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ON DETERMINING THE GROWTH OF MEROMORPHIC

SOLUTIONS OF ALGEBRAIC DIFFERENTIAL

EQUATIONS HAVING ARBITRARY

ENTIRE COEFFICIENTS υ

STEVEN B. BANK

1. Introduction: In this paper, we treat the problem of determining
the rate of growth of meromorphic functions on the plane, which are
solutions of nth order algebraic differential equations whose coefficients
are arbitrary entire functions (i.e., equations of the form, Ω(z,y,dy/dz,
• , dny/dzn) — 0, where Ω is a polynomial in y, dy/dz, , dny/dzn whose
coefficients are arbitrary entire functions of z.)

One attack on this problem has been to restrict the class of equa-
tions considered. For example, in [8; pp. 221-223], Valiron (and also
Wittich [9; pp. 70-71]) considered a very special class of nth order
algebraic differential equations having polynomial coefficients, and it was
shown that all entire solutions of equations in this special class were of
finite order of growth. Of course, for n > 1, arbitrary nth order equa-
tions with polynomial coefficients may possess entire solutions of infinite
order. (See also Nikolaus [7; p. 625].) More recently, Yang [10; p. 6]
treated a special class of nth order equations (with restrictions similar
to those imposed by Valiron and Wittich), having arbitrary coefficients,
and he obtained results on the growth of the logarithmic derivative of
certain solutions.

In our investigation here, no restrictions are imposed on the form
of the equations we treat, and we seek to determine what factors affect
the growth of a solution. The second fundamental theorem of
Nevanlinna [5; p. 69] (or [6; p. 261, Formula (1.1)] shows that the
growth of an arbitrary meromorphic function f(z) in the plane (regard-
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54 STEVEN B. BANK

less of whether it solves an algebraic differential equation) can be
estimated if for three distinct values of λ (finite or infinity), one knows
the growth of the counting functions N(r,X) for the ^-points of /.
However, when f(z) is a solution of a first-order algebraic differential
equation with entire coefficients, it was shown in [3] that the growth of
/ can be estimated in terms of the counting function N(r,X) for just
the one value λ = oo, and the growth of the coefficients in the equation.
(For the reader's convenience, this result from [3] is stated in §3 below.
For the special case of entire solutions (i.e., N(r, oo) = 0), this result
can be found in [1; p. 109], in a slightly different formulation). The
fact that N(r, oo) must be involved in the estimate for the growth of an
arbitrary meromorphic solution is indicated by the following phenomenon:
In the special case of first-order equations whose coefficients are entire
functions of finite order, it was shown in [1; p. 116] that for any
entire solution, or more generally, for any meromorphic solution /
whose sequence of poles has a finite exponent of convergence, the
estimate, T(r, f) = O (exp rA) holds for some constant A as r —> + oo.
However, it was shown in [4], that no such uniform growth estimate
exists for arbitrary meromorphic solutions of such equations, since for
any preassigned function Φ(r) on (0, + oo), one can construct a mero-
morphic solution of such an equation, whose Nevanlinna characteristic
dominates Φ(r) at a sequence of r tending to + oo.

In the case of equations Ω — 0 of order higher than 1, having
arbitrary entire coefficients, it was shown in [2; §3] (see §5 below),
that regardless of the order of the equation, the growth of certain solu-
tions can be estimated in terms of the counting functions N(r,λ) for
the two values λ = 0, oo, and the growth of the coefficients in the equa-
tion. This result holds for those solutions of an nth order equation
Ω — 0, which fail to be solutions of some equation Ωq — 0, where Ωq is
the homogeneous part of Ω of total degree q in the indeterminates
y,dy/dz, ,dny/dzn. One of the main results of the present paper
(§6 below) shows that the above result can be extended to any mero-
morphic solution of any second-order algebraic differential equation with
entire coefficients (i.e., the growth of any solution can be estimated in
terms of the two counting functions 2V(r, 0) and N(r, oo) and the growth
of the coefficients in the equation. For the precise statement of how
the growth can be so estimated, see §6 below.)
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In § 9, we treat equations Ω = 0 of order higher than two. As

mentioned above, the growth of those solutions which fail to be solutions

of some equation Ωq = 0 can be estimated in terms of N(r, 0), JV(r, oo)

and the growth of the coefficients. It is easy to see that this result

cannot be extended to all solutions of all algebraic differential equations.

For example, if we set gx{z) — ez, and gn+i(z) — exp [I gn(Odζ) for n > 1,
\Jo /

then by induction it is easy to verify that each gn satisfies an ntu order

equation with constant coefficients and that gn has no zeros and no poles

(i.e., JV(r,0) = 0, JV(r, oo) = 0). Hence since the growth of gn+1 is

roughly like the exponential of the growth of gn, it is clear that just

knowing iV(r, 0), N(r, oo) and the growth of the coefficients in the equa-

tion, cannot lead to an estimate on the growth of a solution. In §9,

we investigate the other quantities which are required in estimating the

growth of a meromorphic solution / of an nth order equation where

n > 2. As the above example indicates, these other quantities involve

the counting functions for the zeros of certain successive logarithmic

derivatives, fx = f'/f, f2 = f(/flf ...,/» = fU/fic-i for some k < n - 2.

In §9, we discuss the precise determination of k, that is, the number

of these counting functions that actually can play a role in determining

the growth of the solution / .

2. Notation: For a meromorphic function f(z) on the plane, we

will use the standard notation for the Nevanlinna functions m(r,f),

N(r,f) and T{r,f) introduced in [5; pp. 6, 12]. We will also use the

notation n(r,f) to denote the number of poles (counting multiplicity) of

/ in \z\ < r. As in [2], we shall say that a certain property P(r) holds

"nearly everywhere" (briefly, n.e.) if P(r) holds for all r > 0 with the

possible exception of a set of finite measure. We will make use of the

following fact: If g(r) and h(r) are monotone nondecreasing functions

on (0, + oo) such that g(r) < h(r) n.e., then for any a > 1 there exists

r0 > 0 such that g(τ) < h(ar) for all r > r0. (This follows very easily,

for if σ is the measure of the exceptional set E, then for any

r > σ/(a — 1), the interval [r,ar] cannot be contained in E.)

3. The following result was proved in [3]:

THEOREM : Let Λ(z, y, yf) = 2 fkj(z)yk(y')j be a polynomial in y and

yf tvhose coefficients fkj(z) are entire functions. Let p = max{fc + j :
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fkj ^ 0}. Let Mλ(r) and M2{r) be monotone nondecreasing functions on

[0, + oo) such that the following conditions hold n.e.:

(A) Mι(r) > M2(r) > 1 .

(B) \ f k J ( z ) \ < M 1 ( r ) o n \z\ = r if k + j < p .

( C ) \fkj(z)\<M2(r) on \z\ = r if k+j=p.

Let m = m&x{j: fp_jfjΞ£θ} and let A(r) be a monotone nonincreasing

function on [0, + oo) which satisfies A(r) > 0 on [0, + °°) crnd for

which the following condition holds n.e.:

(D) |/p-m.™0*)| >A(r) on \z\ = r .

Let v(z) be a meromorphic function on the plane which satisfies

Λ(z, v(z),v'(z)) = 0. Then for any real number a > 1, there exist

positive constants K and r0 such that for all r > r0, we have

( 1 ) T(r,v)<K(J(ar)) ,

where

J{r) = log+ Mx(r) + r2M2(r)/A(r) + rN(r,v) .

4. Definition and Notation:

(a) Under the hypothesis and notation of § 3, we will say that the

triple of functions, (MlfM2,A) is a bounding triple for the first order

differential polynomial A.

(b) If Ω(z, y,y\ , y(n)) is a differential polynomial of order < n

(i.e., a polynomial in y,y', ,2/(π) whose coefficients are entire functions

of z), then for each nonnegative integer q, we denote by Ωq the homo-

geneous part of Ω of total degree q in the indeterminates y,y\ ,τ/(7l).

We say Ω is non-trivial if at least one coefficient of Ω is not identically

zero. Now by induction, it is easy to see that if we set w = y'/y, then

for each j > l,y{j) jy can be written as a polynomial in w,w\ ,wi3~ι)

with nonnegative integer coefficients. Hence if q > 0, and we divide

the homogeneous polynomial Ωq by yq, and set w = #72/, it easily

follows that we obtain a differential polynomial in w,w', ,w{n~ι\

whose coefficients belong to the additive group generated by the coeffi-

cients of Ωq. We denote this differential polynomial of order < n — 1

by [Ωq]. We require the following fact: If Ωq is non-trivial, then [Ωq]
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is non-trivial. This can be seen as follows: Since Ωq is non-trivial,

we can assume that some coefficient of Ωq is non-vanishing at the origin

(by dividing Ωq9 if necessary, by some positive power of z). If [Ωq]

were trivial, then clearly every meromorphic w solves [Ωq] = 0. But

then if y is any meromorphic function (not identically zero), w = y'/y

would solve [Ωq] = 0 and hence clearly y would solve Ωq — 0. (Since

q > 0, y = 0 also solves Ωq = 0.) Thus every polynomial Q(z) would

solve Ωq = 0. Hence if x09 , xn are any complex numbers, then

Σj=Q XjZj would solve Ωq = 0. Substituting into Ωq and evaluating at

2 = 0, we would obtain a polynomial in x09x19 -,xn, where the coeffi-

cient of any term xfrxl1- -x{n is (2!) i 9 -(nl)jn times the value at z = 0

of the coefficient in Ωq of the term j/io(2/0il# «(ί/(fl))'Λ Since the poly-

nomial in #o, #i> * > χn is identically zero, it follows that each coefficient

of Ωq would vanish at the origin which contradicts our initial assump-

tion. Hence [Ωq] must be non-trivial.

5. The result proved in [2; §3], when combined with the fact

stated in §2 above, can be stated as follows:

THEOREM: Let Ω(z,y,y', ,y(n)) be a non-trivial differential poly-

nomial whose coefficients are any entire functions of z. For each

r > 0, let Φ(r) be the maximum of the Nevanlinna characteristics of the

coefficients of Ω. Let u(z) be a meromorphic function on the plane

which is not identically zero and which satisfies the equation Ω = 0, but

which for some nonnegative integer q does not satisfy the equation

Ωq = 0. Then for any real number a > 1, there exist positive constants

Kλ and rλ such that for all r > ru we have

( 2 ) T(r, u) < K^Niar, u) + N(ar, Iju) + Φ{ar) + log r] .

6. We now state our main result for second-order algebraic differ-

ential equations:

THEOREM : Let Ω(z, y, y', y") be a non-trivial differential polynomial

whose coefficients are entire functions of z. For each r > 0, let Φ(r) be

the maximum of the Nevanlinna characteristics of the coefficients of Ω.

Let yQ(z) be a meromorphic function on the plane which is not identi-

cally zero and which satisfies the equation Ω = 0, Then:

(a) // for some nonnegative integer q, yo(z) does not satisfy the
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equation Ωq = 0, then for any a > 1, there exist constants Kx and rx

such that for all r > r19

( 3) T(r, yQ) < Kx[N(ar, y0) + N(ar, l/y0) + Φ(ar) + log r] .

(b) // for all nonnegative integers q, yQ(z) is a solution of Ωq = 0,

then let (MX,M2,A) be any bounding triple for any non-trivial [Ωq]. (At

least one such q exists by § 4(b) since some Ωq is non-trivial.) Then

for any a > 1, there exist positive constants K, Kλ and r0 such that for

all r > r0,

( 4) T(r, y0) < KtexvWMar))) ,

where

E(r) = log +M1(r) + r2M2(r)/A(r)

+ (N(r, y0) + N(r, l/y0)) (r + log +N(r, y0) + log +N(r,

Hence, in any case, the growth of a solution yQ can be estimated in

terms of the counting functions N(r,y0) and N(r,l/yQ) for the poles and

zeros respectively, and the growth of the coefficients in the equation.

Before proving the above result, we first prove a lemma which

estimates the growth of an arbitrary meromorphic function in terms of

the growth of its logarithmic derivative.

7. LEMMA: Let y(z) be any meromorphic function in the plane

which is not identically zero, and let w = y'/y. Then for any a > 1,

there exist positive constants c, cλ and r0 such that for all r > r0,

( 5) T(r, y) < c(rN(ar, y) + r2 exv(cx¥(ar))) ,

where

W(r) = T(r, w) + N(r, w) log r + N(r, w) log +N(r, w) .

Proof. Clearly we can assume w ^ 0.

Given a > 1, let σ > 1 be such that σ3 = a. Let {an} and {bm} be

the sequences of zeros and poles respectively of w in the plane (each

arranged in order of increasing moduli). Let r > 0, and let z —-reu be

any point on \z\ = r which is not a zero or pole of w. Then if R = σr,

we have by the Poisson-Jensen formula [5; p. 3] that,
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( 6 )

log\w(z)\ = (112π)Γ log\w(Reίφ)\G(r,R,θ,φ)dφ
Jo

\an\<R
log

R2 — anz

R(z - an)
+ Σ log

\bm\<R

R2 - bmz

R(z - bm)

where G = (R2 - r2)/(R2 + r2 - 2Rr cos (θ - 0 ) . Clearly G < (R2 - r2)/

(R - r)2. Also, since \z\ = r <R, it follows that if \an\ < R, then the

term, log |# 2 — anz)/R(z — αn)| is positive. Hence from (6), we obtain,

(7) log\w(z)\<A±^-m(Ryw)+ Σ- \ — - 7 ~~ s i / i •*

R — r )bm\<R

R2 - hmz
R(z - 6 J

For |6 m | < R, we have |i22 - bmz\ < 2R2. Furthermore, if r Φ |6m | , then

\z — bm\>\r — \bm\\. Since R = σr, we have thus shown that if r is not

equal to any \an\ or )6W |, then on \z\ = r, we have

( 8) log \w(z)I < -ΪLJLJL m{σr7 w) + Σ log 2σr + £ log .

Now from the definition of N(s,w), it follows easily that if s > e/σ,

we have,

( 9 ) n{s, w) < ((2σ - l)/(σ - l))N{σs, w) .

For the moment, let us assume that the sequence of poles {bm} is non-

empty. If this sequence is infinite, let mD > 1 be an index such that

\bm\ > e/σ for m > m0. If the sequence is finite, say {b19 , bt}7 set m0 = ί.

Now for any m,w(|&m|, w) > m. Hence if we set, am = (iV(σ|&m|,/M;))~σ for

m > m0, then since <7 > 1, it follows from (9) that Σim>m0 <*m converges.

Let E1 be the union of all intervals [|δTO| — αTO,|6TO| + am] for m > m0, to-

gether with the set {\an\: n> 0}. Hence Ex is of finite measure. We refer

now to the last term in (8). If r > | δ W o | + 1, and r&Eu then clearly

1̂  — |δTO | | > am for m > m0 and | r — |δTO | | > 1 for m < m0. Hence the

last term in (8) is < 2] σ logiV(σ|&m|, w), the sum being over all m> m0

for which \bm\ < σr. Since N(—,w) is increasing, and since there are

< n(σr, w) terms in this sum, we see that the last term in (8) is at

most σn{σr, w) (log +N(σ2r> w)). Since the second term on the right

of (8) has at most n{στ7w) terms, we see that this term is

<n(σr,w)log(2σr). Thus, if we let E be the union of Ex and

[O,|δTOo| + 1], then E is of finite measure, and we have shown that if
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r g E, then on \z\ = r, we have

log \w(z)\ < -^-ί— m(σr, w) + n(σr, w) log (2σr)
(10) ^ - 1

+ σn(σr, w)(log+ N(σ2r, w)) .

This was derived under the assumption that the sequence {bm} was non-

empty. However, if this sequence is empty, then the last two terms on

the right of (8) are zero, and so clearly (10) holds in this case too, if

we take E = {\an\: n > 0}.

Now let V(r) denote the right side of the inequality (10). Let ε be

a positive number such that y has no zeros or poles on 0 < \z\ < ε. By

Jensen's formula [6 p. 166], there is constant λ > 0 such that for all

r> 0,

(ID

where

\h(r)\<λ.

Set b = n(0,y) + n(0,l/y).

We now assert that if r > 1 and r £ E, then on \z\ = r we have,

(12) log+ \y{z)\ < B{r) ,

where

B(χ) = (r/e)(2n(r, y) + r(exp 7(r))) + λ + &(log r) + 2τrr(exp

To prove (12), we assume the contrary. Hence there exists r > 1

with reE, and a point 20 == rβίί?0 on \z\ = r such that log+ \y(zo)\ > jB(r).

Since B(r) > 0,

(13) log\y(zQ)\>B(r).

Now let «! = reίθl (where θ0 < θ1 < θ0 + 2π) be any point on \z\ = r

distinct from z0, and let Γ be the arc ζ = re- ί y, — ̂  < φ < — θ0. Now

by construction of the set E and the fact that reE,w has no poles on

\z\ = r. Thus clearly 2/ is analytic and nowhere zero on some simply-

connected neighborhood of the arc Γ. Hence there exists an analytic

branch g of logy on this neighborhood. Since gf = y'jy = w, we have,
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(14) g(z0) - g{zx) -

Taking- the exponential of (14), we see that,

(15) I y{zQ) I < I y(Zl) I exp | J^ w(ζ)dζ .

Hence in view of (10) and (13), we obtain,

(16) log \y(z1)\ > B(r) - 2;rr(exp V(r)) .

Of course by (13), (16) also holds for zx = zQ so that (16) is valid for all

points z1 on \z\ — r. Hence,

(17) rn(r, y) > B(τ) - 2^r(exp V(r)) .

However, from the definition of B(r) it follows that the right side of

(16) is positive so that Is/fa)| > 1 for all points zγ on \z\ — r. Thus,

(18) m(r,

Now from the definitions of N(r,y) and ε, we have,

(19) N(r, y) < (r/ε)n(r, y) + ^(0, y) log r .

Similarly, we have,

(20) N(r, 1/y) < (r/ε)n(r, 1/y) + n(0,1/y) log r .

But since y has no zeros or poles on \z\ = r, we have by the argument

principle,

(21) n(r, 1/y) - n(r, y) = (l/2τri) ί w(ζ)dζ ,

and hence in view of (10),

(22) n(r, 1/y) < n(r, y) + r(exp V(r)) .

However, by (11) and (18), we clearly have,

(23) m{r, y) < N(r, y) + N(r, 1/y) + λ .

Using the estimates (19), (20) and (22), and the definitions of b and

B{τ), we easily obtain from (23) an inequality which is in direct con-

tradiction to (17). This contradiction proves the assertion (12).

In view of (12), we have,

https://doi.org/10.1017/S0027763000015270 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000015270


62 STEVEN B. BANK

(24) rn(r, y) < B(r) if r > 1 and r <z E .

Since V(r) > 0, it follows easily from the definition of B(r), that there

exists rx > 0 such that for r > r19

(25) B(r) < (2r/e)n(r, j/) + (4r2/ε) exp V(r) .

Now examining F(r), it follows easily from (9) that there are positive

constants cx and r2 such that,

(26) Vir) < cFtfr) for r > r2 ,

where Ψ(r) is as defined in the statement of the lemma (see (5)). Add-

ing N(r, y) to both sides of (24), and using (9) for y instead of w, in

the estimate for B(r) in (25), it follows in view of (26), that there exist

positive constants c and r3 such that the conclusion (5) holds with σ2 in

place of a for all r > r3 for which r g £ . Since both sides of (5) are

monotone nondecreasing and since σ > 1 and E is of finite measure, it

follows from the fact stated in §2, that there exists r0 such that the

conclusion (5) holds for all r > r0 without exception, with σ3 in place of

a and σ2c in place of c. Since σ3 = α, the proof is complete.

8. Proof of the Theorem of § 6: We need only prove Part (b), since

Part (a) follows from the result in [2] stated in § 5. Hence we suppose

that the solution y0 of Ω = 0 is also a solution of each equation Ωq = 0.

Let (MlfM2,A) be any bounding triple for any non-trivial [Ωq], and

given a > 1, let a > 1 be such that σ2 — a. By construction of [Ωq],

the function w0 = y'0/y0 is a solution of the first-order equation [Ωq] — 0.

Since a > 1, it follows from the result proved in [3] which is stated in

§3 above, that there exist positive constants K and r0 such that for all

r > r0, the inequality (1) holds with w0 replacing v and σ replacing a.

Using this estimate for T(r,w0), together with the fact that N(r,w0) <

N(r,y0) + N(r,l/y0), it easily follows that for the quantity Ψ(r) defined

in the statement of the previous lemma, the following is true: There

exist constants Kx and rx > r0 such that for r > r19

(27) W(r) < KλE(σr) ,

where E(r) is as defined in (4). Hence by (5) of the previous lemma,

(using σ for α), there are positive constants c, cx and r2 such that for

r > r2,
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(28) T(r, y0) < c(rN(σrf y0) + r2 exp (cxE(σ2r))) .

Since (M19M2,A) is a bounding triple, it follows (see (C) and (D) in §3)

that I 2(r)/A(r) > 1 n,e, Hence for all sufficiently large r,(M2(σ2r)/

A(σ2r) > 1 by § 2. Thus E(σ2r) > r2 for all sufficiently large r, and

hence clearly, r2 < exp(Cjί7(σ2r)) for all r greater than some r3. Further-

more, for r > 1, clearly E(r) > rN(r,yQ). Since E(r) is increasing and

tends to + oo as r --> + <χ>, it easily follows that rN(σr, y0) <

exp (2c1£
r(σ2r)) for all r greater than some r4. Hence from (28), for all

r greater than some r5, we have

(29) T(r, y0) < (2c) exp (2c1£J(ί;
2r)) .

Since a = σ2, this proves Part (b) of the theorem.

9. Higher Order Equations: In this section, we investigate the

growth of meromorphic solutions of algebraic differential equations of

order n > 2. The actual estimates on the growth of solutions that one

obtains in these cases (i.e., the analogues of (3) and (4)), can be quite

complicated, and hence we will content ourselves with determining those

quantities which enter into the growth estimates. However, we em-

phasize that the actual growth estimates themselves can be derived by

following the method outlined below.

Let yo(z) be a meromorphic solution of an nth order algebraic differ-

ential equation Ω = 0, with n > 2, and let y0 ^ 0. We set yλ — yΌ/y0,

and by induction, we set yk+1 = yr

k\yk if yk Φ. 0. (We can exclude from

consideration here, any solution yQ for which yk = 0 for some k with

1 < k < n — 2. Such functions yQ can be treated by solving successively

the first-order equations y'm = ym+ιym for m = k — 1, k — 2, , 0, and it

is easy to see that any such y0 is entire, and its growth satisfies the

condition that for some constant K, the maximum modulus M(r,y0) is

< exp^CKr) for all sufficiently large r, where expfc_! is the (fc — ΐ)st

iterate of the exponential function. Hence we can assume that yk φ. 0

for 1 < k < n - 2.) From the fact that N(r, yk+1) < N(r, yk) + N(r, l/yk),

it follows easily by induction that for each k > 1,

(30) N(r, yk) < N(r, y0) +

Let Φ(r) be an unbounded monotone nondecreasing function on (0, + oo)
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with the property that the maximum of the Nevanlinna characteristics

of the coefficients of Ω is O(Φ(r)) as r —> + oo. Let a > 1. If y0 fails

to solve some equation Ωq = 0, then by § 5, T(r, y0) can be estimated in

terms of N(σr,y<), N(σr, 1 /y^ and Φ(σr). If y^ is a solution of each

equation Ωq = 0, then clearly 2/1 solves each equation [Ωq] = 0. There

are again two possibilities. If for some q and &, yλ fails to solve the

equation [Ωq]qi — 0, then in view of § 5 and (30), T(r, yj can be

estimated in terms of N(σr,yQ), N(σr,l/yQ), N(σr,lly^) and Φ(σr). Since

^ = y'0/yQ, it follows from §7, that T(r,y0) can be estimated in terms

of N(σ2r,yQ), N(σ2r,l/y0), N(σ2r, 1/yJ and Φ(σ2r). The second possibility

is that for all choices of q and quy1 solves each [Ωq]qi = 0. Then, of

course, y2 solves each equation [[fl9]ίx] = 0. These equations are of

order < n — 2. If n — 2 = 1, then by § 3, T(r, y2) can be estimated in

terms of N(σr,y2), log* M far), and M2(σr)/A(σr), where (M1?M2,A) is any

bounding triple for any nontrivial equation [[βj g i ] = 0. Using § 7 to

estimate T(r, yλ) in terms of T(σr, y2), and using it again to estimate

T(r,y0) in terms of T(r,yλ) we obtain (in view of (30)) that T(r,y0) can

be estimated in terms of N(σzr,yQ), N(σ3r,l/y0), Niσ^.l/yO, log+ M^r),

and M2(σ*r)/A(σ3r) if n - 2 = 1. If n - 2 > 1, then the case where y2

solves each equation [[Ωq]Ql] = 0, leads again to two possibilities. If for

some q9 q19 q2, the function y2 fails to solve the equation [Wq]qi]q2 = 0,

then by § 5, T(r,y2) can be estimated in terms of N(σr,y2), N(σr, l/y2) and

Φ(σr). Using §7 twice as above (and (30)), we see that T(r9y0) can be

estimated in terms of N(σ*r,yQ), N(σ3r,l/y0), N(σ3r, 1/^), N(σ3r,l/y2) and

Φ(σ3r). The other possibility is that for all choices of q, q19 q2, the function

y2 solves each equation [Wq]qi]q2 = 0. Then of course y3 solves each

equation [[[ββ]βl]9a] = 0 and we are faced with either n — 3 = 1 or the

usual two possibilities. (Of course, if the second of these two possibilities

continually holds, it is clear that we are eventually led to a first-order

situation where § 3 is applicable.) Continuing in this manner (and for

a given a > 1, taking σ > 1 such that σn = α), we clearly obtain the

following result:

THEOREM : Let Ω(z, y,y\ , y(n)) be a non-trivial differential poly-

nomial with n > 2, whose coefficients are entire functions of z. Let

Φ{r) be an unbounded monotone nondecreasing function on (0, + 00)

with the property that the maximum of the characteristics of the coeffi-
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dents of Ω is O(Φ(r)) as r —» + oo 0 Let yQ(z) be a meromorphic solution

of the equation Ω = 0, and inductively let yj+1 = y'j/yj assuming that

yk Έ/Ξ 0 for 0 < k < n - 2. Let a > 1. Tften:

(a)* // /or some &, 0 < k < n — 2, αtid some choice of nonnegatίve

integers q09q19 - ',qk> the function yk is not a solution of the equation.

then T(r9yQ) can be estimated in terms of N(ar,y0), N(ar,l/yQ),

N{ar, I/yd, , N(ar, l/yk) and Φ(ar).

(b) // for all choices of nonnegative integers, q0, q19 , qn_2, the

function yn_2 is a solution of the equation,

and if (M19M29A) is any bounding triple for any non-trivial equation,

then T(r,y0) can be estimated in terms of N(ar,y0), N(ar9l/yQ),

-• ,N(ar,l/yn_2), log+ Mx(ar) and M2(ar)/A(ar).
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