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Abstract

Recent progress in microdissection and in DNA sequencing has facilitated the subsam-
pling of multi-focal cancers in organs such as the liver in several hundred spots, helping to
determine the pattern of mutations in each of these spots. This has led to the construction
of genealogies of the primary, secondary, tertiary, and so forth, foci of the tumor. These
studies have led to diverse conclusions concerning the Darwinian (selective) or neutral
evolution in cancer. Mathematical models of the development of multi-focal tumors have
been devised to support these claims. We offer a model for the development of a multi-
focal tumor: it is a mathematically rigorous refinement of a model of Ling et al. (2015).
Guided by numerical studies and simulations, we show that the rigorous model, in the
form of an infinite-type branching process, displays distributions of tumor size which
have heavy tails and moments that become infinite in finite time. To demonstrate these
points, we obtain bounds on the tails of the distributions of the process and an infinite
series expansion for the first moments. In addition to its inherent mathematical interest,
the model is corroborated by recent literature on apparent super-exponential growth in
cancer metastases.
Keywords: Branching process; mutation; cancer cell; heterogeneity; heavy tail; Yule–
Simon distribution; infinite moment
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1. Introduction

Growth patterns and heterogeneity of cancer metastases are not well understood, although it
seems clear that they are a product of mutation, genetic drift, migration, selection, and perhaps
other population genetics and population dynamics mechanisms. Recently, Baratchart et al. [3]
reported that in some animal models, metastases exhibit growth patterns which appear to be
super-exponential, and in a series of careful experiments and computations, they provided an
explanation for this phenomenon involving rather complex biological mechanisms. Our aim in
this paper is to show that such behavior can be generated by a fairly simple growth and mutation
model.

Our work is also motivated by recent work [7] that presents an analysis of a sequencing
experiment using nearly 300 samples taken from a section of hepatocellular carcinoma tumor.
The purpose of the analysis has been to compare the Darwinian and non-Darwinian theories of
development of human solid cancers. The Darwinian model in [7] involves a primary tumor
growing and shedding secondary foci with distributed growth rates, which may seem to be an
attractive way of modeling competition among the secondary foci. However, when examining
the details of this approach, we found that the ‘Darwinian’ model introduced in [7] (and also
treated in [10]) displays peculiar behavior, characterized by the existence of outlier trajectories
and the explosion of expected cell counts in finite time. We attribute this behavior to the
exponential model used for the distribution of growth rates.
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Similar behavior is exhibited by a simple ‘toy model’that involves exponential growth curves
with Malthusian parameter (growth rate) that itself is an exponentially distributed random
variable; where convenient, Z ∼ Exp(λ) means that the random variable Z is exponentially
distributed with mean 1/λ. In the toy model the explosions are related to the distributions of
population size being of Pareto type with coefficients changing in time. However, neither the
model of [7] nor the toy model is truly stochastic in the sense of describing cell divisions and
mutations as stochastic events that occur as the cell population evolves in time. This led us to
build a stochastic population model as a branching process, in which (for simplicity) lifelengths
of cells are assumed to be exponentially distributed. At each division, one progeny cell may
mutate and acquire a new lifelength distribution which is exponential with the parameter
sampled from an exponential distribution. This process may be classified as an age-dependent
Markov branching process with a nondenumerable type space. We show that the process
exhibits finite-time explosions of expected values, while simulations indicate Pareto-like tails,
with exponents changing in time and becoming equal to 1 at the time the expectations explode.
We develop a set of bounds that are consistent with the simulation findings and prove the
finite-time explosion of the expected values of the process.

2. Baseline model

Our baseline model is in principle the deterministic model considered in [7] and [10] (see
Figure 1(a)). A primary tumor is generated from a single cell born at time t = 0 and grows at the
rate g(xp) = bxp, where b is a constant and xp := xp(t) is the size of the tumor at time t ; think
of the size as the total number of cells in the tumor, and note that, from dxp/dt = g(xp) = bxp

and xp(0+) = 1, xp(t) = ebt . This growing tumor emits secondary tumor cells at the rate
β(xp) := mxα

p . Each secondary tumor grows at a rate gs(x) = ax, where the rate a may vary
from one cell to another, and emits further secondary tumor cells: similarly to the primary
cell, when a given secondary tumor is of size xs , it gives birth to further secondary tumors at
rate β(xs). Note that a secondary tumor born at time u is of size ea(t−u) at time t ≥ u. (In
numerical work, we take α = 2

3 to reflect the shedding of secondary tumors from the surface
of the primary tumor of ‘size’ (volume) x.)

Consistent with the deterministic convention for structured populations, in this section we use
a deterministic nonnormed size distribution density function ρ(x, t) to be interpreted as follows.
At time t > 0 the count of colonies with sizes between x and x+�x equals ρ(x, t)�x+o(�x),
where o(·) is small. Following [5], the dynamics of the secondary cell colony size distribution
density are given by the von Förster-type equation for (x, t) ∈ [1, ∞) × [0, ∞),

∂ρ(x, t)

∂t
+ ∂g(x)ρ(x, t)

∂x
= 0, (1)

subject to the initial condition ρ(x, 0) = 0 and the nonlocal boundary conditions

g(1)ρ(1, t) =
∫ eat

1
β(x)ρ(x, t) dx + β(xp(t)), β(x) := mxα.

As shown in Appendix A, if the growth rates a and b are constant, the solution of (1) with
the stated boundary conditions is of the form

ρ(x, t) =
⎧⎨⎩

m[α(a − b)eαbtx−(αb/a+1) + me(m+aα)t x−(α+m/a+1)]
a[m + α(a − b)] if x < eat ,

0 otherwise.
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Figure 1: (a) Ideogram representation of the baseline process. Within the ‘tumor field’, the primary
tumor grows exponentially at rate b, and then sheds secondary tumors, which may shed further secondary
tumors. Secondary tumors grow at rates generally different from that of the primary tumor. (b) Hypotheses
underlying the modified Goldie–Coldman model. (c) Toy model with λ = 1: expected value E[X(t)] of
the process defined in Section 3.1 and which explodes at t = 1, averages of 1000 realizations of X(t), and
0.5 and 0.95 quantiles of X(t), all in semi-logarithmic scale. (d) Summary of 10 000 simulated trajectories
of the modified Goldie–Coldman process with parameters μ = 0.5, a = 0.01, and λ = 10. Depicted are

realizations of the process ranking 1–10 (green), 51–100 (red), and 301–400 (blue) at time t = 20.

Then the tail of the distribution corresponding to this density ρ(x, t) has the form

G(x) := G(x; a, b)

=
∫ eat

x

ρ(ξ, t) dξ

=
⎧⎨⎩

m[((a − b)/b)(eαbt x−αb/a − 1) + (m/(aα + m))(e(m+αa)t x−α−m/a − 1)]
m + α(a − b)

if x ∈ [1, eat ],
0 if x > eat .

(2)

This function increases exponentially at rate max(αb, αa + m). However, if the growth rate
of secondary tumors a is random and follows the exponential distribution with mean 1/λ then
instead of G(·) at (2) we have

G̃(x; b) =
∫ ∞

ln(x)/t

G(x; a, b)λe−λa da.
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Substitution of the expression for G(x; a, b) leads to intractable integrals, except for the case
x = 1 (total count of secondary foci), when it leads to the relation

G̃(1; b) = m(ebαt − 1)

bα
+ (2 − ebαt )

m2λ

bα2 eλ(m/α−b)	

(
0, λ

(
m

α − b

))
+ m2λ

bα2

{
−emt

[
e(λ−αt)(m/α−b)	

(
0, (λ − αt)

(
m

α − b

))
− e(λ−αt)(m/α)	

(
0,

(λ − αt)m

α

)]
− eλm/α	

(
0,

λm

α

)}
,

where 	(z, w) = ∫ ∞
w

e−t t z−1 dt is the incomplete gamma function for which 	(0, w) ∼
− log(w) as w ↓ 0. Thus, the solution increases to infinity as t ↑ λ/α. This highly irregular
behavior of the ‘quasi-stochastic’ version of the baseline model inspired us to seek a fully
stochastic model with analogous behavior. We present this model in the following section.

3. Branching process model

3.1. Stochastic toy model

Can a truly stochastic model display the same behavior as the baseline model? We begin
with a toy model, as follows. In place of the growth rate xs(t) = eat let secondary tumors grow
exponentially at rate a, which itself is a random variable, so that

X(t | a) = exp(at), t ≥ 0, a ∼ exp(λ).

For t > 0, it now has Pareto tail

P[X(t) > x] =
{

1 if 0 ≤ x < 1,

x−λ/t if x ≥ 1.

We integrate the above to obtain

E[X(t)] =
∫ ∞

0
P[X(t) > x] dx = 1 +

∫ ∞

1
x−λ/t dx =

{
λ(λ − t)−1 for t < λ,

∞ for t ≥ λ.

What of ∞ here? Will tumors really explode? We turn our attention to this matter.

3.2. Modified Goldie–Coldman model

Consider a modified Goldie–Coldman (G–C) model (Figure 1(b)) of which the classical
version can be found in [6, Section 4.2].

1. Cells are organized in proliferating clones; each clone is characterized by its (random)
division rate a ∼ Exp(λ); within each clone cells proliferate according to a continuous-
time Markov branching process with perfect binary fission after lifetimes that are i.i.d.
Exp(a) for all cells.

2. At each binary fission epoch (and for each cell such epochs occur at the characteristic
rate a of the clone to which the dividing cell belongs), one of the offspring cells inherits
the characteristic rate a, while for the other cell, either with probability 1 − μ it also
inherits the characteristic rate a or with probability μ it is the first cell in a new clone
with division rate a′ ∼ Exp(λ), this rate being determined independently of the division
rates for all other clones and independently for each binary fission epoch.
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3. The process is originated by an ancestor cell of given type a.

4. A variant of the last assumption is to have the type of the ancestor cell randomly distributed
as a ∼ Exp(λ).

Formally, consider one ancestor tumor cell with division rate a at time 0. At each division,
with probability μ, it can divide into one cell with rate a and another cell with division rate
a′, where a′ ∼ Exp(λ). The new type of tumor cells (with rate a′) have the same mutation
rate, μ, and can continue mutating into new subtypes with random division rate generated from
Exp(λ). All the tumor cells are assumed to be independent of each other. Let Xk(a, t) be the
number of tumor cells that are generated by k −1 mutations. Accordingly, X1(a, t) denotes the
number of primary tumor cells, i.e. the cells with division rate a; X2(a, t) denotes the number
of cells of types that directly mutated from primary tumor cells; X3(a, t), X4(a, t), . . . are
defined analogously.

The resulting model is a continuum-type continuous-time Markov branching process.
A backward Kolmogorov-type ordinary differential equation can be written for the joint prob-
ability generating function (PGF) of the distribution of total cell counts in all clones.

We begin by presenting simulation results, which motivate the more mathematical study that
follows. We then perform some asymptotic calculations to characterize the tail distribution of
the cell counts of different types. In particular, we show that the tail probability of these cell
counts can be bounded from below by a power law with exponent −λ/[(1 − μ)t].

Finally, we derive equations for the PGFs of the total counts of cells in the process. We
proceed to derive an infinite series solution for the expected counts of cells and show that it
explodes in finite time, almost exactly as occurs in the toy model.

3.3. Simulation results

We begin with the toy model because it provides guidance concerning the behavior of the
branching process model. For the version of the toy model with λ = 1, Figure 1(c) depicts
the true expected value E[X(t)] of the process (which explodes at t = 1), averages of 1000
realizations of X(t), and 0.5 and 0.95 quantiles of X(t), all in semi-logarithmic scale. Note
that the averages increase faster than any exponential, while the quantiles grow exponentially.
The explosion at t = 1 is analogous to the behavior exhibited by the baseline model.

Consider next the modified G–C model. We conducted extensive simulations with it,
assuming a wide range of parameter values. Selected results are shown in Figure 1(d) and
Figures 2–5. Figure 1(d) is based on 10 000 simulated trajectories of the modified G–C process
with parameters μ = 0.5, a = 0.01, and λ = 10. Depicted are realizations of the process
ranking 1–10 (green), 51–100 (red), and 301–400 (blue) at time t = 20. The distribution of
trajectories exhibits strong right skewness and suggests heavy tails. Figures 2–4 depict averages
of the simulated trajectories of the modified G–C process in three different cases: μ = 0.5,
a = 0.01, λ = 10 (Figure 2), μ = 0.5, a = 0.01, λ = 100 (Figure 3), and μ = 0.1, λ = 100
(Figure 4), based on 200, 1000, and 10 000 trajectories, with expectations M(a, t) computed
by numerically solving the integral equation (17) for ϕ(t) and using (16). The averages are
convex in semi-log coordinates; this suggests super-exponential growth, but they underestimate
the growth of the expectation, which explodes to infinity at t = λ/(1 − μ).

Figure 5 shows simulated tail behavior of the modified G–C process. We depict estimated
power exponents of the tail of X(a, t), t ∈ [0, λ/(1−μ)], and examples of empirical tails at the
expected value explosion times, in log-log coordinates, approximated by straight lines. These
simulations seemingly indicate that the expectation of X(a, t) tends to infinity as t ↑ λ/(1−μ).
We formally confirm this intuition in the sequel.
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Figure 2: Averages of the simulated trajectories of the modified G–C process with parameters μ = 0.5,
a = 0.01, and λ = 10, based on 200, 1000, and 10 000 trajectories (dotted, dashed–dotted, and dashed
lines, respectively), with the expectation M(a, t), computed by numerically solving the integral equation
(17) for ϕ(t) and using (16). (a) t and X(t) in linear scale, (b) t in linear scale and X(t) in logarithmic

scale, (c) t and X(t) in logarithmic scale.
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Figure 3: Averages of the simulated trajectories of the modified G-C process with parameters μ = 0.5,
a = 0.01, and λ = 100. Details as in Figure 2.
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Figure 4: Averages of the simulated trajectories of the modified G–C process starting from a cell with
randomly selected parameter of lifetime distribution, with parameters μ = 0.1 and λ = 100, based on 200,
1000, and 10 000 trajectories (dotted, dashed–dotted, and dashed lines, respectively), with the expectation
ϕ(t), computed by numerically solving the integral equation (17). (a) t and X(t) in linear scale, (b) t in

linear scale and X(t) in logarithmic scale, (c) t and X(t) in logarithmic scale.
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Figure 5: Simulated tail behavior of the modified G-C process with parameters μ = 0.5, a = 0.01,
λ = 10 (a, b) and λ = 100 (c, d). Depicted are estimated power exponents of the tail of X(a, t), t ∈
[0, λ/(1 − μ)], (left) and examples of empirical tails at the expected value explosion times, in log-log

coordinates, approximated by straight lines (right).

3.4. Asymptotic bounds

In this section we consider the distributions of X1(a, t), X2(a, t), and, in general, Xk(a, t).

3.4.1. Distribution of X1(a, t). By the independence assumption, the distribution of the primary
tumor cells, X1(a, t), is not affected by the behavior of subtypes that mutated from the primary
type. Standard results for Yule’s binary fission model gives

F1(s, a, t) = s e−a(1−μ)t

1 − s(1 − e−a(1−μ)t )
, s ∈ [0, 1], t ≥ 0,

where F1(s, a, t) is the probability generating function of X1(a, t). This is a geometric
distribution with success probability e−a(1−μt). Hence,

E[X1(a, t)] = ea(1−μ)t , P[X1(a, t) > n] = (1 − e−a(1−μ)t )n.

We now introduce a result that will be very useful for studying the distribution of X2(a, t),
X3(a, t), . . . . If we integrate over a ∼ Exp(λ), the marginal distribution of X1 is known as the
Yule–Simon distribution [9], [11]. Define

ν := ν(t) ≡ λ

(1 − μ)t
. (3)
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The probability mass function and tail probability of X1(t) are given by

P[X1(t) = n] = νB(ν + 1, n), P[X1(t) > n] = nB(ν + 1, n),

where B is the beta function, so, for sufficiently large n, the tail probability follows a power law

P[X1(t) > n] = 	(n + 1)	(ν + 1)

	(ν + n + 1)
∼ 	(ν + 1)

nν
as n → ∞.

The first two moments of X1(t) are

E[X1(t)] =
⎧⎨⎩

ν

ν − 1
if ν > 1,

∞ if ν ≤ 1,
var(X1(t)) =

⎧⎨⎩
ν2

(ν − 1)2(ν − 2)
if ν > 2,

∞ if ν ≤ 2.

(4)

This is essentially the same as the result we obtained for the toy model introduced at the
beginning of this section.

3.4.2. Distribution of X2(a, t). Let K(a, t) denote the number of tumor types generated by one
and only one mutation. Denote the division rates of these subtypes by a′

1, . . . , a
′
K(a,t), and let

Yi(a, t) be the number of cells of type a′
i . Thus, X2(a, t) = ∑K(a,t)

i=1 Yi(a, t). Recall that a

is the division rate of the ancestor tumor cell. Hence, the notation Yi(a, t) implies that a′
i is

integrated out. Clearly, if a subtype a′
i is born at time t0 < t , the distribution of Yi(a, t) is

the same as the marginal distribution of X1(t − t0). The expected value of X2(a, t) can be
computed as

E[X2(a, t)] =
⎧⎨⎩

∫ t

0

λaμea1(1−μ)s

λ − (1 − μ)(t − s)
ds if (1 − μ)t < λ,

∞ if (1 − μ)t ≥ λ.

(5)

Consider the tail probabilities P[X2(a, t) > n]; these can be bounded by

P[X2(a, t) > n] = P

[K(a,t)∑
i=1

Yi(a, t) > n

]
≥ P

[K(a,t)⋃
i=1

{Yi(a, t) > n}
]
. (6)

We pause to comment on why this bound is useful. For a tumor model, a is typically small and
λ is typically large to ensure that both the primary tumor type and most secondary tumor types
cannot grow too quickly. From its biological meaning, the mutation rate μ is small. Since, by
(5), the number of tumor cells eventually explodes, our primary interest is in the case that t

is moderate. Consequently, the event {K(a, t) ≥ 2} has small probability. More importantly,
the tail probability of Yi is a power law. Thus, we are much more likely to observe one very
large Yi than to observe two or more ‘moderately large’ Yi . The left-hand side of (6) can be
computed as

Pn(a, t) ≡ P

[K(a,t)⋃
i=1

{Yi(a, t) > n}
]

= aμ

∫ t

0
nea(1−μ)(t−s)B

(
λ

(1 − μ)s
+ 1, n

)
ds. (7)

To simplify notation, define λ̃ ≡ λ/(1 − μ). Choosing ε > 0 and omitting the exponential
term, we obtain

Pn(a, t)

aμ
≥

∫ t

ε

nB

(
1 + λ̃

s
, n

)
ds =

∫ t

ε

	(1 + λ̃/s)	(n + 1)

	(n + 1 + λ̃/s)
ds. (8)
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On R
+, 	(x) attains the minimum ≈ 0.885 at x ≈ 1.46. Thus we may bound 	(1 + λ̃/s) by

0.885 or 	(1 + λ̃/t) if λ̃/t > 0.46. For simplicity, assume henceforth that λ̃/t > 0.46 and
obtain

Pn(a, t) > aμ	

(
1 + λ̃

t

) ∫ t

ε

	(n + 1)

	(n + 1 + λ̃/s)
ds,

∼ aμ	

(
1 + λ̃

t

) ∫ t

ε

1

ñλ/s
ds

= aμ	

(
1 + λ̃

t

)̃
λ log n

∫ λ̃ log n/ε

λ̃ log n/t

e−x

x2 dx.

We can let n go to infinity since λ̃/s ≥ λ̃/ε. The exponential integral is not an elementary
function, but can be bounded (see [1]) by

e−u

un−1(u + n)
<

∫ ∞

u

e−x

xn
dx <

e−u

un−1(u + n − 1)
≤ e−u

un
, u > 0, n = 1, 2, . . . . (9)

Hence,

λ̃ log n

∫ λ̃ log n/ε

λ̃ log n/t

e−x

x2 dx >
t2n−̃λ/t

λ̃ log n + 2t
− ε2n−̃λ/ε

λ̃ log n
. (10)

Note that in (8) we omitted the integral on (0, ε), as it is of less interest to us. But using the
inequality for the beta function given in [4] and (9), we can show that∫ ε

0
nea(1−μ)(t−s)B

(
1 + λ̃

s
, n

)
ds >

ea(1−μ)(t−ε)ε3

(̃λ + ε)(̃λ log n + 3ε)
n−̃λ/ε,

which grows at a slower rate (with respect to n) than (10). Since log n is a slowly varying
function, for sufficiently large n, we have

Pn(a, t) >
aμt2	(1 + λ̃/t)

λ̃ log n + 2t
n−̃λ/t ≡ Ln(a, t). (11)

Finally, if we integrate over a ∼ Exp(λ) and recall the definition in (3), we obtain

P[X2(t) > n] > Pn(t) >
μ	(ν + 1)

ν(ν log n + 2)
n−ν . (12)

3.5. Numerical examples

We chose a = 0.1, μ = 0.2, and λ = 10, and simulated 106 trajectories of X2(a, t). For
the sample mean of X2(a, t), we obtained 0.112 at t = 4 and 0.339 at t = 8; these equal the
theoretical values computed using (5). We show the tail probabilities of X2(a, t) for t = 8, 15
in Table 1. Recall that our estimate Pn(a, t) defined in (7) is a lower bound for P[X2(a, t) > n],
and Ln(a, t) defined in (11) is an asymptotic lower bound for Pn(a, t). Observe that in Table 1,
both Pn(a, t) and Ln(a, t) can at least correctly estimate the order of the tail probabilities of
X2(a, t). In fact, Pn(a, t) is very close to the sample average for large n; this is most likely due
to the heavy tail of the distribution of X2(a, t). Furthermore, assuming that the tail probability
has the form nx/ log n, we estimate the exponent to be −1.45 for t = 8 and −0.81 for t = 15;
these are very close to the theoretical values −1.56 for t = 8 and −0.83 for t = 15. Thus, our
estimate of the exponent, ν = λ/(1 −μ)t , is useful, though it tends to be slightly conservative.
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Table 1: Results of simulating the model of primary and secondary tumors (with parameters a = 0.1,
μ = 0.2, and λ = 10). P̂[X2(a, t) > n] is the observed frequency in 106 simulated trajectories; Pn(a, t)

is defined in (7), computed by numerical integration; Ln(a, t) is defined in (11).

n

5 10 15 20 25 50 100 200

t = 8
P̂(X2(t, a) > n) × 103 5.38 1.49 0.69 0.40 0.28 0.07 0.02 0.009

Pn(a, t) × 103 4.54 1.37 0.67 0.40 0.27 0.08 0.02 0.007
Ln(a, t) × 103 3.98 1.09 0.52 0.31 0.21 0.06 0.02 0.005

t = 15
P̂(X2(t, a) > n) × 103 44.9 19.0 11.6 8.30 6.45 3.00 1.45 0.71

Pn(a, t) × 103 34.3 16.1 10.4 7.59 5.97 2.87 1.40 0.70
Ln(a, t) × 103 22.1 10.6 6.94 5.17 4.12 2.06 1.04 0.53

3.5.1. Tail probabilities of Xk(a, t). The asymptotic analysis leading to (12) is readily extended
to Xk(a, t) for k = 3, 4, . . . . For example, when analyzing X3(a, t), we can treat the secondary
tumor cells described by X2 as primary tumor cells and apply our previous result. By both (9)
and (12), we obtain, for sufficiently large n,

P[X3(a, t) > n] > aμ2
∫ t

0

ea(1−μ)(t−s)

λ̃(̃λ log n + 2s)
	

(
1 + λ̃

s

)
s2n−̃λ/s ds

>
aμ2	(ν + 1)

λ̃(̃λ log n + 2t)

∫ t

0
s2n−̃λ/s ds

>
aμ2t4	(ν + 1)

λ̃(̃λ log n + 2t)(̃λ log n + 4t)
n−̃λ/s .

We can repeat this calculation and obtain the general expression of the tail probability of
Xk(a, t). Assuming that (̃λ log n + kt) ∼ λ̃ log n, we find that

P[Xk(a, t) > n] > Ca

{
μ(1 − μ)2t2

λ2 log n

}k−1

n−ν as n → ∞ for k = 2, 3, . . . ,

where C is a chosen constant. This expression provides insight into the dynamics of the tumor
cells. First, the power law exponent −ν is the same for all tumor cells except the primary ones,
but the growth rate of Xk(a, t) is penalized by (log n)1−k . The exponent ν is equal to 1 exactly
when the expected value of the number of tumor cells explodes (recall (4) and (5)). Second,
for small t , the tumor population is dominated by X1(a, t) and X2(a, t), but for large t , the
cell populations Xk(a, t) with large k eventually dominate. Finally, given a moderate value of
t , the value of μ determines which of X1, X2, . . . , dominates: if μ is too small then there can
be no mutation to give rise to new subtypes, but if μ is close to 1 then no tumor subtypes can
flourish since most divisions do not increase the total number of cells of that subtype.

3.6. Towards general theory

3.6.1. Branching process with infinite type space. We return to the modified G–C model
specified at the beginning of Section 3.2. Following the hypotheses of the model and under the
usual conditional independence assumptions, an ordinary differential equation can be written
for the PGF of the distribution of total cell count in all clones

F(s; a, t) = E[sX(a,t)], s ∈ [0, 1],
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where X(a, t) denotes the number of cells in the process started by an ancestor of type a. The
backward Kolmogorov-type equations for t ≥ 0 and a ≥ 0,

∂F (s; a, t)

∂t
= −aF(s; a, t) + a[(1 − μ)F(s; a, t)2 + μF(s; a, t)(s; t)], (13)

F(s; a, 0) = s,

are analogous to the equations of the G–C model of clonal resistance ([6, Section 4.2]), except
that the PGF (s, t) of the cell count of the clone started by a mutant of exponentially distributed
type is equal to

(s, t) =
∫ ∞

0
F(s; a′, t) · λe−λa′

da′, (14)

as follows from the second hypothesis of the modified G–C model. Equation (13) can be solved
and using (14) compressed into a single integral equation for (s, t) (see Appendix A). It is
also straightforward to obtain

M(a, t) = E[X(a, t)] = ∂F (s; a, t)

∂s

∣∣∣
s↑1

,

∂M(a, t)

∂t
= a(1 − μ)M(a, t) + aμϕ(t), (15)

where

ϕ(t) =
∫ ∞

0
M(a′, t)λe−λa′

da′

is also equal to ∂(s, t)/∂s |s↑1. We can represent the solution of (15) using the variation of
constant formula

M(a, t) = g(t) + aμg(t)
(t)∗ ϕ(t), (16)

where ‘
(t)∗ ’ is the convolution operator of functions on [0, ∞) and

g(t) = ea(1−μ)t .

On multiplying (16) by λe−λa and integrating on a over [0, ∞), we obtain

ϕ(t) = f1(t) + μ

λ
f2(t)

(t)∗ ϕ(t), (17)

where, for t ∈ [0, λ/(1 − μ)),

f1(t) =
∫ ∞

0
g(t)λe−λa da = 1

1 − t (1 − μ)/λ
,

f2(t) =
∫ ∞

0
ag(t)λ2e−λa da = 1

[1 − t (1 − μ)/λ]2 .

Accordingly,

ϕ(t) = f1(t) + f1(t)
(t)∗

∑
i≥1

(
μ

λ

)i

f
(t)∗ i
2 (t), (18)

where the infinite series of convolution powers converges uniformly for t in any closed subset
of the interval [0, λ/(1 − μ)) (this can be proved by an argument akin to Picard iteration).

Equations for the expected values have solutions expressed as a series of convolution powers.
They explode at finite time t = λ/(1−μ). In addition, the functionϕ(t) = ϕ(t, λ), is understood
to be a function of two variables depending only on t/λ, i.e. it has the following scaling property
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for t ∈ [0.kλ/(1 − μ)):

ϕ(t, kλ) = ϕ

(
t

k
, λ

)
.

Numerical solutions based on the power series of (18) are depicted as thick continuous
lines in Figures 2, 3, and 4, along with simulation averages. The relationship between these
averages and the exact expected values M(a, t) and ϕ(t) is analogous to that of the toy model
(Figure 1(d)).

4. Conclusions

In this paper we presented three models: a quasi-stochastic baseline model, a stochastic
toy model, and a branching process model. Each of these models proposes a mechanism for
generating heavy tail and ‘explosive’ super-exponential growth of a population of secondary
tumors under very parsimonious assumptions. Our approach generates somewhat unexpected
results without invoking new biological mechanisms. Of course, the finite-time ‘explosions’
of expected values that we obtained cannot occur in the real world, in which cell proliferation
rates a cannot be arbitrarily high as required by the exponential distribution.

Equally important are the statistical and model building consequences. Our analysis demon-
strates that averages of empirical trajectories may be quite meaningless when building models
of evolutionary phenomena such as cancer, in which heterogeneity plays a major role. Based
on the toy model analysis, it is much more realistic to follow quantiles and deduce the growth
law of the process from the different growth exponents of the quantiles. Since the branching
process model seems to behave very similarly to the toy model, this conclusion is likely to hold
for it as well.

The behavior of the models arises from two distributional assumptions: exponentially
distributed lifetimes and exponentially distributed growth rates. The assumption of exponential
lifetimes is made for simplicity. While the assumption is not realistic in some contexts, it is
often true in the theory of branching processes that many results which are exact under this
assumption hold asymptotically for more general distributions. The second assumption of
exponential growth rates is less obvious. In reality, we deal with a distribution of growth rates
with bounded support. It would be interesting to investigate how the behavior of the process
changes if we truncate the exponential distributions of growth rates. Without getting into
details, which are elementary, this can be clarified via the toy model. If a truncated exponential
is adopted as the distribution of growth rates, then asymptotically the expected values become
exponential, with rates depending on the truncation. The distribution tails become truncated
Pareto, with the truncation point growing exponentially with time. As a result, the expected
value remains useless as a measure of central tendency.

Mathematically, our analysis of the branching process model is quite preliminary. We can
only conjecture the nature of the asymptotics of the modified G–C model. We do not know
which properties of the process persist if cell death is allowed. Finally, we do not know the
mathematical structure of the Markov operator semigroup involved in such a process. These
questions certainly warrant further research.

Appendix A. Solution of the baseline model

We follow the approach of Iwata [5]; this involves a transport-type partial differential
equation with nonlocal boundary conditions, of the type considered in [2] and [8], and which
can be used to derive the distribution of the sizes of recurrent secondary tumors shed by a

https://doi.org/10.1017/apr.2018.73 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2018.73


Models of cancer secondary tumors 111

growing primary tumor. In the simplest cases, we obtain closed-form expressions, while when
the growth rates of the metastases are exponentially distributed, we obtain expressions that
involve incomplete gamma functions that explode in finite time.

A.1. Deriving the distribution density from the transport equation

Case 1. Primary and metastatic tumors grow at the same rate a = b. From (1) and the
exponential growth rate hypothesis g(x) = ax, we derive the transport equation

∂ρ

∂t
+ ax

∂ρ

∂x
= −aρ.

Equivalently, for x > 0,
∂ρ

∂x
+ 1

ax

∂ρ

∂t
= −ρ

x
.

Regarding x as the independent variable, we apply the method of characteristics

ρ̃(x) = ρ(x, τ (x)),

where ρ̃ denotes the distribution density ρ parameterized along characteristics. Integrating the
equation dτ/dx = (ax)−1 from 1 to x, we obtain

τ(x) − τ(1) = ln x

a
, (19)

leading to a solution of the form ρ(x, τ (x)) = ρ(1, τ (1))/x, which, with t = τ(x) and (19),
yields

ρ(x, t) = ρ(1, t − (ln |x|)/a)

x
, (20)

implying that ρ(x, t) = 0 for x > eat .
Assume that at time t = 0 no metastatic tumor exists, so the initial condition is

ρ(x, 0) = 0.

The boundary condition at x = 1 has the nonlocal form given in (2). Equation (2) indicates that
the number of metastatic single cells newly created per unit time at time t (the left-hand side
term) is the sum of the total rate of occurrence of metastases due to both metastatic tumors and
the primary tumor (corresponding respectively to the first and second terms of the right-hand
side of (2)) [5]. xp(t) represents the number of cells in the primary tumor at time t and is as
described in Section 2: the number of cells in the primary tumor as a function of time is

xp(t) = eat . (21)

Write ρ1(t) = ρ(1, t), and substitute (20) and (21) into (2); then

aρ1(t) =
∫ eat

1
mxα ρ1(t − (ln |x|)/a)

x
dx + meaαt . (22)

Following the change of variables x = ea(t−u), dx = −ax du, (22) can be written as aρ1(t) =
ameat ∗ρ1(t), where (f ∗ g)(t) = ∫ t

0 f (t − τ)g(τ ) dτ . Taking Laplace transforms ρ̂1(·) gives

aρ̂1(s) = a
mρ̂1(s)

s − aα
+ m

s − aα
, (23)

and

ρ̂1(s) = m/a

s − (aα + m)
,
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leading to ρ1(t) = (m/a)e(aα+m)t . Using (20), we obtain

ρ(x, t) = (m/a)e(aα+m)(t−ln x/a)

x
= m

a
e(aα+m)tx−(α+m/a+1) (x ≤ eat ). (24)

Let G(x) be the number of migrant clones with more than x cells at time t ; then

G(x) =
∫ eat

x

ρ(ξ, t) dξ = m

aα + m
(e(aα+m)tx−(α+m/a) − 1) (x < eat ). (25)

Case 2. Metastatic tumors grow at a different rate, a �= b. Equation (25) can be extended
to include growth advantage, the newly seeded tumor having a growth rate which can be higher
or lower than the growth rate of the parent tumor. Using (2) and the equation for the number
of cells in the primary tumor xp(t) = ebt yields

aρ1(t) =
∫ eat

1
mxα ρ1(t − (ln |x|)/a)

x
dx + meαbt .

Much as before, after a change of variables, aρ1(t) = a
∫ t

1 meaα(t−u)ρ1(u) du + meαbt , and
taking Laplace transforms gives

ρ̂1(s) = m

a

s − aα

(s − αb)(s − aα − m)
.

Inverting this Laplace transform yields

ρ1(t) = m[(aα − αb)eαbt + me(aα+m)t ]
a(aα + m − αb)

. (26)

For x ≤ eat , (20) gives

ρ(x, t) = 1

x

(
m

a(aα + m − αb)
[(aα − αb)eαb(t−ln |x|/a) + me(aα+m)(t−ln |x|/a))]

)
= m[(aα − αb)eαbtx−(αb/a+1) + me(aα+m)tx−(α+m/a+1)]

a(aα + m − αb)
.

Correspondingly, G(x) = G(x; a, b), denoting the number of migrant clones with more than
x cells, is found by integrating this density over x ∈ [1, eat ] and is given by

G(x; a, b) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
m

aα + m − αb

[
a − b

b
(eαbtx−αb/a − 1)

+ m

aα + m
(e(aα+m)tx−α−m/a − 1)

]
if x < eat ,

0 otherwise.

Case 3. Metastatic growth rate has exponential distribution with parameter λ. In this case,
we obtain G̃(x, b) = ∫ ∞

0 G(x; a, b)λe−λa da. Since G(x; a, b) = 0 for x > eat (equivalently,
for a < (ln x)/t), we can write

G̃(x, b) =
∫ ∞

(ln x)/t

G(x; a, b)λe−λa da. (27)

In general, this integral seems analytically intractable, though the special case x = 1 can be
expressed in the terms of incomplete gamma functions (IGFs), and G̃(1, b) is important because
it is equal to the total load of metastases at time t. In its evaluation to which we proceed shortly,
there arises the IGF 	(c, x) defined for positive x and complex c by 	(c, x) = ∫ ∞

x
e−t t c−1 dt .
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For the function G(1; a, b), we can write, using (27) with x = 1, hence (ln x)/t = 0,

G(1; a, b) = m/α

a + m/α − b

[
a − b

b
(eαbt − 1) + m

aα + m
(e(aα+m)t − 1)

]
,

where, since the factor [· · · ] is the algebraic sum of three different functions of a, substitution
in (27) implies that G̃(1; b) is the sum of the following three terms:

(eαbt − 1)

∫ ∞

0

m/α

a + m/α − b

a − b

b
λe−λa da

= m(eαbt − 1)

αb

∫ ∞

0

[
1 − m/α

u/λ + m/α − b

]
e−u du

= m(eαbt − 1)

αb

[
1 − λmeλ(m/α−b)

α

∫ ∞

λ(m/α−b)

e−vv−1 dv

]
= m(eαbt − 1)

αb

[
1 − λm

α
eλ(m/α−b)	

(
0, λ

(
m

α
− b

))]
, (28)

−
∫ ∞

0

m/α

a + m/α − b

m/α

a + m/α
λe−λa da

= − m2

α2b

∫ ∞

0

[
1

u/λ + m/α − b
− 1

u/λ + m/α

]
e−u du

= −λm2

α2b

∫ ∞

0

[
1

u + λ(m/α − b)
− 1

u + λm/α

]
e−u du

= −λm2

α2b

[
eλ(m/α−b)	

(
0, λ

(
m

α
− b

))
− eλm/α	

(
0, λ

m

α

)]
, (29)∫ ∞

0

m/α

a + m/α − b

m/α

a + m/α
eaαtemtλe−λa da

= m2emt

α2b

∫ ∞

0

[
1

u/λ + m/α − b
− 1

u/λ + m/α

]
e−u(1−αt/λ) du

= λm2emt

α2b(λ − αt)

∫ ∞

0

[
1

v/(λ − αt) + m/α − b
− 1

v/(λ − αt) + m/α

]
e−vdv

= λm2emt

α2b

∫ ∞

0

[
1

v + (λ − αt)(m/α − b)
− 1

v + (λ − αt)m/α

]
e−vdv

= λm2emt

α2b

[
e(λ−αt)(m/α−b)	

(
0, (λ − αt)

(
m

α
− b

))
− e(λ−αt)m/α	(0, (λα − t)m)

]
.

(30)

Gathering the three expressions at (28), (30) and (29) yields, for b < m/α and λ > αt ,

G̃(1; b) = m(ebαt − 1)

αb

[
1 − λmeλ(m/α−b)

α
	

(
0, λ

(
m

α
− b

))]
+ λm2emt

α2b

[
e(λ−αt)(m/α−b)	

(
0, (λ − αt)

(
m

α
− b

))
− e(λ−αt)m/α	

(
0, (λ − αt)

m

α

)]
− λm2

α2b

[
eλ(m/α−b)	

(
0, λ

(
m

α
− b

))
− eλm/α	

(
0, λ

m

α

)]
.
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