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Abstract

Parasite species interactions, host biology traits, and external environmental factors can drive
co-occurrence patterns between parasite species. We investigated co-occurrence patterns
between three ectoparasite species (mite (Neotrombicula harperi), and fleas (Orchopeas caedens
and Ceratophyllus vison)) of North American red squirrels (Tamiasciurus hudsonicus). We eval-
uated (1) whether ectoparasites of red squirrels exhibit non-random co-occurrence patterns, and
(2) the contribution of host and external environmental factors to parasite co-occurrence.
Bayesian ordination and regression analysis (boral) revealed random associations between para-
site species pairs when accounting for host and external environmental factors. However, the
mite N. harperi exhibited a negative association with the flea O. caedens and positive association
with the flea C. vison linked to temporal patterns of occurrence. Our data suggests that parasites
of the investigated population of red squirrels tend to form associations based on temporal
trends in infestation rather than species interactions. Further experimentation should investigate
the role of additional factors on parasite co-occurrence patterns, such as temperature,
precipitation, and humidity.

Introduction

Host-parasite systems provide effective models in community ecology as they allow for repli-
cated units through individual hosts or populations and precise measurements of total species
richness (Poulin, 2019). Within a sample of hosts, parasites may exhibit a range of interactions
varying from antagonistic to facilitative (Benesh and Kalbe, 2016; Hoffmann et al., 2016).
Non-random co-occurrence patterns may not only form from species interactions, but also
due to responses to environmental conditions. The environment of a parasite includes both
the host environment (i.e. host characteristics) and external environment (i.e. host population
abundance and habitat of the host; Mouillot et al., 2005; Van den Wyngaert et al., 2014; Dallas
et al., 2019). Given that hosts are the habitat for parasites, host traits can alter parasite
co-occurrence patterns through habitat preferences along with other host-specific characteris-
tics like immune response (Dallas et al., 2019). Additionally, as ectoparasites are in direct con-
tact with both their host and the external environment, abiotic factors can also play a role in
structuring ectoparasite communities (Poisot et al., 2017). The recent use of joint species dis-
tribution modelling (JSDM) allows for the evaluation of associations between parasite species
while identifying the role of host traits and external environmental factors (Dallas et al., 2019).
Therefore, this approach enables the identification of whether co-occurrence patterns between
parasites are non-random and whether species associations are shaped by host or external
environmental factors can be identified.

Parasite communities can be highly dynamic, with parasite co-occurrence patterns varying
over time and space (Krasnov et al., 2020). Uneven distributions of parasite species are espe-
cially common and can have important ecological consequences on host mortality and
immune response, as well as parasite competition and reproduction (McVinish and Lester,
2020). Parasite aggregation is a common ecological pattern that has been observed in many
species, including small mammals (Buchholz and Dick, 2017; Krasnov et al., 2019;
Herrero-Cófreces et al., 2021). An aggregated pattern is one whereby many hosts are infected
with few or no parasites, but some hosts are infected with many species of parasites.
Aggregation generally decreases heterospecific co-occurrences; however, parasite species may
influence individual host fitness during parasitic encounters, leading to outcomes other
than aggregation (Morrill et al., 2017). Parasite communities remain largely understudied
compared to free-living communities (Hoffmann et al., 2016; Dallas et al., 2019). Further
investigation of parasite co-occurrence patterns is required to gain insight into community
dynamics of parasite assemblages and whether ectoparasites of red squirrels conform to the
patterns found in similar host-parasite systems (including aggregation).

North American red squirrels (Tamiasciurus hudsonicus) play critical roles in their ecosys-
tems as ecosystem modifiers for mammalian predators (Posthumus et al., 2015), important
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nest and seed predators (Pelech et al., 2010; Steele and Yi, 2020),
and carriers of zoonotic pathogens (Bangari et al., 2007; Stenger
et al., 2015). Ectoparasites of red squirrels have received attention,
primarily around their impact on host reproduction and general
infestation patterns. For instance, fleas and mites of red squirrels
are known to influence reproductive success, though the direction
of this relationship can vary (Gooderham and Schulte-Hostedde,
2011; Patterson et al., 2013). Additionally, flea infestation patterns
show seasonal variation, with males more commonly infested
(Gorrell and Schulte-Hostedde, 2008; Patterson et al., 2015).
Given their ecological importance, red squirrels offer a valuable
system for studying parasite community ecology, where parasite
interactions could have implications for host fitness and broader
ecological patterns.

Co-occurrence patterns of ectoparasites (two flea species and a
chigger mite) on red squirrels were examined. This study evalu-
ated (1) whether ectoparasites exhibit non-random co-occurrence
patterns and (2) which, if any, host or external environmental fac-
tors influenced parasite assemblages. It was expected that any
non-random co-occurrence patterns would be positive associa-
tions, as commonly seen in studies of ectoparasites on small
mammal hosts (Krasnov et al., 2010; Nava and Lareschi, 2014;
Colombo et al., 2015; but see Hoffmann et al., 2016; Veitch
et al., 2020). It was also expected that parasite species
co-occurrence patterns would be shaped by host and external
environmental factors. Flea recruitment rates are often linked to
the host’s biology, while mite recruitment is more dependent on
external environmental conditions (Linardi and Krasnov, 2013).
If there are species associations between flea species, host traits
will be more influential. If there are species associations between
flea and mite species, either host traits or external environmental
traits may play a role.

Materials and methods

Study area and field sampling

This study was conducted in Algonquin Provincial Park, Ontario,
Canada (45°54′ N, 78°26′ W) from May to August of 2013 and
2015. North American red squirrels were captured in a 23-ha
grid in an area of mixed deciduous-coniferous forest using
Tomahawk live traps (Tomahawk Live Trap Co., Hazelhurst,
Wisconsin, USA; detailed methods in Gorrell and Schulte-
Hostedde, 2008). Tomahawk live traps were mounted 20-m apart
at a height of approximately 1.5-m from the ground on platforms
that were attached perpendicularly to randomly assigned mature
trees that were large enough to attach and support the traps.
Traps were padded with polyester stuffing and baited
06.00–19.00 h with an apple slice and a ∼10-g mixture of peanut
butter and oats, then checked in less than or equal to 2-h intervals.

Captured red squirrels were transferred to a handling bag, sexed,
and assessed for reproductive status (non-reproductive or repro-
ductively active). Squirrels were considered reproductively active
if males were scrotal or females were lactating. Individuals were
weighed using a Pesola® scale (±0.1 g) and received two metal ear
tags with unique alphanumeric codes (National Band and Tag
Co., Newport, Kentucky, USA). All methods used were reviewed
and approved by the Animal Care Committee (ACC) at
Laurentian University, Sudbury, Ontario, Canada, protocol number
2013-05-01.

Collection of ectoparasite specimens

Ectoparasites were collected from squirrels during each capture
with a metal flea comb (teeth spacing <300-μm, one-tenth the
size of the smallest fleas; Burgham Ltd., Toronto, Ontario,

Canada) by combing ten times down the mid-back from the
neck to the base of the tail, and ten times down the ventral surface
from the sternum to the genitals. Ectoparasites collected were pre-
served in Eppendorf vials with 70% ethanol. Red squirrels in
Canada are known to carry a variety of ectoparasites, including
fleas (Opisodasys pseudarctomys, Orchopeas caedens, Monopsyllus
vison, Taropsylla coloradensis), lice (Hoplopleura sciuricola,
Neohaematopinus sciurinus), ticks (Ixodes scapularis, Ixodes angu-
stus), and mites (Trombiculidae family; Gorrell and Schulte-
Hostedde, 2008; Bouchard et al., 2011; Patterson et al., 2013;
Bobbie et al., 2017). While combing is a reliable method for exam-
ining fleas, lice, and ticks, it is possible that mite species can be
missed through visual inspection and combing (Beaumont et al.,
2019); therefore, we may have been unable to identify additional
mite species. However, this is a common method of quantifying
ectoparasite communities on small mammals (e.g., Buchholz and
Dick, 2017; Pero and Hare, 2018; Beaumont et al., 2019).

Taxonomic identification of ectoparasite specimens

Fleas were sent to the Canadian Centre for DNA Barcoding
(CCDB) at the University of Guelph, Ontario, Canada. A glass
fibre protocol (Ivanova et al., 2006) was used to extract DNA
from the macerated flea tissues; the 658-bp target region of the
COI gene was amplified by polymerase chain reaction (PCR).
Each 12.5-μL PCR mixture included 6.25-μL of 10% trehalose,
1.25-μL 10× PCR buffer, 0.625-μL (50-mM) MgCl2, 0.125-μL
(10-μM) of each oligonucleotide primer, 0.0625-μL (10-mM)
dNTPs, 0.06-μL Taq polymerase and 2-μL ddH2O + 2-μL template
DNA (Hajibabaei et al., 2007). PCRs were run at the following ther-
mal cycle conditions: 1-min at 94°C, followed by five cycles of 30-s
at 94°C, 40-s at 50°C, and 1-min at 72°C, followed by 35 cycles of
30-s at 94°C, 40-s at 55°C, and 1-min at 72°C, and finally 10-min at
72°C. DNA extracts were PCR amplified using the forward and
reverse primer-pair C_LepFolF (5′-ATTCAACCAATCATAAAGA
TATTGG-3′) and C_LepFolR (5′-TAAACTTCTGGATGTCCAAA
AAATC-3′) respectively (Stein et al., 2013). PCR products were
bidirectionally sequenced using Sanger sequencing with BigDye
v3.1 using an ABI 3730 × l DNA Analyzer (Applied Biosystems,
Foster City, CA).

The Refined Single Linkage (RESL) algorithm was used to clus-
ter species (Ratnasingham and Hebert, 2013). Sequences and other
pertinent specimen data (ex. date collected, its host, etc.) were
uploaded to the Barcode of Life Data Systems (BOLD), and their
OTUs were ascribed a Barcode Identification Number units
(BINs); each BIN is populated by individual specimens having
high sequence similarity and connectivity (Ratnasingham and
Hebert, 2013). Nucleotide sequence homology searches were per-
formed on the sequences obtained from the CCDB using NCBI
BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi).

Following sequence analysis and clustering, specimens were
mounted on slides similar to the procedures laid out in
Richards (1964). Maceration was completed by sequencing tech-
nicians at the CCDB. The exoskeletons were then transferred sin-
gly into 70% then 95% ethanol solutions for 3–5 min each for
dehydration. Immediately after, they were placed overnight in
oil of cloves. Specimens were mounted with Permount medium
(Fisher Scientific) and placed in a drying oven at 50°C for a
week. Further batches of slides were alternatively left to dry on
the counter overnight. These mounts were imaged and mailed
to Dr T. Galloway (University of Manitoba, Canada) for morpho-
logical identification. Dr Galloway was unaware of the
DNA-barcoding results at the time of morphological identifica-
tion, therefore providing a separate identification process to fur-
ther support the DNA barcoding results. Flea morphological
identification matched barcode species identification, apart from
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a single instance (which was excluded from the statistical ana-
lysis). One flea specimen failed the sequencing process and was
only identified to species morphologically by Dr Galloway. The
mite specimens did not undergo barcode species identification
but were stored in 70% ethanol and mailed to Dr H. Proctor
(University of Alberta, Canada) for morphological identification
(Bobbie et al., 2017).

Statistical analysis

Recaptures of individuals showed that fleas and mites take ∼3–4
days to recolonize a host after parasite removal (data not
shown). Therefore, recaptures of individuals that had ectopara-
sites removed were not included in the dataset unless at least a
week had passed since ectoparasite removal. We only focused
on occurrence in our statistical analysis, as parasite removal
may influence intensity measures. Furthermore, only ectoparasites
with at least 10 occurrences were included to avoid complications
due to small sample sizes. This led to the exclusion of a single flea
species (Opisodasys pseudarctomys). Ten flea specimens were
missing information on the host’s ID number or reproductive sta-
tus and were also excluded from the statistical analysis. Analyses
were conducted using statistical software package R version 4.0.2.
Parasite prevalence, defined here as the proportion of host indivi-
duals infested with a parasite, was calculated by dividing the total
number of infestation occurrences by the total number of host
captures. Confidence intervals (95%) for parasite prevalence
were calculated by Clopper-Pearson’s exact method for binomial
proportions (‘GenBinomApps’ package version 1.1). We ran lin-
ear mixed-effects models (‘nlme’ package version 3.1–149) with
days since previous capture and Julian date as fixed effects and
individual ID number as a random effect, but there was no effect
of days since previous capture on occurrence of the flea species
Ceratophyllus vison (β = 0.001, P = 0.674), Orchopeas caedens (β
=−0.002, P = 0.315), or the mite Neotrombicula harperi (β <
0.001, P = 0.958; Pinheiro et al., 2012). Individuals with only a
single capture were excluded from the linear mixed-effects
models.

We fitted the model using the ‘boral’ package version 1.8.1
(Hui, 2016). This statistical method uses a model-based, parsimo-
nious approach to ordination, with a generalized linear model and
incorporated latent variables. Boral also accounts for host and
external environmental factors while examining residual
co-occurrence patterns (i.e. identification of species associations
after controlling for investigated predictors). The model uses a
species occurrence matrix as the response variable and host and
external environmental covariates as explanatory predictors. We
fitted a correlated response model, which examined how the para-
site assemblage is explained by the host and external environment
(Hui, 2016). Host sex and date were incorporated as fixed effects
to describe the host and external environment. Date was centred
and scaled by the mean and standard deviation. Host ID was
included as a random effect.

We ran the Bayesian MCMC sampler in boral allowing for two
latent variables with 200 000 iterations, the first 100 000 discarded
as burn-in, and the remaining thinned by a factor of 100. The
selection of two latent variables compromises between model
complexity and appropriate evaluation of species co-occurrence
patterns after controlling for host and external environmental pre-
dictors (Letten et al., 2015; Warton et al., 2015; Taranu et al.,
2021). Random row effects were included to account for spatial
variation. Including random row effects is equivalent to including
a random intercept in mixed models, as a normal distribution is
drawn with mean zero and unknown variance (Hui, 2016). The
model was evaluated using stochastic search variable selection
(SSVS) to determine predictors included in the final model

(George and McCulloch, 1993). Only predictors with an SSVS
mean >0.5 were included in the final model (sex: mean = 0.61,
S.D. = 0.36; date: mean = 0.82, S.D. = 0.29). Predictors with an
SSVS mean <0.5 were removed in a backwards stepwise format.
This included the following predictors: host body mass, host
reproductive status, host population abundance, and year
removed based on SSVS values. Convergence was assessed using
Dunn–Smyth residual and normal quantile residual plots and
the Geweke diagnostic (Supplemental Information; Geweke,
1992). We identified the relative importance of host and external
environmental factors for each parasite species and constructed a
horizontal line plot showing 95% highest posterior density (HPD)
intervals for the column-specific regression coefficients. We deter-
mined parasite species co-occurrences due to host and external
environmental responses using the function ‘get.enviro.cor’ and
the remaining co-occurrence patterns after controlling for predic-
tors using the function ‘get.residual.cor’. To measure how well the
predictors described the species assemblage, we calculated a pro-
portional difference in the trace of the residual covariate matrix
between the correlated response model and a pure latent variable
model (where species are regressed against unknown covariates to
produce an unconstrained ordination for visualizing site and spe-
cies patterns; Warton et al., 2015; Hui, 2016). Plots of
co-occurrence patterns were produced using the function ‘corr-
plot’. A horizontal line plot of the predictors and a plot for the
estimates of variance partitions (Supplemental Information)
were constructed using the functions ‘gg_coefsplot’ and ‘gg_var-
part’ respectively from ‘ggboral’ package version 0.1.7.

Results

The final dataset included 53 red squirrels (19 females, 34 males)
with 207 captures, ranging from 1 to 19 captures for each individ-
ual. From DNA barcoding and morphological species identifica-
tion, three prominent ectoparasite species were identified and
analysed; two flea species (C. vison and O. caedens) and a chigger
mite species (N. harperi) (Table 1). Eighty-four flea specimens
were successfully sequenced and NCBI Blast identified two flea
species with more than 95% identity with the known subtypes
in GenBank (Table 2).

There were no significant associations between parasite species
after controlling for variation in occurrence with host sex and
date. There was a negative association between the flea O. caedens
and mite N. harperi and a positive association between the flea C.
vison and N. harperi explained by host or external environmental
responses (Table 3). Parasite species had varied responses to host
sex and date (Fig. 1). O. caedens flea occurrence was greater on
male than female hosts. All parasite species occurrences varied
with date, where C. vison flea and N. harperi mite occurrences
increased between spring and summer, and O. caedens flea occur-
rence decreased. Notably, the estimated residual covariate matrix
decreased from 31.46 to 17.48 from a pure latent variable model
to the correlated response model, suggesting that the investigated
predictors explained only 13.98% of the co-occurrence patterns
between parasites.

Discussion

A combination of positive, negative and random co-occurrence
patterns was observed between the three prominent ectoparasite
species on red squirrels. While we expected largely aggregative
patterns, there were no significant associations between parasite
species pairs when controlling for host sex and date. The signifi-
cant associations observed, both positive and negative, were iden-
tified between the flea species and N. harperi mite and were
explained by date. These trends suggest that associations between
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Table 1. Ectoparasite prevalence and number of red squirrels (n = 53 individuals, 207 captures) infested

Parasite species Number of occurrences Infested individuals Prevalence (%, 95% CI)

Mite (Neotrombicula harperi) 11 8 05.31 (02.68–09.31)

Flea (Orchopeas caedens) 29 19 14.01 (09.59–19.50)

Flea (Ceratophyllus vison) 33 21 15.94 (11.24–21.65)

Flea (Opisodasys pseudarctomys) 1 1 00.48 (00.01–02.66)

Individuals captured multiple times that were infested by an ectoparasite species in at least one capture are included in the count of infested individuals.

Table 2. Highest identity coverage NCBI BLAST hit sequences from the COI gene for flea specimens collected from red squirrels (n = 84 sequences)

Accession number Species identified Range of percentage of shared identity (%) Number of sequences

HM398797.1 Ceratophyllus vison 99.24–100.00 33

MG376790.1 Ceratophyllus vison 95.74–100.00 6

MG377835.1 Ceratophyllus vison 100.00 2

MG374778.1 Ceratophyllus vison 100.00 1

MG380123.1 Ceratophyllus vison 100.00 1

MG383124.1 Ceratophyllus vison 100.00 1

HM398830.1 Orchopeas caedens 98.77–99.83 34

KR140468.1 Orchopeas caedens 99.62–100.00 3

KR142021.1 Orchopeas caedens 100.00 1

KR146213.1 Orchopeas caedens 100.00 1

KR146262.1 Orchopeas caedens 100.00 1

Table 3. Summary of correlations between ectoparasite species (fleas (Orchopeas caedens and Ceratophyllus vison) and mite (Neotrombicula harperi)) on red
squirrels (n = 207 captures)

Residual correlations
Correlations due to host and external

environmental predictors

Estimate 95% HPD Intervals Estimate 95% HPD Intervals

Neotrombicula harperi – Orchopeas caedens 0.288 −0.952–1.000 −0.652 −1.000–(−0.205)

Neotrombicula harperi – Ceratophyllus vison −0.333 −1.000–0.907 0.725 0.142–1.000

Orchopeas caedens – Ceratophyllus vison 0.650 −0.405–1.000 0.069 −0.856–0.796

Bolded terms are those with 95% highest posterior density (HPD) intervals that do not include 0 (considered to have strong support).

Figure 1. Effect estimates of host and external environ-
ment covariates as predictors of ectoparasite species
occurrence. Circles represent posterior mean coeffi-
cients and horizontal lines represent 95% highest pos-
terior density (HPD) intervals. Vertical dotted lines
indicate the zero value.
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flea and mite species on red squirrels are shaped by the external
environment rather than host traits or species interactions.

We did not identify any significant associations between para-
site species pairs after controlling for host sex and date, indicating
a lack of species interactions. Ectoparasite communities of small
mammals tend to exhibit non-random co-occurrence patterns,
particularly aggregation (Krasnov et al., 2010; Nava and
Lareschi, 2014; Colombo et al., 2015), but this is not always the
case (see Krasnov et al., 2006). Notably, Eurasian red squirrels
(Sciurus vulgaris; Romeo et al., 2013) and invasive Pallas’s squir-
rels (Callosciurus erythraeus; Mazzamuto et al., 2016) have hosted
poor parasite assemblages with little variation in composition.
Our investigated parasite community was also very small, which
may provide little opportunity for transmission across hosts
(Romeo et al., 2013). This suggests that the investigated ectopar-
asites of red squirrels are largely unstructured by interspecific
competition or facilitative processes and follow what we would
expect from stochastic processes.

While parasite occurrence patterns do not seem to be altered
by parasite species interactions, significant co-occurrence patterns
were identified in the correlated response model, suggesting that
host and external environmental factors play a stronger role. N.
harperi mites had a negative association with O. caedens fleas
and a positive association with C. vison fleas. These co-occurrence
patterns align with temporal trends in occurrence on red squirrel
hosts that were also identified from our model (i.e. associations
with date). Temporal trends in the external and host environment
may play more of a role in whether parasite species pair co-occur
more or less often than expected by chance. Ectoparasites have
direct contact with the external environment, compared to endo-
parasites within the host’s body (Bush et al., 2001), and conse-
quently, co-occurrence patterns may be much more structured
by these environmental conditions that change over time.
However, it is important to note that the investigated predictors
explained only ∼14% of co-occurrence patterns between species
and date may play a limited role in influencing the association
between the investigated species pairs. This may also suggest
that even weak associations of ectoparasite occurrence with date
could structure co-occurrence patterns between species.

Notably, we only saw trends between N. harperi mites and both
investigated flea species, but not between the two flea species. N.
harperi mites had the strongest response to sampling date, which
may explain this result. Temporal trends in the external environ-
ment, particularly ambient temperature and relative humidity, are
well known to strongly impact the imago and pre-imago stages
of mites and fleas, with downstream effects on survival, develop-
ment time, and patterns of blood digestion (Linardi and Krasnov,
2013). Given that mite recruitment, compared to fleas, is often
more tied to the external environment, we may expect greater vari-
ation in mite occurrence over time associated with changes in tem-
perature and humidity (Linardi and Krasnov, 2013). This is
especially true in Trombiculid mites, such as N. harperi, which
are only parasitic in their larval stage and are often associated
with particular soil or habitat characteristics rather than hosts
(Timm, 1985). Therefore, the stronger ties that N. harperi shares
with the external environment rather than the host environment
may explain why date shaped associations between N. harperi
and the two flea species, but not between the two flea species.

The negative trend of O. caedens flea occurrence over the sam-
pling period was surprising, given that there was an increase in
infection patterns over the same sampling period in the study
area 10 years prior (Gorrell and Schulte-Hostedde, 2008).
However, a similar negative trend was seen over the same seasonal
sampling period in eastern chipmunks (Amin, 1976) for a flea in
the same genus, Orchopeas h. howardii. Moderate differences
between years in seasonal trends of Orchopeas sexdantatus flea

infestations on desert woodrats have also been observed, with
occurrence patterns varying with humidity (Lang, 2014), suggest-
ing that we may expect differences in occurrence patterns of our
investigated flea species between different years of study.
Temporal temperature trends can shape flea occurrence patterns
through impacts on flea oviposition, egg clutch size, immature
development and survival (Bossard, 2022). Thus, we may expect
changes in O. caedens flea occurrence throughout our study.

N. harperi mite and C. vison flea occurrence increased over the
sampling period. This was expected, as previous studies have
noted that both of these parasite groups tend to exhibit seasonal pat-
terns where they increase during the warmer months. N. harperi
mites tend to emerge in May or June and reach higher occurrences
in the summer (Brennan and Wharton, 1950). Our sampling period
falls within periods where infestation rates should be increasing, as
chigger mites (such as N. harperi) are only active during warm
months in northern temperate areas (Dietsch, 2005). Additionally,
fleas in the Ceratophyllus genus often exhibit peaks during summer
months (Samurov, 1990; Cyprich and Krumpal, 2001; Haukisalmi
and Hanski, 2007). The results of our study are consistent with pre-
vious work on N. harperi and C. vison on mammalian hosts.

Approximately 14% of the variation in co-occurrence patterns
between the investigated parasite species was explained by our pre-
dictors, indicating that there may be additional factors that play a
more substantial role in shaping parasite communities in this sys-
tem. While we did investigate date, particular seasonal conditions
such as temperature, rainfall, and humidity can influence flea
occurrence on squirrels (Goldberg et al., 2020; Smith et al.,
2021). Flea species can have similar or differing physiological toler-
ances to environmental conditions, which can shape their occur-
rence patterns (Smith et al., 2021). Precipitation levels from the
previous year can have a strong effect on flea abundance on squir-
rels (Goldberg et al., 2020). For chigger mites of small mammals,
occurrence may vary with habitat type (Choi et al., 2019;
Matthee et al., 2020). The host community within each habitat
can also influence the occurrence of chigger mites, as additional
common host species may facilitate greater mite abundance
(Matthee et al., 2020). The abundance of host species that spend
more time on the ground near these soil-dwelling mites, such as
voles, may provide food resources to support the mite population
(Veitch, 2020). Therefore, further investigation of environmental
conditions, such as temperature, precipitation, humidity, habitat
type, and the host community may provide better explanatory pre-
dictors of parasite co-occurrence on red squirrels.

The occurrence of O. caedens fleas was greater on male red
squirrels. Male host bias is a common trend in fleas parasitizing
rodents (Perez-Orella and Schulte-Hostedde, 2005; Krasnov
et al., 2012) and has been observed in other study systems of
red squirrels (Patterson et al., 2015). However, a female-bias in
flea parasitism was previously identified in this host population
(Gorrell and Schulte-Hostedde, 2008). Inspection of the raw data-
set from Gorrell and Schulte-Hostedde (2008) demonstrated that
there was higher flea parasitism on males recorded in June and
August, suggesting that higher flea occurrence on male red squir-
rels is not uncommon in this population. Male squirrels often
maximize number of matings with associated costs to their
body condition and immune function (Scantlebury et al., 2010).
Higher testosterone levels in males can lead to immunosuppres-
sive effects (Folstad and Karter, 1992; Zuk and McKean, 1996;
Foo et al., 2017; but see Rolff, 2002). Males also often engage in
behaviours that increase encounter rates such as increased mobil-
ity in larger or overlapping home ranges, which increases contact
between hosts and the likelihood of potential transmission
(Krasnov et al., 2012). Male biases in O. caedens flea parasitism
could be related to fitness benefits to the parasites, as fleas may
feed more effectively and produce more offspring on male hosts
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(Khokhlova et al., 2009). Therefore, male red squirrels may be
more susceptible to infestation of fleas. However, given that the
investigated predictors explained ∼14% of co-occurrence patterns
between parasite species, further experimentation is needed to
examine variation in flea occurrence with host sex.

The ectoparasite community of red squirrels investigated in
this study did not appear to be structured by parasite-parasite spe-
cies interactions but largely by changes in infestation patterns over
our sampling period. External environmental conditions that fluc-
tuate over time, such as temperature, rainfall, and humidity could
play strong roles in structuring ectoparasite infestations and the
impact of these factors on ectoparasite communities should be
further explored. Ectoparasite communities of red squirrels may
be shaped by seasonal or temporal shifts in the physical environ-
ment, but the host and external environmental factors that shape
these associations are yet to be fully identified.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0031182024001513.
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