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Magnetic wave perturbations are observed in the solar wind and in the vicinity of
Earth’s bow shock. For such environments, recent work on magnetic pumping with
electrons trapped in the magnetic perturbations has demonstrated the possibility of
efficient energization of superthermal electrons. Here we also analyse the energization
of such energetic electrons for which the transit time through the system is short
compared with time scales associated with the magnetic field evolution. In particular,
considering an idealized magnetic configuration we show how trapping/detrapping of
energetic magnetized electrons can cause effective parallel velocity (v‖-) diffusion. This
parallel diffusion, combined with naturally occurring mechanisms known to cause pitch
angle scattering, such as whistler waves, produces enhanced heating rates for magnetic
pumping. We find that at low pitch angle scattering rates, the combined mechanism
enhances the heating beyond the predictions of the recent theory for magnetic pumping
with trapped electrons.
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1. Introduction

The transport of matter and radiation in the solar wind and terrestrial magnetosphere
is a complicated problem involving competing processes of charged particles interacting
with electric and magnetic fields. Given the rapid expansion of the solar wind within
the Parker spiral, it would be expected that superthermal particles originating in the
corona would cool rapidly as a function of the distance to the Sun. However, observations
show that this is not the case and superthermal particles have been observed out to
the termination shock (Decker et al. 2008), suggesting the presence of an additional
heating/acceleration mechanism. These superthermal tails have been observed to follow
a power-law distribution in velocity space (Fisk & Gloeckler 2006).

Much of the work on a possible explanation for this additional heating centres on
wave–particle interactions as the primary heating mechanism, where energy is provided by
the turbulence associated with propagating waves (Kennel & Petschek 1966; Ergun et al.
1998; Vinas, Wong & Klimas 2000; Vocks et al. 2005; Rhee, Ryu & Yoon 2006; Califano
& Mangeney 2008). In these models, particles are energized at the resonant velocities,
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where vk cos Θ � ω, and with cos Θ = v · k/(vk). Particle energization is then limited to
v ≤ ω/(k cos Θ). Superthermal electrons then require energization by waves with large
phase velocities vp = ω/k, such as whistler waves (Wilson et al. 2012). However, in
many systems, the energy available in whistler waves has been found to be insufficient to
explain the observed level of electron energization, and in a recent analysis using NASA’s
Magnetospheric Multiscale (MMS) mission data it was found that while whistlers are
effective for pitch angle scattering, the whistler bursts did not correlate well with electron
energization (Oka et al. 2017).

Another challenge in using wave–particle interactions to explain the heating in the
solar wind is the near-ubiquitous observations of power-law distributions of superthermal
particles. Such power-law distributions are known to form in Fermi-like heating processes
where the energy gains of individual particles are proportional to their initial energies, but
it is difficult to reproduce with a set of resonant wave–particle interactions.

Previous work on magnetic pumping (such as transit-time damping (Barnes 1966;
Berger et al. 1971; Stix 1992; Lichko et al. 2017)), have largely concluded that pumping
is not efficient for energizing superthermal electrons with v > ω/(k cos Θ). Meanwhile,
the pumping models of Egedal et al. (2018) and Lichko & Egedal (2020) include the
effects of trapping and differs significantly from earlier results, as the trapping permits
especially electrons with v � ω/(k cos Θ) to become energized. Another interesting
property that is in contrast to the turbulent cascade where the energy is transferred from
large scales to small scales before being absorbed (Howes et al. 2008; Sahraoui et al.
2009), in magnetic pumping the energy is provided directly by the energy-rich largest-scale
magnetic fluctuations.

The results of the present paper can be considered an extension of the magnetic pumping
model by Lichko & Egedal (2020). Here we uncover an additional heating mechanism,
which is related to the particular effect of electrons becoming trapped/untrapped in
magnetic mirror-structures that form in the presence of compressional wave dynamics.
The process leads to parallel energy mixing (or v‖-mixing) yielding a net energy gain also
for electrons for which the magnetic moment, μ, is conserved. In turn, by adding weak
pitch angle scattering to the system, a heating model is obtained similar to that of Lichko
& Egedal (2020), with the main difference being enhanced heating rates of superthermal
electrons in the limit of weak pitch angle scattering.

The paper is organized as follows. In § 2 we evaluate the parallel electron energization
and mixing in a system of magnetic trapping/detrapping where the magnetic moment,
μ is consider an adiabatic invariant. In the drift kinetic limit and the limit of fast orbit
bounce motion, in § 3 we show how this v‖-mixing leads to parallel diffusion within the
trapped part of the electron distributions. In § 4 we add to the model a phenomenological
pitch angle scattering and evaluate the net changes to a distribution which after complete
v‖-diffusion becomes reisotropized by the pitch angle scattering. We then in § 5 consider a
scenario of simultaneous v‖-mixing and pitch angle diffusion, for which we derive an
evolution equation for the slowly varying background electron distribution. In § 6 the
new results are discussed and the analysis concluded with a comparison with those of
Lichko & Egedal (2020), emphasizing enhanced heating rates for low values of pitch angle
scattering.

2. Parallel energy mixing

Waves including magnetic perturbations can trap electrons, and considering an idealized
standing wave configuration, Lichko & Egedal (2020) demonstrated the importance of
trapping to render magnetic pumping an efficient heating mechanism for superthermal
electrons. In general, however, magnetic perturbations will have a range of wavelengths,
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amplitudes and phases such that at different locations along a magnetic flux-tube regions
of trapped electrons can develop and interact in a range of ways not accounted for in the
previous analysis. We here explore how the process of trapping/detrapping itself leads to
parallel energy mixing (v‖-diffusion), with the result of heating even for the case where the
electron magnetic moments are conserved. The electron dynamics is here well accounted
for by the drift kinetic framework pioneered by Kulsrud (1983). In this framework the
change of the electron energy is described by ∂E/∂t = μ∂B/∂t − e(v‖ + vD) · E, where
v‖ and vD are the field-aligned parallel streaming and guiding centre drift, respectively.

As a simplifying assumption and similar to Montag et al. (2017), Egedal et al. (2018)
and Lichko & Egedal (2020), in the present analysis we will only consider the electron
dynamics in the fast transit time limit. In this limit it is assumed that the time scale
associated with the electron bounce motion, τb, is much shorter than the time scales
characterizing the evolution of the magnetic perturbations, such that both the magnetic
moment μ, and the parallel action integral J = ∮

v‖ dl become adiabatic invariants. In
addition, we assume a one-dimensional (1-D) spatial geometry where the electrons are
confined in a single flux-tube. Orbits of electrons are then fully characterized by μ and J,
and given the fast transit-time limit we can apply the multiple time scale method (Davidson
1972), where f (x, v) is approximately constant along the ‘instantaneous’ bounce orbits.
Consistent with Jeans theorem (Jeans 1915), it then follows that distributions can be
expressed in the form f = g(μ, J), where g is an arbitrary function.

For the present analysis, however, we find it more useful to write f (μ, E, t) = f0(μ, E0),
where E0 is the initial particle energy at a time t0 of an initial known distribution, f0. The
problem of solving for the distribution f (μ, E, t) is then reduced to obtaining a mapping
between E(t) and E0 consistent with conservation of μ and J. Because we will only
consider prescribed magnetic perturbations, there is no feedback of f (μ, E, t) onto the
wave dynamics. Determining the mapping E(t) → E0 then becomes a ‘single particle’
problem which can be solved by basically considering one point in phase space, (μ, E, t),
at a time. For general magnetic perturbations, determining the mapping E(t) → E0 is
then a problem well suited for numerical orbit integration methods. Here, however, we
will consider particularly simple magnetic geometries that allow explicit expressions for
E0(μ, E, t) to be determined, which (as we will see below) then in turn provide an explicit
solution for the distribution function, f (μ, E, t) = f0(μ, E0(μ, E, t)).

To illustrate how v‖-diffusion can occur for adiabatic electrons with fixed magnetic
moments, in figure 1 we consider a magnetic flux-tube with a square magnetic perturbation
characterized by a reduced magnetic field B0. Again, throughout the analysis we will
assume that the electron transit time is fast compared with the time scale at which the
magnetic field is changing. Thus, the evolution of the electron population will be adiabatic
and reversible. As illustrated in figure 1(a), the magnetic well can trap electrons. The
locations inside the magnetic well are parameterized by x ∈ [0; 1], and at x = d a narrow
region is introduced where the magnetic field is increased to an enhanced value BT . The
width of this enhancement is assumed to be so narrow that we can neglect any heating
μ∂B/∂t that result as it builds in time. Thus, the role of BT is solely to split electron orbits
with total energy E < μBT into locally trapped orbits in regions A and B, indicated in
figure 1(b).

From this point the magnetic geometry can be modified in a variety of ways. For
example, in appendix A we analyse the result of changing dynamically the location d
of the barrier field BT and obtain very similar results to those to be derived now for a
very different magnetic evolution. In this main section we consider a mixing cycle where
we slowly raise the magnetic field in region A until it reaches the value of the barrier, BT .
During this process all the electrons trapped in region A will be energized at a rate μ∂B/∂t
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FIGURE 1. Sequence of magnetic perturbations considered for parallel velocity mixing, with
the coloured arrows indicating distinct trapped orbit types. The deep magnetic square well of
panel (a) is in panel (b) modified by a spatially narrow magnetic barrier at x = d with B = BT ,
separating regions A and B. In panel (c) the floor of region A is enhanced until B = BT is reached.
In panel (d) the floor of region A (and the barrier) is reduced bringing the configuration back the
initial state in panel (a).

and become un-trapped as their total energies reach E = μBT . Here the electron orbits will
undergo a transition from the blue orbit type to the red orbit type in figure 1(c). In region B
the magnetic field is constant and no heating occurs, and compared with the trapped orbits
in region A, the red orbit types are subject to reduced heating rates related the reduced
fraction of time a given electron is present in region A. Then, as illustrated in figure 1(d)
we again lower the magnetic field in region A and also eliminate the previous magnetic
barrier at x = d. During this process, all the electrons initially confined to region B will
observe orbit changes corresponding to the transition from the magenta to the red orbit
types in figure 1(d). All electrons traversing regions A and B will be cooled proportionally
the relative faction of the time they spend in region A.

As indicated above, the heating of the various orbit types can in principle be computed
by integrating the orbit averaged value of μ∂B/∂t. Meanwhile, the task of evaluating the
energy changes is significantly simplified by considering the parallel action integral,

J =
√

m
2

∮
v‖ dl. (2.1)

Here, the integral is taken over the trapped orbits’ bounce motion, and the unimportant
factor

√
m/2 is included to ease the notation below. In addition, the use of J makes

the analysis more general as this framework also applies to less idealized configurations
where the −e(v‖ + vD) · E-term (mentioned above) becomes important to the energization
process (Montag et al. 2017).

For orbits bouncing through both region A and region B we may differentiate between
the contributions from the two regions,

J = JA + JB, (2.2)

where

JA =
√

m
2

∫ d

0
v‖ dl, JB =

√
m
2

∫ 1

d
v‖ dl. (2.3a,b)

Introducing the present energy E and initial energy E0 of an electron in the configuration,
using v‖ = √

2/m
√E − μB, the present and initial values of these action contributions are
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trivially evaluated as

JA = d
√
E − μB, JA0 = d

√
E0 − μB0 (2.4a,b)

and
JB = (1 − d)

√
E − μB, JB0 = (1 − d)

√
E0 − μB0. (2.5a,b)

In general, the action integrals will be conserved while the magnetic configuration is
evolving slowly in time. An exception to this occurs during the orbit transition in figure
1(c), where a new contribution, JBT , from region B is acquired. Because the energy of a
newly transitioned electron is E = μBT , in region B the parallel energy will be μ(BT − B0)

and we find
JBT = (1 − d)

√
μ(BT − B0). (2.6)

It then follows that electrons initially trapped in region A, will after their transition be
characterized by

JA + JB = JA0 + JBT, (2.7)

from which we can relate the initial energy to the present energy,

E0 = 1
d2

[
(1 − d)

(√
E − μB0 −

√
μ(BT − B0)

)
+ d

√
E − μB

]2
+ μB0. (2.8)

While the electrons are confined in region A they experience the full heating provided by
μ∂B/∂t. This heating is stronger than the average cooling they observe when they transit
both region A and region B, and B is decreasing in region A. Consistently, from (2.8) it is
readily shown that E0 < E and it follows that all electrons originally in region A will gain
energy during the mixing sequence.

We may consider the orbit transition in figure 1(d) where orbits confined to region B
transition into orbits passing through both regions. This transition is different from that
described above (where electrons cleared a barrier μBT and fell into a region of lower
magnetic field B0 < BT , yielding a parallel energy boost). In the present transition there
is no localized barrier, and the newly transitioned electrons will have v‖ � 0 during their
initial traversal of region A, and there are no new contributions to the action integral. Thus,
for the electrons transitioning out of region B we have

JA + JB = JB0, (2.9)

such that

E0 =
[
d
√E − μB + (1 − d)

√E − μB0
]2

(1 − d)2
+ μB0. (2.10)

From (2.10) it can be shown that E0 > E and all electrons which have undergone a
transition out of region B will observe a net cooling. This is consistent with our expectation
because these electrons only reach region A during the period where ∂B/∂t is negative.

With (2.8) and (2.10) we have obtained expressions for the initial energy as a function
of the present energy for the orbits which have undergone orbit transitions. Similar
expressions are also readily obtained for the orbits which have not undergone transitions
simply by imposing JA = JA0, JB = JB0, and JA + JB = JA0 + JB0, for the ‘blue’, ‘magenta’
and ‘red’ orbit types, respectively. Thus, the application of the action integral permits a
very effective evaluation of E0 as a function of E for all orbit classes continuous during the
mixing sequence.
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(a) (b) (c) (d)

(e) ( f ) (g) (h)

FIGURE 2. (a–g) Colour contour plots of the initial energy E0 as functions of position x and
present energy E as observed during the evolution of the magnetic well outlined in figure 1 with
d = 0.4 and BT/B0 = 8. Panel (h) illustrates the results of two complete mixing cycles.

In figure 2 we illustrate the evolution of E0(E) at selected times during the mixing
sequence. In this figure the y-axes represent the present total kinetic energy E of electrons
with magnetic moments μ, while the colour contours describe their spectrum of initial
energies E0. Figure 2(a) displays the initial range of relevant energies, where we simply
have E = E0. The black lines are the energy barriers due to the imposed magnetic field
structure. Those electrons with present energy E > μBT will be able to overcome the
barrier separating region A and region B. The changes in colour from one panel to
the next then describe the evolution of the relationship between E and E0, as expressed
in the derived equations. Because μ is conserved during the whole mixing process, and
both E and E0 are proportional to μ, the results of the figure become applicable to any
value of μ. At the time of figure 2(d) the magnetic field in region A has reached that of the
barrier B = BT , and all the electrons originally in region A now have energies larger than
those of region B. In figure 2(e, f ) the magnetic field of region A is reduced again and the
magnetic barrier at x = d is eliminated.

In figure 2(g) the magnetic field has returned to its initial state. Consider an electron
originally marginally trapped in region B with E0 = μBT , using (2.10) with B = B0 we
can solve for E to obtain the transition energy between the two electron populations after
the mixing cycle is complete,

ET = (1 − d)2μ(BT − B0) + μB0. (2.11)

Further, using (2.8) and (2.10) with B = B0 we obtain the mapping between E0 and E after
one complete mixing cycle,

E0 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
E − μB0

(1 − d)2 + μB0, for μB0 < E < ET,

1
d2

[√E − μB0 − (1 − d)
√

μ(BT − B0)
]2 + μB0, for ET < E < μBT,

E, for μBT < E .

(2.12)

As is evident from (2.12) and figure 2 the energy gain �E = E − E0 depends on the
initial E0 as well as the initial location of the electrons. The electrons which gain the most

https://doi.org/10.1017/S0022377821000088 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377821000088


Parallel velocity mixing yielding enhanced electron heating 7

energy are initially located in region A with vanishing parallel energy, such that E0 = μB0.
After one mixing cycle these electrons will then have a total energy of E = ET , marked
in figure 2(g). On the other hand, the electrons that will be cooled the most are originally
barely trapped in region B (i.e. E0 ∼ μBT). After the mixing cycle, these will also have a
present energy E = ET . Meanwhile, region A electrons with E0 = μBT as well as region B
electrons with E0 = μB0 observe no change in their energies.

To characterize the effect of multiple mixing cycles we can evaluate (2.12) recursively.
We introduce EN as the electron energy after N cycles and (2.12) then implies that

EN−1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

EN − μB0

(1 − d)2
+ μB0, for μB0 < EN < ET,

1
d2

[√EN − μB0 − (1 − d)
√

μ(BT − B0)
]2 + μB0, for ET < EN < μBT,

EN, for μBT < EN .

(2.13)

With (2.13) we have now established a direct mapping between the energy EN after N
mixing cycles and the initial energy E0. An example of E0(EN) with N = 2 is given in
figure 2(h).

3. Parallel diffusion of fe

As discussed in § 2, the electrons are governed by the drift kinetic equation, which, for
the considered limit of slow magnetic field evolution and well magnetized electrons (such
that dμ/dt = 0), simply takes the form dfe(E, μ)/dt = 0 (Montag et al. 2017). Assuming
an initial electron distribution fe0(E, μ), with (2.13) we then obtain the distribution that
results after N cycles as

fe(EN, μ) = fe0(E0(EN), μ), (3.1)

where E0(EN) can be obtained from the recursion relation given in (2.13). As an example,
starting with an initial Maxwellian fe0(E0, μ) shown in figure 3(a), the results of one, two
and five mixing cycles are illustrated in figure 3(b–d), respectively.

The changes in fe induced by the parallel mixing are fully reversible. However, we note
how the number of stripes in the fe grows as 2N such that at sufficiently large N the smallest
amount of scattering will be sufficient to smooth out the exponentially narrowing stripes.
This will render fe independent of E‖, such that for the trapped ranges affected by the
pumping we have fe = fe(μ). At this point the mixing process has run its course and no
further changes will occur in fe by parallel mixing alone.

While the effect of parallel mixing, above, was calculated for a highly idealized
magnetic geometry it is clear that the cause of the mixing of fe are the orbit transitions
of the type introduced with figure 1(c). Therefore, any wave activity that leads to similar
orbit transitions will cause equivalent mixing in naturally occurring systems.

4. Changes in fe due to combined E‖ and pitch angle mixing

In the following section we will derive a model for the heating that occurs when
pitch angle scattering is included during the continuous mixing described above. We will
formulate this model in terms of a slowly evolving 1-D velocity distribution g(v, t). Any
distribution as a function of speed can be written as an isotropic distribution in (v⊥, v‖),
and we denote an initial two-dimensional (2-D) distribution as f (v⊥, v‖) ≡ 〈g〉ξ , an
example of which is shown in figure 4(a) for the case where g(v) is a simple Maxwellian.
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(a) (b)

(c) (d)

FIGURE 3. For the initial distribution in panel (a), the distributions resulting from one, two and
five mixing cycles are shown in panels (b–d), respectively. The distributions are calculated using
(2.13) and (3.1) with d = 0.4 and BT/B0 = 8.

(a) (b) (c)

FIGURE 4. Illustration of how the 2-D distributions 〈g〉‖ and
〈〈g〉‖

〉
ξ

are determined from 〈g〉ξ .
In panels (a,b) the green lines are the trapped passing boundaries characterized by E‖ = hE⊥,
where h = (BT/B0 − 1). The E‖-mixed distribution 〈g〉‖ is determined from 〈g〉ξ by requiring
particle conservation for the velocity phase-space elements of the type encircled in cyan. In turn,〈〈g〉‖

〉
ξ

in panel (c) is determined from 〈g〉‖ by requiring particle conservation for the velocity
phase-space elements of the type encircled in red in panels (b,c).

Furthermore, in our manipulations we will also use 〈· · · 〉ξ as an operator, which for any
2-D distribution yields a distribution fully scattered in the cosine-pitch-angle variable
ξ = v‖/

√
v‖2 + v⊥2.

The distribution in figure 4(b) represents the result of the v‖-diffusion described above
for electrons trapped by BT . We denote this distribution as 〈g〉‖ corresponding to a
distribution completely mixed in the v‖-direction for the electrons within the trapped
region. Here the trapped region is outlined by the green lines characterized by v‖2 < hv⊥2,
where h = (BT/B0 − 1) and BT is the value of the barrier introduced in figure 1(b).
Mathematically, 〈g〉‖ is obtained from 〈g〉ξ by particle conservation. In particular, we
require that for any v⊥ the rectangular type areas in the trapped regions of differential
width dv⊥, as outlined by the areas encircled in cyan in figures 4(a) and 4(b), 〈g〉‖ and 〈g〉ξ

contain identical number of particles.
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We next consider the scenario where 〈g〉‖ is completely isotropized in pitch angle
yielding the distribution here denoted

〈〈g〉‖
〉
ξ
. Mathematically, as outlined in figures 4(b)

and 4(c) this distribution is also determined by imposing particle conservation, this time
requiring that for any v the differential speed elements dv, as outlined by the areas
encircled in magenta in figures 4(b) and 4(c), contain identical number of particles in
〈g〉‖ and

〈〈g〉‖
〉
ξ
. In appendix B we show that〈〈g〉‖

〉
ξ

� 〈g + δg〉ξ , (4.1)

where

δg = h
45

(
h

1 + h

)3/2 1
v2

∂

∂v
v4 ∂

∂v
g (4.2)

and, repeated for convenience, h = BT/B0 − 1.

5. Evolution of the background distribution

Above, we introduced the 1-D distribution g = g(v, t) for characterizing the isotropic
component of the background plasma. The main goal of the present section is to derive
an evolution equation that describes the slow evolution of g. To accomplish this we
need to consider the full 2-D distribution, which we approximately describe as a linear
combination of the fully v‖-mixed distribution 〈g〉‖ and the fully pitch angle scattered
distribution 〈g〉ξ , such that

f = (1 − α) 〈g〉ξ + α 〈g〉‖ . (5.1)

The parameter α will be determined below and is dependent on the drive frequency, ν‖,
of the parallel mixing compared with the characteristic frequency, νξ , of the pitch angle
diffusion.

We further approximate the parallel mixing and pitch angle diffusion in terms of
Krook-type operators, allowing us to write the kinetic equation as

∂f
∂t

= ν‖
(〈 f 〉‖ − f

)+ νξ

(〈 f 〉ξ − f
)
, (5.2)

which we, through numerical analysis (not included), find is a reasonable approximation
for ν‖ � 3νξ . Here ν‖ describes the characteristic frequency of the v‖-diffusion process,
which will be of the order of the frequencies describing the magnetic perturbations.
Similarly, νξ is the characteristic frequency of the pitch angle scattering process.

Inserting (5.1) into (5.2) yields

∂f
∂t

= −K
(〈g〉‖ − 〈g〉ξ

)+ νξα 〈δg〉ξ , (5.3)

with
K = νξα − ν‖(1 − α), (5.4)

where we have used (4.1) together with the rules〈〈g〉ξ

〉
ξ

= 〈g〉ξ ,
〈〈g〉ξ

〉
‖ = 〈g〉‖ ,

〈〈g〉‖
〉
‖ = 〈g〉‖ . (5.5a–c)

Note that the first two of these rules follow because g(v) is isotropic such that 〈g〉ξ = g.
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Next we use that direct differentiation of (5.1) with respect to time yields

∂f
∂t

= α̇
(〈g〉‖ − 〈g〉ξ

)+ (1 − α) 〈ġ〉ξ + α 〈ġ〉‖ , (5.6)

where we used the notation ġ = ∂g/∂t and α̇ = ∂α/∂t. Matching the terms in (5.3) and
(5.6) proportional to (〈g〉‖ − 〈g〉ξ ) we find

α̇ = −K = ν‖(1 − α) − νξα. (5.7)

This provides an evolution equation of the level of anisotropy parameterized by α. At a
time scale of the order of 1/ν‖, the value of α will approach the steady-state solution
described by K = 0 for which

α = ν‖
ν‖ + νξ

. (5.8)

Inserting (5.8) and α̇ = K = 0 into (5.3) and (5.6) and equating the resulting two
expressions for ∂f /∂t we find

νξν‖
ν‖ + νξ

〈δg〉ξ = νξ

ν‖ + νξ

〈ġ〉ξ + ν‖
ν‖ + νξ

〈ġ〉‖ . (5.9)

Then, by taking the 〈· · · 〉ξ -average and using the approximation that
〈〈ġ〉‖

〉
ξ

� 〈ġ〉ξ the
right-hand side simplifies and we find

〈ġ〉ξ = νξν‖
ν‖ + νξ

〈δg〉ξ . (5.10)

By inspection of (5.2) it becomes clear that the approximation
〈〈ġ〉‖

〉
ξ

� 〈ġ〉ξ , above,
corresponds to the neglect of a second-order time-derivative term of the approximate size
(1/ν‖)∂ ġ/∂t.

Given (5.10), we may now apply the form in (4.2) to obtain the desired evolution
equation for g(v, t):

∂g
∂t

= 1
v2

∂

∂v
v2D

∂

∂v
g , D = ν‖v2G, (5.11)

where

G = νξ

ν‖ + νξ

h
45

(
h

1 + h

)3/2

, h = BT

B0
− 1. (5.12)

We have drawn a box around (5.11) as it represents the main result of our analysis.

6. Discussion and conclusion

The expression for ∂g/∂t in (5.11) has the form of velocity diffusion, where the
diffusion coefficient D ∝ ν‖v2 describes a process with a diffusive step size proportional
to velocity δv ∝ v. Equivalently, the diffusive energy step size is proportional to energy, as
is characteristic of a Fermi heating process. It is readily seen that a power-law distribution
of the form g ∝ v−γ with γ = 3, represents a steady-state solution to (5.11). For a more
realistic representation of a physical system, particle sources and sinks can be added
to (5.11). In general, this will lead to power-law solutions with γ > 3 (Montag et al.
2017). The diffusion equation in (5.11) (as well as the similar form obtained in Lichko
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FIGURE 5. Blue lines: the energization rate G by v‖-mixing as a function of νξ /ν‖, calculated
using (5.12) for BT/B0 ∈ {1.1, 1.2, 1.5, 2.3, 5}. Indicated by full lines, the theory is expected to
be valid for νξ /ν‖ < 1/3. Red lines: for comparison the efficiency of magnetic pumping the red
lines represent the similar G in (6) of Lichko & Egedal (2020), evaluated with ν/fpump = νξ /ν‖
and CK = 1, and considering the same magnetic perturbations as applied for the v‖-mixing.

& Egedal (2020)) is, therefore, consistent with the power law distributions recorded in situ
by spacecraft throughout the solar wind and the Earth’s magnetosphere.

For wave dynamics with a typical magnitude d̃B = dB/B0 we may approximate BT �
B0 + dB and it follows that h � d̃B. Given the dependency of (5.11) on h, the efficiency of
the energy diffusion for small d̃B scales as d̃B

5/2
, but falls off to a linear scaling for larger

order unity wave amplitudes. The present model is obtained using the Krook model in
(5.2), which from preliminary numerical results (not included here) is found to be a good
approximation when the system is characterized by weak pitch angle scattering, νξ/ν‖ �
1/3. In figure 5 the blue lines illustrate the predictions of (5.12) for G, evaluated for the
amplitudes of BT listed in the figure, and the full lines for νξ/ν‖ < 1/3 correspond to the
range where the model is expected to be accurate. For νξ/ν‖ � 1/3 the Krook model in
(5.2) becomes inaccurate because the pitch angle scattering will cause the region A and
region B electrons (see figure 1b) to mix without the separate μ∂B/∂t heating/cooling of
the two regions. In fact, for νξ/ν‖ � 1 we expect that heating by magnetic pumping will
be more efficient than heating by v‖-mixing.

For comparison, the red lines in figure 5 are obtained from the model of magnetic
pumping with trapped electrons developed in Lichko & Egedal (2020), where in (6) an
expression is given for the form of Gpump due to magnetic pumping, and we evaluate Gpump
for the same magnetic perturbations as yielded the blue lines in figure 5. Furthermore,
in this comparison Gpump is obtained assuming ν/fpump = νξ/ν‖. The model for Gpump also
includes a factor, CK , that calibrates the efficiency of a Krook scattering model to the
efficiency of the Lorentz scattering operator. The Krook scattering model implemented
here in (5.2) is equivalent to CK = 1, and is thus the value used in calculating the red
lines.

We observe that the predicted heating from v‖-mixing is up to two orders of magnitude
larger than that expected from magnetic pumping. Physically, this result is reasonable
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because net energization in the magnetic pumping model requires pitch angle scattering
during each pumping cycle. In contrast, the v‖-mixing yields finite E‖-energization even if
νξ = 0 (corresponding to the changes in the distributions between figures 4a and 4b). As in
Landau damping, for the limit of νξ = 0 the process is fully reversible for the hypothetical
case where the mixing cycle is exactly reversed. But given the fine scale structures that
develop in velocity space after just a few mixing cycles, such a reversal is unlikely to
occur in any physical system. As emphasized in Lichko & Egedal (2020), the electron
energization is caused by mechanical work through the term p⊥∇ · v⊥ and is linked to the
development of pressure anisotropy, which in the pumping model is continuously being
isotropized by pitch angle scattering. Meanwhile, for the v‖-mixing this anisotropy can
build during multiple mixing cycles, and becomes more pronounced than the anisotropy
that develop during a single magnetic pump cycle.

The regime with νξ/ν‖ � 1/3 is likely to be relevant to the solar wind for which a recent
analysis of the Strahl electrons show that pitch angle scattering is mostly limited to the
low level provided by Coulomb collisions between electrons and ions (Horaites, Boldyrev
& Medvedev 2019). Meanwhile, for the MMS bow-shock encounter analysed in Lichko
& Egedal (2020) we estimate that νξ/ν‖ � 1/2, whereas the analysis of a similar MMS
bow-shock event (Amano et al. 2020) infer much larger values of νξ/ν‖. In future studies
of in situ spacecraft data, to help determine the relevant value of νξ/ν‖ of a given dataset,
we note that (5.1) and (5.8) can be fitted to electron data as provided by, for example, MMS
(Burch et al. 2016) and may prove useful for inferring νξ/ν‖ directly from the observations.

The magnetic configurations considered here are highly idealized. This adds to the need
for developing new analytical and numerical techniques for simultaneously evaluating
heating by both v‖-mixing and magnetic pumping for more general magnetic perturbation
geometries. Nevertheless, while the configurations considered are useful for providing
physical insight into the heating mechanism, we expect that the energization theoretical
rates obtained will prove representative also for naturally occurring systems. This is
emphasized by the result that the very different scenarios considered in the main text and
appendix A, respectively, provide similar levels of v‖-mixing.

Editor William Dorland thanks the referees for their advice in evaluating this article.
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Appendix A

In this appendix we consider a modified v‖-mixing scenario, which turns out to yield
results very similar to those of §§ 2 and 3. As outlined in figure 6(a) we again consider a
magnetic barrier at x = d with height μBT , separating the spatial dimension into region A
and region B. We then examine the v‖-mixing that occurs as region A is expanded at the
expense of region B, corresponding to the location of the barrier being moved from d′ = d
towards d′ = 1. Requiring again that the parallel action integrals be conserved (JA = JA0),
it follows that the region A electrons are being cooled with

E0 =
(

d′

d

)2

(E − μB0) + μB0. (A 1)
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(a) (b) (c) (d )

(e) ( f ) (g)

FIGURE 6. Illustration of v‖-mixing by changing the location of a magnetic barrier initially
located at x = d. In panels (a–d) the colour contours represent E0 as a function of x and E ,
with the initial profile in panel (a), while panels (b,c) are computed with the barrier moved to
d′ = 0.6 and d′ = 1, respectively. Panel (d) corresponds to the result of two complete mixing
cycles. (e–g) Electron distributions computed using (A 7) for one, two and five complete mixing
cycles, respectively.

Meanwhile, the region B electrons are being heated and the initial energy E0 and present
energy E are similarly described by

E0 =
(

1 − d′

1 − d

)2

(E − μB0) + μB0. (A 2)

As region B is contracting the electrons confined to this region are all subject to v‖
heating and will eventually reach the energy E = μBT where they can overcome the
barrier. After clearing the barrier they will immediately experience the cooling of region
A and will, therefore, become trapped in region A. For an initial value of E0 we obtain
from (A 2) the value of d′ = dT when this transition occurs,

(1 − dT)2 = (1 − d)2

( E0 − μB0

μ(BT − B0)

)
. (A 3)

To further established the relationship between E0 and E after the transition, we
characterize the subsequent cooling in region A for dT ≤ d′ ≤ 1. Considering (A 1), it
follows that this cooling must be governed by

μBT =
(

d′

dT

)2

(E − μB0) + μB0. (A 4)

Combining (A 3) and (A 4) by eliminating dT while solving for E0 we obtain

E0 = μ(BT − B0)

(1 − d)2

(
1 − d′

√
E − μB0

μ(BT − B0)

)2

+ μB0. (A 5)

We further introduce the transition energy

ET = d2

d′2 μ(BT − B0) + μB0, (A 6)
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obtained by solving (A 1) for E with E0 = μBT . The electrons in region A are then
characterized by (A 1) for μB0 ≤ E ≤ ET , and by (A 5) for ET ≤ E ≤ μBT . The electrons
in region B are characterized by (A 2) for the full interval μB0 ≤ E ≤ μBT . With the initial
barrier at d = 0.4, the derived relationship between E and E0 is illustrated in figure 6(b,c)
evaluated for d′ = 0.6 and d′ = 1, respectively. Note that electrons with E > μBT are not
affected by the changes in the location of the magnetic barrier.

In the present scenario, a mixing cycle is complete when d′ = 1 and all electrons are
then characterized by the region A expressions. Similar to the derivation in § 2, we readily
obtain recurrence relations for the impact of N complete mixing cycles,

EN−1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
EN − μB0

d2 + μB0, for μB0 < EN < ET,

μ(BT − B0)

(1 − d)2

(
1 −

√
EN − μB0

μ(BT − B0)

)2

+ μB0, for ET < E < μBT

EN, for μBT < EN,

(A 7)

and because d′ = 1 the transition energy is here characterized by

ET = d2μ(BT − B0) + μB0. (A 8)

In figure 6(d) we display the predictions of (A 7) computed for two mixing cycles, and
similar to the distributions in § 3, figure 6(e–g) display the distributions that result after
one, two and five cycles. Although the mixing process here is different from that of §§ 2
and 3, the final result is again a rapid v‖ mixing and diffusion for the magnetically trapped
electrons.

Appendix B

We will here derive the expression for δg given in (4.2). For this we apply the procedure
outlined in figure 4 imposing particle conservation between 〈g〉ξ , 〈g〉‖ and

〈〈g〉‖
〉
ξ

for the
differential velocity region encircled by the cyan and magenta lines, respectively. In our
analysis we will consider the distributions of the form f (E‖, E⊥) normalized such that
n = ∫

f (E‖, E⊥)d3v. Because

dv‖ = dE‖
mv‖

= dE‖√
2mE‖

, 2πv⊥ dv⊥ = 2π

m
dE⊥ (B 1)

we have

n = π
√

2
m3/2

∫∫
f (E‖, E⊥)

1
E‖

1/2 dE‖dE⊥. (B 2)

First, the background distribution 〈g〉ξ is isotropic, but during the mixing process rapid
diffusion occurs in E‖ for all the electrons trapped by BT . Again, the trapped electrons are
those with E‖ < hE⊥, where h = BT/B0 − 1, and within this fully diffused velocity region
of 〈g〉‖ is independent of E‖; we will characterize this part of the distribution as f⊥(E⊥), i.e.
f⊥(E⊥) = 〈g〉‖ for E‖ < hE⊥. From (B 2), particle conservation for the differential velocity

https://doi.org/10.1017/S0022377821000088 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377821000088


Parallel velocity mixing yielding enhanced electron heating 15

regions outlined in cyan in figure 4(a,b) then imposes that

�E⊥

∫ hE⊥

0
f⊥(E⊥)

1
E‖

1/2 dE‖ = �E⊥

∫ hE⊥

0
g(E)

1
E‖

1/2 dE‖ (B 3)

or

f⊥(E⊥) = 1
2(hE⊥)1/2

∫ hE⊥

0
g(E)

1
E‖

1/2 dE‖. (B 4)

For approximate evaluation of this integral we use that E = E‖ + E⊥ and Taylor expand g
about E⊥, such that

g(E) � g(E⊥) + g′(E⊥)E‖ + 1
2

g′′(E⊥)E‖
2, (B 5)

and it then follows that

f⊥(E⊥) � 1
2(hE⊥)1/2

[
2gE‖

1/2 + 2
3

g′E‖
3/2 + 1

5
g′′E‖

5/2
]hE⊥

0
,

� g(E⊥) + 1
3

hE⊥g′(E⊥) + 1
10

(hE⊥)2g′′(E⊥). (B 6)

For what comes next, Taylor expansion of f⊥(E⊥) to second order becomes useful:

f⊥(E⊥) � f⊥(E) − f⊥′(E)E‖ + 1
2

f⊥′′(E)E‖
2. (B 7)

We then use (B 6) to obtain expressions for the derivatives of f⊥ such that

f⊥′(E) �
(

1 + h
3

)
g′(E) + h

3
Eg′′(E)) + 1

5
h2Eg′′(E) (B 8)

and

f⊥′′(E) �
(

1 + 2h
3

+ h2

5

)
g′′(E). (B 9)

Using the cosine-pitch-angle variable introduced above we have E‖ = ξ 2E , and it follows
that:

f⊥(E⊥) � g(E) + 1
3

hEg′(E) + 1
10

(hE)2g′′(E)

− ξ 2E
((

1 + h
3

)
g′(E) +

(
h
3

+ h2

5

)
Eg′′(E)

)
+ ξ 4

2
E2

(
1 + 2h

3
+ h2

5

)
g′′(E). (B 10)

With (B 10) we now have an expression for the diffused region of 〈g〉‖ in terms of g,
readily evaluated as a function of E and ξ . To continue and obtain an expression for
δg = 〈〈g〉‖ − 〈g〉ξ

〉
ξ

we apply that the number of particles in the differential speed intervals
encircled in magenta in figure 4(b,c) must be identical. In general, the number of particles
in an interval dv can be computed as 4πv2 dv

∫ 1
0 f (v, ξ) dξ . Meanwhile, 〈g〉‖ and 〈g〉ξ only
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differ in the trapped region characterized by ξ ≤ k, where k2 = h/(1 + h). It then follows
that:

δg
∫ 1

0
dξ =

∫ k

0
( f⊥(E⊥) − g(E)) dξ. (B 11)

Here, of course,
∫ 1

0 dξ = 1, and we proceed to evaluate directly the right-hand side using
(B 10), well suited for the required integration over ξ at constant E :

δg � 1
3

khEg′(E) + 1
10

k(hE)2g′′(E)

− 1
3

k3E
((

1 + h
3

)
g′(E) +

(
h
3

+ h2

5

)
Eg′′(E)

)
+ 1

10
k5E2

((
1 + 2h

3
+ h2

5

)
g′′(E)

)
. (B 12)

This expression has the form

δg � AEg′(E) + BE2g′′(E), (B 13)

with
A
k

= 1
3

h − 1
3

k2

(
1 + h

3

)
(B 14)

and
B
k

= 1
10

h2 − 1
9

k2h − 1
15

k2h2 + 1
10

k4

(
1 + 2h

3
+ h2

5

)
. (B 15)

Using k2 = h/(1 + h), the expressions for A and B reduce to

A = 2
9

h
(

h
1 + h

)3/2

, B = 2
5

A + 4
75

h2

(
h

1 + h

)5/2

. (B 16a,b)

We further notice that (B 13) can also be written as

δg � A
v

2
∂g
∂v

+ B
(−v

4
∂g
∂v

+ v2

4
∂2g
∂v2

)
. (B 17)

To within the order and accuracy of the applied Taylor expansions we have B = 2A/5, and
the result stated in (4.2), follows from simple manipulations

δg � A
10

1
v2

∂

∂v
v4 ∂

∂v
g. (B 18)
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