Pulsar Astrophysics the Next Fifty Years Proceedings IAU Symposium No. 337, 2017 P. Weltevrede, B.B.P. Perera, L.L. Preston & S. Sanidas, eds.

# Tilted Pulsar Beams

## Geoff Wright and Patrick Weltevrede

Jodrell Bank Centre for Astrophysics, Alan Turing Building, University of Manchester, Manchester, M13 9PL

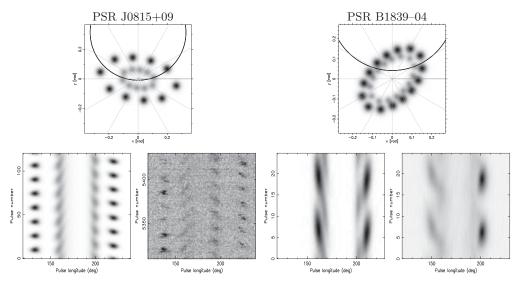
**Abstract.** In 1975 the carousel model was proposed by Ruderman & Sutherland to explain the beautiful phenomenon of drifting subpulses. However the simultaneous appearance of subpulse bands which drift in opposing directions - a feature now found in two pulsars - is difficult to reconcile with this model, both geometrically and physically. Here we propose a geometric resolution of this problem which also may shed light on a range of previously baffling phenomena. The model places significant constraints on the underlying physics of pulsar emission.

Keywords. pulsars: general, pulsars: individual (PSR J0815+09, PSR B1839-04)

### 1. Introduction

Many pulsars have emission patterns which are thought to arise when our sightline passes through a beam formed by one or two carousels of sub-beams, although problems remain in understanding how in many cases the carousels apparently suddenly accelerate and change the observed pattern. However, the phenomenon of "bi-drifting" found in two pulsars with very typical pulsar parameters is not just a physical problem: it would seem to contradict the basic geometric idea of a circular carousel. This problem is discussed in detail by Weltevrede (2016).

#### 2. The model


It is proposed that the beams of many, if not all, pulsars take an elliptical form which is tilted to a greater or lesser extent with respect to the fiducial plane. Bi-drifting is then observed in special cases when the circulating sub-beams are traversed by a sightline which is close to the meridional plane (low impact angle  $\beta$ ). The fact that such pulsars are rare suggests that for most pulsars the beam is near-circular and/or is only weakly tilted.

Here we show simulations (Fig. 1) of the two known examples of bi-drifting. In both cases two nested carousels are assumed, precisely elliptical in form with the same number of sub-beams in each. We cannot be sure that the chosen parameters are optimal or unique representations of the data, only that they are consistent with the data (Wright & Weltevrede 2017). Our point is to demonstrate that a good approximation to the observations can be achieved without abandoning the idea of a closed carousel.

Since it is generally assumed that the precise sightline traverse across a pulsar beam depends on frequency, one prediction of the model is that bi-drifting may be observed at higher/lower frequency but not at the lower/higher frequency.

#### 3. Wider Implications

Asymmetric profiles. Elliptical structures on the polar cap combined with a symmetric radius-to-frequency mapping will generate asymmetric and frequency-dependent pulsar profiles, a feature found in many pulsars.



**Figure 1.** A comparison of the simulation with the observations of PSRs J0815+09 *(left)* and B1839-04 *(right). top:* The titled elliptical beams and the line of sight indicated by the solid line. *bottom:* Emission drifts in opposing senses in different components (for each pulsar, the simulation is left, the observed pulses right). Figure from Wright & Weltevrede 2017.

<u>*"Flare" pulsars.*</u> These pulsars shift their emission to earlier longitudes on irregular timescales (e.g. Perera *et al.* 2015). We suggest that these may be due to sudden or gradual changes in the tilt of the oval beam.

<u>Mode-changing</u>. Many pulsars are known to switch within a few pulses from one mode of behaviour to another, accompanied by a sudden change in profile (e.g. Bilous *et al.* 2014). This may be due to a change in the alignment of the carousel.

## 4. Conclusions and Physical Interpretations

By abandoning the rigid assumption that pulsars have circular beams we have been able to show that a wide range of phenomena from bi-drifting to asymmetric profiles and even moding and flare stars can be given a geometric framework.

At first sight the resolution of the bi-drift phenomenon as a carousel of non-circular form may seem to give support to the classical polar cap model. However, it is not easy to see why "sparks" on a polar cap in the presence of magnetic multipole components would arrange themselves in such a way that they form closed matching nested loops.

Alternatively, some feedback with the magnetosphere is at work, a feature which is already supported by the known inter-pole coordination seen in a number of highlyinclined pulsars.

#### References

Bilous, A. V. et al., 2014, A&A, 572, 52
Champion, D. J., et al. 2005, ApJ, 363, 929
Perera, B. B. P.., et al. 2016, MNRAS, 446, 1380
Ruderman, M.. & Sutherland, P. 1975, ApJ, 196, 51
Weltevrede, P. 2016, A&A, 464, 2597
Wright, G. & Weltevrede, P. 2017, MNRAS, 464, 2597