rows show a pair of iden-
tical lines separated according to various criteria. The
three numbers towards the right-hand side of each panel
show the separation/FWHM, the local minimum, and
the value of the autocorrelation at the separation shown.
Panel 2A shows the classical Rayleigh criterion separa-
tion of two sinc2 profiles. The local minimum between
the peaks is 81.1% of the peak height. To many spec-
troscopists, this does indeed represent what is meant
by two lines being just resolved. However, the separa-
tion is 1.129 × FWHM, illustrating the inconsistency
of the two criteria. The Rayleigh criterion, where one
peak is placed over the zero of the other profile, cannot
be used for the Gaussian or Lorentzian profiles which
do not have a zero. For the projected circle, the boxy
profile, with slope increasing as the edge of the profile
is approached, produces the central spike in the sum
as seen in all of panels 2D–6D. In practice, aberrations
and pixelisation will remove this to some extent, but its
effects must still be considered.

(3) The Rayleigh criterion can be generalised by taking its
local minimum of 81.1% as the defining criterion. This
can be applied to all except the projected circle, due to
its central spike.

(4) The FWHM is the most used criterion nowadays. How-
ever, as panels 4A and 4B show, for the sinc2 and Gaus-
sian profiles the resulting blended profile is not well
resolved. For the sinc2 profile (panel 4A) the local min-
imum is 97% of the peak, which does not accord with
the common understanding of resolution. A Gaussian
profile (panel 4B) is only a little better. The projected
circle (panel 4D) has an overall flux deficit between
the peaks but a central spike at the midpoint. In prac-
tice, the result will depend on the degree of smoothing
and pixelisation. For the Lorentzian profile (panel 4E),
the relative minimum is well seen but only with good
signal/noise, due to the substantial overlap of the line
wings (note the high autocorrelation of 0.498).

(5) Again using the sinc2 profiles separated at the Rayleigh
criterion as a standard, this row takes the resulting au-
tocorrelation value of 0.151 and uses it as a criterion
for two lines to be just resolved. Due to the high wings
of the Lorentzian, it requires a separation of 2.366 ×
FWHM to meet this criterion (panel 5E).

(6) The equivalent width (area/height) has been proposed
to meet some of the above objections (e.g. Jones et al.
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Figure 1. Five LSF forms (top row, each shown with unity FWHM) with five different resolution criteria illustrated in the rows below. The three numbers at the right-hand side of each panel
are (from the top) the separation of the two peaks as a multiple of the FWHM, the relative minimum between the two peaks, and the autocorrelation at the separation shown (normalised to a
peak of 1.0).
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Table 1. Line-spread function properties.

Formula Peak FWHM EW Z

sinc2 0.8859
�

(
sin π 0.8859

� x

π 0.8859
� x

)2
0.8859

�
� �

0.8859 0.4289�

Gaussian 1
σ
√

2π
exp(− x2

2σ 2 ) 1
σ
√

2π
σ.2

√
2 ln 2 σ

√
2π 2σ/

√
π

Projected circle 2
πa2

√
a2 − x2 [|x| � a] 2

πa a
√

3 πa
2 –

Lorentzian 1
π

�/2
x2+(�/2)2

2
π�

� π�
2 0.6367�

Note that all formulas are normalised to unit area under the profile.

1995, 2002). For the sinc2 profiles, a separation of 1.0
equivalent width is extremely close to the Rayleigh
criterion. For other profiles, it also gives reasonable
results.

The conclusion from Figure 1 is that none of the separation
criteria shown is clearly superior for all LSF forms and, in
particular, the FWHM is a poor indicator of resolution for
the important cases of smooth sinc2 or Gaussian profiles. For
reference, the main properties of the LSF functional forms
discussed in this paper are given in Table 1.

3 A CONSISTENT RESOLUTION CRITERION

This paper aims to present criteria by which resolving power
can be more meaningfully compared across LSFs of differ-
ent functional forms. Two approaches have been taken. In
Section 5, a criterion based on wavelength accuracy will be
given. However, the first criterion, to be discussed in this
section, is developed by recognising that what an astronomer
means by two close spectral lines being resolved is that the
two can be seen separately and can have their strengths and
positions (wavelengths) measured without undue influence
of one on the other. There will still be an arbitrary definition
of what constitutes ‘undue’ influence, but the aim is to ensure
that there is only one arbitrary definition and that all other
measures are consistent with it. The influence of one spectral
line on another is measured by its effect in increasing the
noise in measurement of the flux of the line.

The procedure to use this method was to generate LSFs
of various functional forms, with two equal strength peaks
at separations varying from 0.8 to 2.0 × FWHM, add noise
to them, and then perform least-squares fits to extract the
positions and strengths of the two peaks.2 Importantly, the
width of each peak was treated as known rather than as a
further variable to fit. This was done for two reasons: (1) at
the ultimate closest resolvable approach of two spectral lines,
it is recognised that the issue is to separate two unresolved
lines. It is well known that if the line width is itself resolved,
then lines would have to be further apart to be properly
resolved. This is not what ‘spectral resolving power’ is taken
to mean. (2) Once two lines begin to blend, in the presence

2 All computations were performed using MATLAB (www.mathworks.com.
au).

Figure 2. Example of dual peak fitting. Blue line: two Gaussians each with
peak 9.3941 (area 10.0), unity FWHM, at a separation of 1.1× FWHM,
with 62.6 samples over an FWHM, and subject to independent Gaussian
distributed noise with standard deviation 1.0 in each sample. Red curve: the
least-squares fit to two Gaussians. This plot shows one of 4000 realisations
at one of 25 peak spacings.

of noise the fitting process would be likely to result in one
broadened line rather than two partly blended lines.

Figure 2 shows an example of two lines, with added noise,
and the least-squares fits. The simulations were performed
using the same noise power within the FWHM for each LSF
form. This is an unavoidably arbitrary choice of noise power
normalisation, but it does not influence the results to be de-
rived from these simulations. The different LSFs were nor-
malised to the same total area, i.e. flux (not peak). This re-
flects the fact that total signal power in the spectral line is
the quantity of importance to astronomers. Figure 3 shows
the results of this process. For each of the five LSFs shown
(sinc2, Gaussian, Lorentzian, projected circle, and projected
circle convolved with a Gaussian), a large number of trials
(4000) were done at each of 25 separations from 0.8 to 2.0 ×
FWHM. From each set of 4000 trials, the standard deviation
of the least-squares-fitted flux was found. The smooth curves
shown are semi-empirical model fits to the data of standard
deviation versus peak separation and are used to smooth out
irregularities due to random fluctuations. The functional form
fitted was

σfitted flux = C (autocorrelation(B2(x)))γ + σflux,iso, (1)

where B(x) is the LSF function, x being the independent vari-
able along the dispersion axis. Two free parameters, C and γ ,
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Figure 3. The variation of σ flux versus separation of two peaks, for five dif-
ferent LSF forms. From highest to lowest at peak separation = 1.0 the curves
are: black, Lorentzian; green, Gaussian; blue, sinc2; magenta, projected cir-
cle convolved with a Gaussian (see Section 6); red, projected circle. The
blue square on the sinc2 curve indicates the Rayleigh criterion separation.

were adjusted to fit the simulation results for each LSF and in
all cases gave a very good fit, within the residual fluctuations.
The values of σ flux,iso were obtained using equation (3).

At large separations, the standard deviations approach the
value obtained for an isolated peak, i.e. by this criterion the
lines are not influencing each other, and are fully resolved.
However, the Lorentz profile has such broad wings that it
has not yet reached a constant level at the separation of 2.0
FWHM. The Lorentz profile shows the effect of one peak
disturbing another (i.e. increasing its noise) at substantially
larger separations than the other LSFs, when measured in
multiples of the FWHM.

The sinc2 and Gaussian LSFs show very similar curves
in Figure 3, consistent with the fact that both are peaked
functions which drop smoothly and rapidly towards zero.

The projected circle LSF has a very different curve of σ flux
versus separation. There is no effect at all of one peak on the
other until they begin to touch, at 2/

√
3× FWHM = 1.1547 ×

FWHM. At smaller separations, there is some interaction but
it is very small because the profiles are convex with such
steep sides. Figure 3 also includes a curve for a projected
circle LSF convolved with a Gaussian of width such that the
final FWHM is a minimum (see Section 6).

Figure 3 makes it clear that different LSF functional forms
do indeed have very different properties as regards the mu-
tual effects of two lines, and to simply use the FWHM as a
resolution criterion is a poor indicator of spectral resolution
as it affects line finding and fitting. It is also clear that the
Lorentzian profile will give poor resolution at a given sepa-
ration in FWHMs, while the projected circle is exceptionally
good.

The data in Figure 3 can be used to derive scaling factors
to quantitatively compare different LSFs. The method used
here was to take a sinc2 profile separated according to the
Rayleigh criterion as the standard of ‘just-resolved’ spectral

Table 2. Resolution element scaling factors.

LSF form α β

sinc2 1.129 1.129
Gaussian 1.21 1.127
Lorentzian 1.70 1.605
Projected circle 0.83
Projected circle (conv) 0.95 0.943

lines. This leads to a σ flux value increased by a factor of
1.0514 compared with its limiting value at large separations
(i.e. for isolated peaks). Other LSF forms will thus be consid-
ered to be just resolved when their σ flux values are likewise
increased by 1.0514× over the value at large separations.
Defining a resolving power according to this criterion:

R
σflux = R

σflux=1.0514×σflux,iso
= RFWHM/α, (2)

where α is the separation/FWHM required to achieve the
above criterion and σ flux,iso is the standard deviation of a flux
measurement for an isolated peak (equation 3), the values
given in Table 2 are obtained.

Although the sinc2 profile was used as the standard for res-
olution, its value of α is not unity because the Rayleigh cri-
terion corresponds to a peak separation of 1.129 × FWHM.
The α values show how much the resolving powers deter-
mined by the present criterion of equal disturbance in peak
fitting due to an adjacent line differ from those based sim-
ply on the FWHM. As expected, the Lorentzian is the worst,
with an Rσflux only 59% of its RFWHM while the projected
circle is the best, with Rσflux exceeding RFWHM by 20%. The
convolved projected circle is a more realistic case (to be dis-
cussed in Section 6) and its resolving power, while less than
the exact projected circle, is still substantially greater than a
Gaussian or sinc2. Figure 4 shows profiles presented in the
same style as Figure 1 but with row 2 showing various LSF
types with two peaks separated according to the criterion
σ flux = 1.0514×σ flux,iso. These show the separations which
are regarded as ‘just resolved’ according to the criterion in-
troduced here.

4 LINE PARAMETER UNCERTAINTIES

Before introducing a second method of quantifying resolving
power, it is necessary to review the formulas for uncertainties
in the flux and position (wavelength) of a single spectral line
peak.

When the width of the peak is known and only the am-
plitude (flux) and position (wavelength) are fitted by least
squares, and assuming a symmetrical LSF form, Clarke et al.
(1969) give the formulas:

σflux,iso = σ

/√∑
B2, (3)

σ
λ,iso = σ

/(
pk

√∑
(B′)2

)
. (4)
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In these formulas, σ is the rms noise in each wavelength
channel and is assumed to be the same for all channels. The
summation is over all wavelength channels contributing to the
profile. The LSF function is B, and B′ denotes its derivative
with respect to wavelength. Note that in these equations B is
normalised to a peak of 1.00, and the ‘pk’ in equation (4) is
the peak flux of the response whose σλ is to be found. These
formulas have been verified by Monte Carlo tests and show
that the precision in finding the strength of a peak depends
most on the values where the intensity is greatest, while the
precision in the location of the peak depends on the regions
of greatest slope.

It is not appropriate in this paper to consider a detailed
noise model where one would take into account shot noise
from both the object and the background sky, as well as read-
out noise and dark noise. Instead, it will be suffice to use
the above assumption of constant noise in all channels. The
results are thus most directly applicable to spectra that are
background (or read-out noise) limited but serve as a guide
for other noise models as well. They can also be applied
to absorption lines, especially those that do not depress the
continuum by a large fraction.

In the present work, a large number of channels (pixels)
have been used, e.g. 62.5 or 100 across the FWHM, to avoid
the issue of sampling effects. However, for the projected cir-
cle, the gradient B′ becomes infinite as the intensity drops
to zero, and the sum in equation (4) would always be domi-
nated by the edge pixels (see Section 6). Hence, this case is
omitted here. The more realistic convolved projected circle
avoids this problem.

5 A SECOND RESOLUTION CRITERION

The second method to be considered originates from a some-
what independent property of high resolving power, namely
the ability to measure accurate positions (wavelengths) of
unresolved spectral lines. Thus, two spectrographs can be
considered as having equal resolving power if they give the
same wavelength accuracy despite their different LSF forms,
assuming that the noise power per wavelength interval re-
mains constant and equal total fluxes are received in both
cases.

To compare resolving powers using this criterion, there
is no need to perform noise simulations as in Section 3 but
instead equation (4) can be used as follows.

Define

Z = 1∫ +∞
−∞ (B′)2 dλ

, (5)

where Z is a type of width measure of an LSF, which will be
referred to as the ‘noise width’, given its role in calculating
σλ. For empirically determined LSFs, Z will generally be
calculated numerically as

Z � 1

�λ
∑

(B′)2
, (6)
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where �λ is the channel width in the summation. Values of
Z for the LSF types discussed here are included in Table 1.

Equation (4) can now be written as

σ
λ

= σZ
1
2 �λ

1
2 /pk, (7)

where again σ is the rms noise in the channel of width �λ

and the subscript ‘iso’ has been omitted because all profiles
considered in this section are single.

The basis of this second resolution criterion is that σλ,LSF
of any LSF will be equated to σλ,sinc2 , with the condition
that the two profiles have equal total fluxes (not equal peak
values).

The condition for equal total fluxes is simply

pksinc2 = pkLSF × EWLSF

EWsinc2
, (8)

where EW denotes the equivalent width. Equating the σλ

values for the given LSF and sinc2 and using the values of Z
and EW for sinc2 from Table 1, there follows

FWHMsinc2 = 1.2231Z
1
3

LSFEW
2
3
LSF. (9)

This is the FWHM of a sinc2 profile which would have
the same wavelength noise error as the actual LSF being
examined. If the value is large, it means that a wide sinc2

could give accuracy equal to the LSF, i.e. the LSF is poor
(e.g. a Lorentzian). If the FWHMsinc2 is narrow, it means that
a high-resolution sinc2 is needed to equal the accuracy of a
good LSF, e.g. the convolved projected circle.

The final step is to form the ratio of this calculated
FWHMsinc2 with that of the actual LSF and scale it by a fac-
tor 1.129, which will make the final scaled resolving powers
consistent with the Rayleigh criterion for sinc2 profiles. This
gives

β = 1.3809 Z
1
3

LSFEW
2
3
LSF/FWHMLSF. (10)

Values of β for the standard LSF forms are included in
Table 2, except for the projected circle where the infinite
gradient limit makes the calculation invalid. Values are quite
similar to the α scaling factors derived in Section 3.

The interpretation of β is that

δλ
σλ

= β FWHMLSF (11)

is the effective δλ which should be used in place of the
FWHM in order to calculate resolution on a scale consistent
with the Rayleigh criterion for a sinc2 profile. Thus,

R
σλ

= 1

β

λ

FWHMLSF

(12)

is the resolving power on this consistent scale.
This criterion will be easier to use in practice than the σ flux-

based criterion of Section 3. For an empirically determined
LSF, for example resulting from ray tracing of a spectro-
graph design, one would need to interpolate the LSF to a fine
sampling interval, and smooth out any fine structure arte-
facts from the LSF calculation (e.g. from a finite number of
traced rays), then use equation (6) to find the noise width and

also find the FWHM and equivalent width (area/peak). Then,
equation (10) can be used to find the scaling factor, which is
finally applied in equation (12). In the case of an asymmetric
LSF, the more general form of equation (4) given by Clarke
et al. (1969, equation (A7))3 should be used, although the
corrections for asymmetry are small.

6 PROJECTED CIRCLE LSF

The projected circle LSF is important in practice and has
very different properties compared with other forms, and so
warrants further discussion. The use of multi-mode fibres to
feed images to a pseudo-slit in a spectrograph is increas-
ingly common. Taking the fibre exit face as a uniformly
illuminated circle (a good approximation given the spatial
scrambling produced by transmission along the fibre), when
its image has been integrated over the spectrograph’s spatial
direction, the result will be the projected circle as illustrated
in panel 1D of Figure 1. It differs markedly from the sinc2,
Gaussian, and Lorentzian forms in that the projected circle
LSF approaches the x-axis with infinite slope. This convex-
outward form results in the formation of a central spike when
two such LSFs overlap, as in Figure 1.

Interestingly, the projected circle line profile also results
from Doppler broadening of an intrinsically narrow line in
a rapidly rotating star. This is because the radial velocity is
constant along strips parallel to the rotation axis, and the flux
at any one wavelength is due to an integration along such
a strip, i.e. a projection. The effects of the very steep sides
of such a profile have been noted, and Dravins (1992) drew
attention to the sharp spectral features that could appear at
wavelengths where no spectral line is present, i.e. the central
spikes as seen in Figure 1. He also noted that information
about the true stellar spectrum could be obtained regarding
features considerably narrower than the FWHM of the full
broadened profile—this is again due to the steep sides, which
lead to the central spike being narrow and easily smoothed
out (in this case, by intrinsic line width in a stellar spectrum).

As shown in Section 3, the lack of wings of the projected
circle LSF results in minimal noise interaction of two close
lines, i.e. its effective resolving power is substantially higher
than its FWHM would suggest.

The pure projected circle LSF cannot be directly compared
with other LSFs as regards wavelength uncertainties, because
of the infinite slopes. This means that however fine the sam-
pling may be, the β value will still depend on the sampling
interval. This is illustrated in Figure 5, which shows β drop-
ping approximately logarithmically with increasing sampling
frequency. The values of β shown are all substantially less
than any of those in Table 2. Even with some blurring due
to aberrations, a well-sampled LSF resembling the projected
circle will have much higher wavelength accuracy than a
Gaussian-like peak of the same FWHM.

3 Note that there is a typographical error in their equation (A7), where
�(B0B′

0)2 should be replaced by (�B0B′
0)2.
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Figure 5. Variation of β for a projected circle LSF as a function of the
number of samples across the full-width to zero intensity.

Figure 6. Final FWHM after convolving a projected circle LSF of unity
FWHM with a Gaussian of FWHM as given by the horizontal axis.

One of the peculiarities produced by the convex boxy
shape of this LSF is that the FWHM is reduced by con-
volution with a Gaussian of moderate width. This effect was
noted in the design of the AAOmega spectrograph (Saun-
ders 2005). This is another illustration of the inadequacy
of FWHM as a measure of resolution, since one would not
claim that the convolution of the LSF by spectrograph aber-
rations increases the resolving power. Figure 6 illustrates this
behaviour, using a projected circle LSF of FWHM = 1.00
convolved with Gaussians of various FWHMs up to 0.7. The
resulting FWHM drops by as much as 5%, when the Gaus-
sian FWHM = 0.3259, before rising again as the Gaussian
convolving function is further broadened. Figure 7 shows
three of the profiles: the pure projected circle, the case of the
minimum final FWHM, and the case of Gaussian FWHM =
0.595, which restores the final FWHM to 1.00, albeit with a
very different LSF form compared with the initial projected
circle. The case of the minimum final FWHM was used as
the example of a convolved projected circle in Table 2 and
Figures 3 and 4.

7 CONCLUSIONS

The analysis above has shown that characterising the res-
olution δλ of a spectrograph by its instrumental FWHM

Figure 7. Three of the resulting curves from the convolutions of Figure 6.
The curves from highest to lowest at the peak are: black, pure unconvolved
projected circle; blue, Gaussian FWHM = 0.3259 gives the minimum final
FWHM of 0.9494; red, Gaussian FWHM = 0.595 results in a final FWHM
of 1.00.

is a poor measure because it fails to take fully into ac-
count the variation among different LSF forms of the quan-
tities which matter most in spectroscopy—namely the dis-
turbance which a spectral line causes to a near neighbour, or
the accuracy with which a single line’s wavelength can be
measured. Using these two criteria, a very different picture
emerges, as shown by the α and β scaling factors in Table
2. There is more than a factor of two difference in resolv-
ing power between the best and worst LSFs (with identical
FWHM) when resolving power is measured on a consistent
scale.

Comparing the various resolution criteria shown in Figure
1 with the σ flux-based criterion of Figure 4 shows that the
equivalent width is the one that comes closest to matching
the consistent resolution scale introduced here. However, the
match is not exact, with a significant difference in the case
of the Gaussian LSF.

The Lorentzian LSF’s broad wings greatly increase its
effective δλ and hence reduce the resolving power of an
instrument with this LSF well below the value given by the
FWHM. It is well known by users of imaging Fabry–Perot
instruments, for example, that this LSF makes the instrument
unsuitable for absorption line studies, because a line’s core
is influenced by convolution with continuum fluctuations
over a substantial wavelength range. Here, this influence has
been quantified and the Lorentzian’s low relative resolving
power explicitly demonstrated.

Conversely, the projected circle, even after smoothing by
significant aberrations, has a steep-sided form which gives
substantially higher resolving power than its FWHM would
suggest. Gaussian and sinc2 profiles have properties inter-
mediate between these two extremes. However, even they
have ambiguities at the 10%–15% level, with a pair of Gaus-
sian profiles requiring a separation of 1.129 × FWHM to
achieve the 81% relative minimum of a generalised Rayleigh
criterion. Either of the two resolution element scaling
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factors can serve as a quality indicator for any given LSF
profile.

It is notable that the α and β scaling factors in Table 2
are quite similar for a given LSF type, despite the former
being based on the additional error in fitting the flux of a
line caused by a near neighbour, while the latter is based
on the accuracy of wavelength determination for isolated
lines. This agreement strengthens the case for using one
of these resulting scaling factors to bring resolving power
of any spectrograph on to a consistent scale. In princi-
ple, the ‘α’ factor, based on mutual disturbance in fitting a
line, is the more appropriate in low-to-moderate signal/noise
spectra, while the ‘β’ factor, based on wavelength accu-
racy, is the more appropriate for high-resolution, high sig-
nal/noise work. However, given the similarity of the two
factors and that the β factor is much easier to calculate
for a general empirically determined instrumental profile,
the β factor is recommended as a suitable standard mea-

sure for comparison of resolving power between different
spectrographs.
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