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Introduction. We study linear normal hyperbolic partial differential 
equations of the second order, with one dependent variable u, and N indepen
dent variables xl (i = 1, . . . , N). The uniqueness theorem connected with the 
Cauchy problem for this type of equation is well known and in effect states 
that if u and its first normal derivatives vanish on a spacelike initial surface S 
then u vanishes in a certain conical region which contains S (1, p. 379). In the 
present work we also envisage a timelike cylindrical surface T which meets 
5 in a rim C of N-2 dimensions, and we assign a single homogeneous boundary 
condition, of the type familiar from potential theory, on T. The homogeneous 
Cauchy conditions are also assumed on that part of S which is inside T. We 
shall prove that the solution then vanishes identically in the region inside T. 
If the homogeneous boundary condition is given for a certain "time interval" 
along r , the proof shows that u vanishes in this same interval of the timelike 
variable. 

The boundary conditions considered are of the Dirichlet, Neumann, and 
Robin type. Uniqueness with the Dirichlet condition has been proved by 
Hormander (4) using a different approach by which estimates of the solution 
in the non-homogeneous case can be found. The method used here is also 
applied to systems of second order normal hyperbolic equations having 
similar second order terms. 

1. Geometric background. Let the differential equation be written in 
the form 

n -IN rr i a d U i du 
(1.1) L[u)=a ^ 7 + / ^ + ™ = 0. 

Here the summation convention for repeated indices is understood, i and k 
ranging from 1 to TV. The coefficients in the equation are assumed to be four 
times continuously differentiable (C4) functions of the x\ The signature of 
the quadratic form aik %£k is taken to be (1, .AM), so that the equation is 
normal hyperbolic. We may suppose aik = aki without loss of generality. 

The geometrical aspect is best treated by means of the Riemannian geometry 
associated with the coefficients aik; these latter have under coordinate changes 
the transformation law of a contra variant tensor. Since (1.1) is hyperbolic, 
the determinant \aik\ is not zero; hence the matrix (aik) has an inverse (aik). 
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This definition of the aik, which in explicit form reads 

aikakj = blj 

shows that aik and aik are associate tensors, aik being covariant and symmetric. 
The Riemannian metric associated with (1.1) is determined by the line-

element 
ds2 = aik dxl dxk, 

which also has the signature (1, N — 1). The measure of lengths and angles 
determined by this metric will be used throughout this paper. A vector vi 

is timelike if its square length 

v2 = aikv
lvk = aifcViVk 

is positive, and spacelike if v2 is negative. The vector is null if v2 — 0. The 
normal vector to a surface <£ = const, has contravariant components aikd<j>/dxk, 
and the surface is spacelike if its normal is timelike and vice versa. The surface 
is null if its normal vector is null; and is then a characteristic surface of the 
hyperbolic differential equation. To each point P with coordinates xl there is 
associated a null or characteristic conoid with vertex P. 

According to the theory of invariant differential operators in Riemannian 
spaces, the operator L can be written in the form 

L[u] = Au + b-\7u + cu, 

where Vw denotes the gradient vector, where c is a scalar invariant and b a 
vector; and where 

. 1 d ( r- ik du \ 

is the Laplacian of u (2, §4.2). 
The timelike cylindrical hypersurface T upon which the boundary conditions 

shall be assigned is understood to be topologically equivalent to the product of a 
compact closed (N — 2)-dimensional manifold (spacelike) and a line (time
like). By a spacelike cross-section of T, or surface spanning T, is meant a 
spacelike surface which divides the region interior to T into two separated 
regions. With respect to the spanning surface, these correspond to the past 
and future. We assume that T does not touch or intersect itself and therefore 
that the interior region is well defined. The equation defining T in terms of 
the given coordinates shall be four times continuously differentiable. 

Though we may regard T as extending far into the past and future, we shall 
in practice work with a finite length of it defined in the following way. Let R 
denote the region interior to T which is covered by a 1-parameter family of 
spacelike surfaces Xt spanning T. If 5 is a given spacelike initial surface, we 
may take for R the region covered by surfaces S« geodesically parallel to S. 
Therefore such a region R always exists, given 5, though it may be of finite 
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extent. If the space is flat, there exists a family 2* of parallel planes such that 
R extends arbitrarily far into the future. 

For simplicity we assume that the initial surface S is So. It is actually 
sufficient if the rim C = S P\ T should lie in the closure of R, since we can 
suppose that the solution function vanishes identically in R "before" or 
"below" S. 

Then the problem to be studied may be formulated as follows. Let 

(1.2) L[u] = 0 ini?; 

and let the Cauchy data for uonS vanish : 

(1.3) u = 0, -t- = 0 on 5. 
on 

Let u satisfy on T either 

(1.4) u = 0 or -^ = 0. 
on 

We show that u vanishes in R. We may assume that u vanishes in the interior 
of T below S = 20. 

From the theory of Cauchy's problem it is known that (1.2) and (1.3) 
ensure the vanishing of u in the domain of dependence Ds upon 5 (see 1, 
p. 310; 2, p. 62; 3, ch. 9 §5). This domain Ds is bounded by two characteristic 
surfaces each containing the rim C — T C\S. We shall first establish the result 
for a second family of surfaces St constructed in the following section, which 
may exist only over small timelike intervals. This will demonstrate that if 
(1.3) hold on 2t, then u will vanish on 2T, for / < r < / + e, where e may 
depend on /. From the Heine-Borel theorem it will follow that (1.2), (1.3), 
and (1.4) ensure the vanishing of u throughout R. 

At each step of this process we know that u vanishes in the domain of 
dependence on 1t. That is, u vanishes on S f+€ except for a strip of width of 
order e adjoining the boundary S / + e C\ T of Sz+e. We have therefore to prove 
that u vanishes in this strip. 

2. A coordinate system. Let the initial surface S cut T in the rim 
C — Co of N — 2 dimensions. We now denote by So the portion of S bounded 
byr. 

Let T(n) denote the timelike surface geodesically parallel to T at inward 
distance n. In drawing this surface we first select a compact region of T, 
such as the portion of T intercepted by S_^ and S«. The parallel surfaces 
generated by this region of T are then defined for n sufficiently small, say 
0 < n < no. and are of class C3 in the x\ The T(n) are timelike since their 
normals are spacelike geodesies (1, p. 365; 3, p. 45). 

Now let timelike geodesies gT of the cylinder subspace T be drawn from 
each point of Co, orthogonal to Co in T. The locus of points at subspace geodesic 
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distance / from Co is an N — 2 dimensional surface Ct, geodesically parallel 
to Co in T. The gT are also orthogonal to Ct in T, and hence also when both are 
regarded as loci in the full space-time (3, p. 69). 

At each point of Ct let the spacelike geodesies, normal to T, in the full space, 
be drawn inward; these have length TZ0. The geodesies drawn from Ct generate 
a C3 surface St which is topologically the product of Ct by an interval. Let 
St meet T(n0) in the inner rim Ct(no). 

Provided that no is chosen sufficiently small, and that a compact /-interval 
is considered, the surfaces St will be spacelike. To verify this, we note that on 
T the normals to St coincide in direction with the timelike sub-geodesies gT. 
Since the direction of the normal varies continuously on St, there is an n-mter-
val of positive length n(t) whereon S is spacelike. We have therefore to choose 
n0 < min n(t). 

We now assert that for sufficiently small /, the inner rim Ct(no) lies in Ds. 
We note, again presuming no was chosen sufficiently small in the first place, 
that Co(^o) lies in the interior of Ds. Since Ct(no) varies continuously with /, 
the statement is valid for some /-interval, say 0 < / < /o. Consequently u 
and its derivatives will vanish identically on Ct(no) in this interval. 

Coordinates £i, . . . , £#-1, / of the points on St will be assigned as follows. 
Let £i, . . . , £jy_2 be coordinates parametrizing Co. Given P on St, and T(n)$ 

follow the spacelike geodesic of St through P back to Ct on T, and then follow 
the subspace geodesic gT along T to C0, meeting Co at £i, . . . , £ N—2<> s a y . 

We then take £i, . . . , £#_2, £JV-I = n and / as coordinates of P on St. 
It is easily shown that the gT are C2 curves (with respect to the #*), and that 

the geodesies of St are C3. It follows that the (£r, /) coordinates are related to 
the (x*) coordinates by a C2 transformation. Hence also the components aik 

of the metric tensor, expressed in the system, are C1 functions of £r and /. 
On the boundary surface T, the parametric lines of the £r, a — 1, . . . , N — 1 

are orthogonal to the parametric lines of /. To show this, we recall that the gT} 

which are the parametric lines of / on T, are the orthogonal trajectories of the 
Cf This shows the statement is true for £i, . . . , %N-2- Finally, the parametric 
lines of n = £#_i are the geodesies normal to T, and therefore also orthogonal 
to the gT. This shows that the parametric lines of £^_i are orthogonal to the 
/-lines as well. It follows that in the (£r, /) coordinates the components arN 

(r = 1, . . . , N — 1) of the metric tensor vanish on T. Therefore the contra-
variant components arN(r = 1, . . . , N — 1) which appear as coefficients in 
the differential equation, also vanish there, as a brief computation shows. 
Thus, on T, 

(2.1) arN = 0, r ^ N. 

3. The basic inequality. In the (£a, /) coordinate system the differential 
equation can be written 

(3.1) L[u] = aNNutt + a r V*« + 2aNru^ + 0 V + fut + cu = 0, 
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where summation over r and 5 runs from 1 to N — 1. The quadratic form 
Qo(x) = aTSxrxs is negative definite on account of the signature of the overall 
metric. Also aNN > 0. Let us therefore define a positive definite metric in the 
subspaccS*: / = const, by writing 

(3.2) g" = - f i • 
We may define the associate tensor grs in the usual way since \grs\ ^ 0. The 
volume element dSt is \/g d%i . . . di-N-i where g = |grs|. 

Let us denote by V* and At the gradient and Laplacian operators in the 
subspace St. Then the differential equation takes the form 

JV—1 

(3.3) utt = Atu + bt • Vtu + ciu + Piut + ]C fii^t^ 

where (bt)
r = - (3r/aNN, a = - c/aNN, fr = - p"/aNN,<ind 

(3.4) p[ = - 2aNr/aNN. 

We note that the vector fiir vanishes on the rim Ct-
We consider the positive definite integral 

(3.5) £( / ) = f {ut*+ (Vtu)2\dSt, 

which vanishes only if all first derivatives of u with respect to £r and / vanish 
on St. Now, differentiating with respect to /, we find 

(3.6) ~ ^ 7 ~ = 2 I \ututt + Vtu - Vtut + Crsu^u^ 
dE{t) 

dt 
2 , /x^ ..N2ldlog \g\'\ 

+ [ut
2+ (Vtu)2]^i-fA-\dSt, 

Here the CTS contain partial derivatives of the grs with respect to /. Replacing 
uttby its expression in (3.2), we have 

(3.7) ~~Tf~
 = 2 I \utAtu + Vtu ' VtUt + utbt ' V t u + c\uut 

+ j82w*2 + Prutt:rUt + C2
TSu^u^} dSt. 

Here summation over r, s from 1 to N — 1 is understood, while 02 and the 
C2

rs are new coefficients, of the same type as /?i and Crs, which include the 
terms arising from the derivative of g (/). 

The terms in the integrand of (3.7) will be separated into three sets. To the 
first two terms we apply the Gauss theorem for the domain St with boundary 
Ct — Ct(n0), finding 

(3.8) I {utAtU + Vtut-Vtu}dSt= I Vt- {utVtu} dSt 
J St J St 

- X du 7 

ut — dst. 
Ct-Ct(no) ° n 
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Here dst is the "surface element" on Ct and Ct(no), while d/dn denotes the 
normal derivative in St across Ct or Ct(no). However on Ct the direction of 
this differentiation is also normal to T in the full space, and is consequently 
the normal to T in the full space. That is, the derivative du/'dn in (3.8) is the 
normal derivative in the sense of the given boundary value problems. We also 
note that Ct(no) lies in Ds for 0 < t < /o, and since u vanishes identically in 
D s the integral over C*(w0) drops out, provided t < to. Thus the integrals of 
the first two terms on the right are together equal to 

x 
du j 

ut — ast. 
ct °n 

The term containing the mixed second derivatives may be transformed to an 
integral containing only first derivatives. We have, applying the Gauss 
theorem on St to the vector ut

2/3ir, 

J /SlnUt
2dst = I —7- TT?( V g U*PÏ) dSt 

Ct-Ct(no) J St Vg OÇ 

= J u* \7~ W^g ^ dSt + 2 \ PiUtUttrdSt. 

Here the integral over Ct(tio) vanishes as before, and now the integral over Ct 

drops out since all the components of the "vector" $i vanish on Ct. We 
then obtain 

(3.9) f plututirdSt = - | f - y - ^-Mp\^/~g)u\dSt. 
J st J st Vg oÇ 

From (3.7), (3.8) and (3.9) we find 

E(t 
dt 

= 2 ! utundst 
J Ct 

+ 2 I {utb
ru^r + cuut + @2U2

t + Cirsu^u^} dSu 
J St 

where /32 incorporates the term (3.9). Here the integral over St is a quadratic 
functional of u and the first derivatives of u. We integrate this equation from 
0 to /, noting that E(0) = 0 owing to the homogeneous Cauchy conditions on 
So. Thus 

(3.10) £ ( 0 = 2 f dr I UrUndsr 
Jo J cT 

+ 2 1 dr \ {uTbru%r + cuuT + /32wr
2 + C[su^u^} dST. 

Jo J sT 

The second term on the right is again a quadratic functional of u and its 
first derivatives. Now if, as we shall assume, these vanish for / = 0, we can 
follow the method (1, p. 310) used in the uniqueness theorem for the Cauchy 
problem, and find an estimate for this quantity in terms of E(t). The calculation 
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is straightforward, and shows that the second term on the right is less than 

K f E(r)dT, 

for some constant K. 
Let us now assume that the surface integral, the first term on the right of 

(3.10), is non-positive. Then we have 

E(t) <K ( E(r)dr, 
Jo 

and on integrating from 0 to a, say, we find 

f E{t) dt < a m a x £ ( 0 < X « | E(r) dr. 

Thus either Ka > 1, or else E(i) = 0 for 0 < t < a. The first alternative is 
surely false for a < i£~\ hence we conclude that E(t) = 0, 0 < t < K~l. 
That is, all first derivatives of u vanish in the region bounded by T, 5, and 
SK-\. Since u = 0 on S, u = 0 in the region. 
This establishes the following 

LEMMA. If 

j(D = 1 ^ 1 uTundsT K 0, 
t /0 J CT 

for 0 < / < tu then w = 0iw the region covered by St,0 < t < tu 

4. Uniqueness for the Dirichlet and Neumann problems. The 
uniqueness in the large follows from this Lemma by an application of a 
"Heine-Borel" argument. If 2* is a surface of the family covering R, and if u 
has vanishing Cauchy data on 2Z, then we may take 2 , as the So of the 
Lemma. Assuming that / ( / ) < 0, we see that u vanishes in a /-neighbourhood 
of 2 j . Now u has zero Cauchy data on 20 ; and so vanishes in a /-neighbourhood 
of 20. If now 

/o = g.l.b. t, 
W5*0 

we see that to > t for every tl of R. Hence u = 0 in 7 .̂ 
Any boundary condition which ensures that the integrand unuT of J(t) m 

the Lemma is non-positive will lead to a uniqueness theorem. For the Dirichlet 
boundary u = 0 on T we have by differentiation, tangential to T, uT = 0, 
and hence J(t) = 0. Similarly for the Neumann condition un — 0. Indeed it is 
sufficient if u = 0 in a certain open subset of T and if un = 0 on the comple
mentary part of T. Thus we have 

THEOREM I. Let R be a region covered by spacelike surfaces 2* and bounded 
by S = 2o, 2jx , and the timelike surface T. Let L[u] = 0 in R, let u G C2 in R 
and let u have vanishing Cauchy data on S. If then either 

u = 0 or un = 0 on T 
then u = 0 in R. 
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5. Uniqueness for the Robin problem. The boundary condition here is 

(5.1) d j ^ + h(P)u(p) = 0, p e r . 

We shall assume that h(p) is C2 in the original coordinates, and show that a 
function k(P) can be constructed, so that 

(5.2) v(P) = k(P)u(P) 

satisfies a similar hyperbolic equation 

(5.3) Lx[v] = Av + bi-Vv + cxv = 0, 

together with the Neumann boundary condition 

From the theorem just proved will then follow the vanishing of v, and hence 
u, in R. 

We now construct the function k(P), requiring k(P) > 0, k(P) Ç C2. 
Let n denote inward normal distance from T, and let po be the foot of the 
normal geodesic to T which passes through a point P in the interior of T, 
sufficiently close to T. For 0 < n < \n$ we set 

(5.5) k(P) = h(P) = **<*•>" > 0. 

For n > no we set k(P) = 1 and for \n§ < n < n0 we construct the function 

(5.6) *(P) = * o ( P ) p ( ^ ) + l - p ( j ) . 

Here p(x) £ c°° shall be non-negative, equal to 1 for x < J, and equal to zero 
forx > 1. 

In the neighbourhood of T we have, then, 

V(P) = eh^nu(P), 

so 

3» " I ** + ^ o ) 

That is, z>(P) satisfies a homogeneous Neumann condition on T. It u has 
vanishing Cauchy data on an initial surface 5 then u = 0 in the domain of 
dependence Ds. Thus z; = 0 in Ds and so z; has vanishing Cauchy data on S 
as well. 

The differential equation satisfied by v is found by straightforward calcula
tion to be (5.3), where 

bx = - 2 V l o g £ ( P ) + 6, 

and 
Cl = k(P) L[l/k(P)]. 
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Since k(P) > ô > 0 these coefficients are bounded, and continuous. The 
proof of Theorem I requires only these properties of these coefficients. 

This establishes the uniqueness theorem for the boundary condition of the 
third kind. 

THEOREM II. Let S and T satisfy the conditions of Theorem / , and let R be 
defined as above. Let u 6 C2,L[u] = 0 in R, and let 

- ^ + Hp)u(p) = o, p e T 

whereh(p) Ç C2. Thenu(P) = OinR. 

This result is also seen to be valid if u = 0 on an open subset of T while the 
above Robin boundary condition holds on the complementary portion of T. 
It is seen that no condition of positivity for h(p) is required. 

6. Systems with similar second order terms. The preceding theorems 
hold also for systems of linear normal hyperbolic second order equations in 
which the principal parts of all equations are similar. Consider the system 

(6.1) Au{m) + 5 Z °mn ' V M ( B ) + ] C CmnU{n) = 0, 
n n 

wherein m and n are indices of enumeration for the M dependent variables 
U(m). Also bmn are an array of vectors, and cmn of scalars, which we assume to 
be C1 and C, respectively. Here A has its previous meaning. For this system, 
the uniqueness for the Cauchy problem has in effect been proved in (2, pp. 
62-64), since the argument given there applies to any system of the form 
(6.1). 

The coordinate system of §2 being taken as before, we may repeat the 
calculations of §3 leading to the Lemma. We write the differential equations 
in the form 

(6.2) 
n n 

+ Z^ PmnU(n)t + $\U(m)t$.r. 
n 

Defining 

(6.3) E{m){t) = I [u\m)t + (V^ ( m ))
2} dStJ 

J St 

we find on differentiating with respect to t that 

(6.4) 
+ Z-< Bmn * V tU(n)U(m) t + /L, CmnU(n)U(m) t 

n n 

+ Z ^ PmnU(n)t + PlU(m) tU{m) t^ } dSt. 
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The first two terms on the right again lead to the surface integral 

(6.5) f 
*/ Ct-Ct(n, ) on 

while the last term, containing the W(m)T$r, yields an integral containing only 
first derivatives, namely 

lSs,
u™'VÏWWgfil)dS'-

We therefore find 

dE(m) 
(6.6) ~~~dt~ = @<TO>(W<»)> U(n)^, U{n)t), 

where Q(m) denotes a quadratic integral expression over St. Again, integrating, 
we have 

(0 = Jo'ço (6.7) E(m)(t) = J Qim)dT 

and it follows easily that the integral on the right is dominated by the 
expression 

«/ 0 (m) 

We therefore find 

(6.8) E{t) ss £ £(m>(0 < MK f W ) dr, 

provided only that for the sum of the surface integrals we have 

(6.9) J(t) = £ Vdr f tt(w)r^
Md5r<0. 

m «/0 « / C r CW 

From (6.8) follows £(£) = 0 for 0 < / < /i, say, and the uniqueness in the 
large follows as before. The condition (6.9) is satisfied if either 

«(m) = 0 or - ^ = 0 on T. 
dn 

Indeed W(m> may vanish in an open set 7\m) and du{m)/dn in the complementary 
set T — T(m) ; and the result holds. 

Again, we may replace the Neumann condition by the Robin condition 

~dn~ ~̂~ ^(m)U(m) = ®' h(m) € C , 

by setting 

V{m){P) = k(m)(P) U(m)(P), 

https://doi.org/10.4153/CJM-1956-014-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1956-014-9


96 G. F. D. DUFF 

as in (5.2). We verify at once that the vm(P) also satisfy a system of the form 
(6.1), and that 

dfl(m) (ftp) h(m)(Po)n I dUim) , h „ \ 

= 0. 

Thus the V(m) vanish identically under the boundary conditions discussed 
above. 

We state these results as follows : 

THEOREM III . Let S, T and R satisfy the conditions of Theorem I, and let 
U(m) be solutions of the system (6.1) with zero Cauchy data on 20. Let 

u{m) = 0 (m = 1, . . . , Af), 

on an open subset T^m) of T, and let 

+ h(m)U(m) = 0 
dU(m) 

dn 

on the complementary subset T — 7\w). Then 

U(m) = 0 

inR. 

An important special case of systems such as (6.1) is the equation A$ = 0 
of generalized potential theory. The above result applies to the Dirichlet 
problem for these differential forms. However, the Neumann problem for this 
equation involves tangential derivatives in spacelike directions on T, and so is 
not amenable to this method. In fact, uniqueness does not hold for this 
Neumann problem. 
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