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Let (Cl, 2, n) be a finite measure space and X a Banach space. Denote by L^fi, X) the
Banach space of (equivalence classes of) ju-strongly measurable X-valued Bochner integrable
functions/: Q, -> X normed by

i= f \\f((o)\\dKco).

The problem of characterizing the relatively weakly compact subsets of L^n, X) remains
open. It is known that for a bounded subset of L^i, X) to be relatively weakly compact
it is necessary that the set be uniformly integrable; recall that ^ £ l , ( f j , I ) is uniformly
integrable whenever given e > 0 there exists 8 > 0 such that if fi(E) S <5 then J£ | / | | d\i ^ e,
for all feK. S. Chatterji has noted that in case X \s reflexive this condition is also sufficient
[4]. At present unless one assumes that both X and X* have the Radon-Nikodym Property
(see [1]), a rather severe restriction which, for purposes of potential applicability, is tanta-
mount to assuming reflexivity, no good sufficient conditions for weak compactness in
L^n, X) exist. This note puts forth such sufficient conditions; the basic tool is the recent
factorization method of W. J. Davis, T. Figiel, W. B. Johnson and A. Pelczynski [3].

First, we present a method of recognizing many weakly compact sets in L^n, X) provided
one has a starting point. Later, we present several possible starting points.

Before presenting the first result, recall some basic facts about L^n, X) and its dual
space.

An additive set function F: E -> X * (the continuous dual of X) is said to be fi-Lipschitz
whenever there exists k > 0 such that fi^CE)! ^kfi(E), for all Eel.. The space of n-
Lipschitz Z ""-valued maps is denoted by Vm(ji, X*). If Fe Vx(n, X *) then the Lipschitz
norm of F is given by

|| F || = inf {k> 0 : || F(E) \\ ^ /c/i(£), for all Eel,}.
n

If FeV^inyX*) and f— £ xtxAt is an A'-valued simple function modeled on Z then
i = 1

$fdF= £ XiF^i) is a well-defined scalar satisfying \\fdF\ ^ \\F\\ jf^. Therefore, \dF

extends in a unique manner to a linear functional J dF defined on all of Z-j(/i, X). It is well
known and easily established that each member of L^ii, X)* is thus obtained; that is
Vx(fi, X*) is isometrically isomorphic to L^fi, X)* with the correspondence between
Fe VJn, X*) andcpeL^n, X)* given by

<p(f)=[fdF.
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For more details regarding L^i, X)* we refer the reader to the book of N. Dinculeanu [5].

THEOREM 1. Let K be a bounded uniformly integrable subset of L^/i, X). Suppose
K satisfies the following condition: (*) given e > 0 there exists a measurable set ftE such that
ft\ftE has measure no more than e and such that {fxac '•/£%} >s relatively weakly compact
in L^n \at, X). Then K is relatively weakly compact in L^fi, X).

Proof. Let (/„) be a sequence of members of K. By (*) there exists a set ftt £ ft such
that /i(ft\ftj < 1 and such that {fxa, :f£K} is relatively weakly compact in L^n^, X).
Choose a subsequence (/n

(1)) of (/„) and anfleLl(n\ni, X) such that

/«(1)/n, - * / 1 weakly in L^n \Ql, X).

We may clearly assume t h a t / 1 is defined on all of ft and vanishes off ft^ Now use (*) to
manufacture a measurable set ft2 such that /{(ft\ft2) < 1/2 and {/ /n^/eA"} is relatively
weakly compact in L^(ji |n2, X). We may assume that d1 s Cl2. There then exists a sub-
sequence (/n

(2)) of (/n
(1))and a f u n c t i o n / 2 e L ^ i ^ , X) such that

/n
(2)Xn2 ~*f2 weakly in LJ(JI | n 2 , X).

Clearly, we may assume/2 is defined on all of ft, vanishes off ft2 and/ 2 (x) =fi(x) (xeft,).
The procedure is now clear. We obtain by repeated use of (*) a sequence (ftn) of measur-

able subsets of ft with ftn £ ft,1+1 for all «, Kft\ftn) < l/« a n d a sequence of subsequences
(fik)) where each (/n

(*+1}) is a subsequence of (/n
(/l)) with / ° =/„ and a sequence/1' of functions

defined on ft such that for each k,fk+1(x) =fk(x) (xeQ^),fk vanishes off ftt and

fnk)lnk^fky,nk weakly in L,(^ |n t ,A') .

Define/: ft -> X in the obvious fashion; that is / i s the almost everywhere limit of/*'s. We
claim t h a t / e L j ^ , X) and/n

(n) - » / weakly in Lx(n, X).
By A"'s uniform integrability, co {fxE '-feK, Eel} = H is also uniformly integrable.

By Mazur's theorem, each/* belongs to H. Therefore (/*) is a bounded uniformly integrable
sequence of functions in L^i, X) which converges almost everywhere t o / . It follows from
Vitali's convergence theorem (see [2]) tha t /eL , (^ , X) and | /—/* || x —>- 0.

Now let us show that (/n
(n)) converges weakly t o / . To this end, let Fe VJji, X*). From

the previous paragraph {/—/n
(n): neN} is uniformly integrable and so, given e > 0 there

r
is (5>0 such that n(E) ^ 5 implies | | / - / , ( n ) \\dfi g e/2(l + 1 F ||). Choose m so that

JE
fi(Q\Qm)^5. Then for « ^ m,

U-f^dF ^ ||F-1|
n\n,,, n\n,.i

Now choose n0 ^ m so that if n ^ «0 then [ r-f^dF
Ja,,,

< a/2. Then for n ^ «0 we have
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\F(f)-F(f^)\^ J[/-/n
(n

] rfF + [ / - /«] rfF

U-f^dF <£/2+e/2 = e.

THEOREM 2. Le/ K be a weakly compact convex subset of X and consider the set
K = {feLi(n, X) :f(aJ)eKfor almost all coeSl}. K is weakly compact in Lyiji, X).

Proof. It is obvious that K is convex and closed (hence by Mazur's theorem weakly
closed) in L^i, X).

By [3], there exists a reflexive Banach space Y and a one-to-one continuous linear
operator T: Y-* X such that K is the image under T of some weakly compact convex set
/ c K Note that T is weakly continuous; hence T\j is a weak homeomorphism. Next,
note that T " lifts " in a natural way to a continuous linear operator T from L^ijx, Y) to
Lib*, X). Moreover, the lifting of T to t takes {geL^n, Y) : g(co)eJfor a.a. coefi} = J
onto R. (This needs proof: it is clear that T takes J into K. L e t / e ^ . Then define
g : fi -»7by (̂co) = r~'/(co) if/(co)eA'and^(a») = 0 otherwise; ^((w)e/fora.a. coeQ. Also,
g is strongly measurable. In fact, / is strongly measurable and, therefore, is weakly measur-
able and essentially (weakly) separably valued. T'1 is a weak homeomorphism on K, and
so T ~ if, which coincides with g (/z almost everywhere), is weakly measurable and has weakly
(hence norm) separable essential range.) By Chatterji's result, J is relatively weakly compact
in Lx{n, Y), and so R = TJ is weakly compact.

REMARK. The above result also holds for 1 <p < oo; in this case, Lp(n, Y) is reflexive.
It follows from the Krein-Smulian theorem that if K is a relatively weakly compact set

in X then the closed convex hull of K is weakly compact and so by Theorem 2 or the previous
remark we have

Kp={f<ELp(n,X):f(a>)eK for a.a. coed}

is relatively weakly compact.
The next result follows immediately from Theorems 1 and 2.

COROLLARY 3. Let K be a bounded uniformly integrable subset of Lt(fi, X). Suppose
that given e > 0 there exists a measurable set Qe and a weakly compact set Ke c X such that
n(Cl\Qe) < £ and for each feR,f(a>)eKe for almost all coeCl^. Then K is a relatively weakly
compact subset ofL^fi, X).

Proceeding similarly as in Theorem 2 one can prove the next theorem. However, the
proof can be given without use of factorization and so we do it in that way.

THEOREM 4. Lei K be a weakly compact subset ofX and J a bounded uniformly integrable
subset of Lx(n). Then K = {f(-)x :feJ, xeK} is a relatively weakly compact subset of
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Proof. We note the following characterization of Banach spaces X possessing the
Dunford-Pettis property [7]: a Banach space X has the Dunford-Pettis property if and only
if given any Banach space Y and any weakly compact sets K, J in Y and X respectively
K® J = {k(x); : keKJeJ} is weakly compact in Y§> X—the projective tensor product of Y
with X. Pertinent remarks here are that all Lx(n) spaces have the Dunford-Pettis property
[7] and Grothendieck [8] has shown that Lx(ji, X) is identifiable with L,00 ® X in a natural
manner.

REMARK. A word or two on the aforementioned characterization of the Dunford-Pettis
property is appropriate. It is well known that a Banach space X has the Dunford-Pettis
property if and only if given weakly convergent sequences (*„) in X and (x*) in X * one of
which has limit zero, then limn xn * xn = 0 (cf. [9, pp. 263-6]). With this in mind, suppose X
has the Dunford-Pettis property. To prove that the tensor of weakly compact sets, one factor
from each of X and Y, is weakly compact, it suffices to show that if (xn) is weakly null in X
and yn is weakly null in Y, then xn ® yn is weakly null in X ® Y. However, the dual of X ® Y
is identifiable with the space of continuous linear operators from Y to X *, where the action
of such an operator T on x ® y is given by T(y)(x). If (jn) is weakly null, then (7)>n) is weakly
null in X* and so (Tyn)(xn) is null by the assumption of the Dunford-Pettis property for X.
The converse is even easier since one need only test Y = X* and evaluate the trace functional.

COROLLARY 5. Let K be a bounded uniformly iniegrable subset of Lx{ji, X). Suppose
that given e > 0 there exist a measurable set Qe with n(Q\Q^ < e, a bounded uniformly integrable
subset Je of Lt(Slt, \i \Q^ and a weakly compact set Ke £ X such that iffeK thenf admits a
representation f((o) = Sn Xnfn{u>)xn, for almost all caeQ.e,for some sequence (Aj of scalars with
Sn|Xn| ^ l,fneJc, xneKE. Then K is relatively weakly compact in Lx(n, X).

REMARK. One might hope that Corollary 3 contains the sought after necessary condition
for weak compactness in Lx{fx, X). This hope is destined to doom. Professor J. J. Uhl has
noted that if X is not reflexive but X* has the Radon-Nikodym property then proceeding as
in [1], the sequence (rnxn) tends to zero weakly (where (rn) is the sequence of Rademacher
functions and xn is any bounded sequence without a weakly convergent subsequence) in
Lx(ji, X), where \i is Lebesgue measure on (0, 1) yet {rnxn) does not satisfy the criteria set
forth in Corollary 3.
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