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A Hypergraph
with Commuting Partial Laplacians
Cristina M. Ballantine

Abstract. Let F be a totally real number field and let GLn be the general linear group of rank n over
F. Let p be a prime ideal of F and Fp the completion of F with respect to the valuation induced by p.
We will consider a finite quotient of the affine building of the group GLn over the field Fp. We will
view this object as a hypergraph and find a set of commuting operators whose sum will be the usual
adjacency operator of the graph underlying the hypergraph.

1 Introduction

For a finite graph, consider all eigenvalues of the adjacency matrix. The eigenvalue
with the second largest absolute value plays a key part in the estimation of different
invariants of the graph. Thus, one is interested in finding an upper bound for its
absolute value. With this motivation in mind, we consider the affine building of the
group GLn over the completion Fp of a totally real field F at a nonarchimedean place
p. Then we will consider a discrete co-compact arithmetic subgroup Γ of GLn(Fp)
that acts without fixed points on the vertices of the building and we will view the
finite building quotient of Γ \ GLn(Fp) as a hypergraph. Its underlying graph will
be a finite regular graph. The main theorem of this article shows that the adjacency
operator of this graph can be expressed as the sum of the generators of the Hecke
algebra of GLn(Fp) with respect to a maximal compact subgroup. These operators are
well understood. Since the Hecke algebra is commutative, estimating the eigenvalues
of the adjacency matrix of the graph becomes equivalent to estimating the eigenvalues
of the generators of the Hecke algebra. We will undertake this estimation in a paper
to follow.

2 Combinatorics

The basic notations and definitions about graphs are taken from [2]. A graph G
is a pair of sets

(
V (G), E(G)

)
such that E(G) ⊂ {Y : Y ⊂ V (G), |Y | = 2} and

V (G) �= ∅. The set V (G) is the set of vertices of G and E(G) is the set of edges of G.
The vertices x and y are said to be adjacent if {x, y} is an edge. Denote by A(x) the
set of vertices adjacent to x. Then the cardinality |A(x)| of A(x) is denoted by d(x)
and is said to be the degree of x. If every vertex of G has degree s, then G is said to be
s-regular. If G is a graph with a finite number of vertices {x1, . . . , xn}, the adjacency
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matrix δ = (δi j) of G is the n× n matrix with entries δi j equal to 1 if xi is adjacent to
x j and 0 otherwise.

One can define a combinatorial Laplacian for graphs and, in fact, also for CW-
complexes, as follows [7]. For the finite graph G =

(
V (G), E(G)

)
fix some arbitrary

orientation on the edges. For e ∈ E(G) denote by e− its origin and by e+ its target.
The operator d : L2

(
V (G)

)
→ L2

(
E(G)
)

is defined as d f (e) = f (e+) − f (e−). If
|V (G)| = n and |E(G)| = m, then the matrix of d with respect to the standard bases
of L2
(

V (G)
)

and L2
(

V (E)
)

, respectively, is an m× n matrix D indexed by the pairs
(e, v), where v ∈ V (G) and e ∈ E(G), such that

De,v =




1 if v = e+

−1 if v = e−

0 otherwise

Let D∗ be the transpose of D. Then D∗D is an n × n matrix. The operator ∆ on
L2
(

V (G)
)

whose matrix is∆ = D∗D is called the Laplacian operator of the graph G.
Observe that while D depends on the orientation on E(G),∆ does not.

A hypergraph X is a set V together with a family Σ of subsets of V . The elements
of V and Σ are called respectively the vertices and the faces of the hypergraph. If
S ∈ Σ, the rank of S is the cardinality |S| of S and the dimension of S is given by
|S| − 1. Vertices are faces of dimension 0. A simplicial complex with vertex set V is a
collection Σ of finite subsets of V , called simplices, such that every singleton {v} is a
simplex and every subset of a simplex S is a simplex, called a face of S. We include the
empty set as a simplex. It has rank 0 and dimension−1.

Remark A simplicial complex is a special case of hypergraph. For the rest of the
article all hypergraphs considered will be simplicial complexes.

A simplex that is not contained in any other simplex is called a maximal simplex.
Two maximal simplices C and C ′ of the same dimension are adjacent if they have in
common a co-dimension 1 face. A gallery is a sequence of maximal simplices of the
same dimension Ξ = (C0, . . . ,Cd) such that consecutive maximal simplices Ci−1

and Ci are adjacent for i = 1, . . . , d. The length of Ξ is d. We say that Ξ connects C0

to Cd.
Two simplices A and B will be called joinable if there exists another simplex C such

that A and B are both faces of C . We say that two simplices are disjoint if their inter-
section is the empty simplex. The link of a simplex A, denoted lkA, is a subcomplex
of Σ consisting of the simplices B which are disjoint from A and which are joinable
to A.

A finite-dimensional simplicial complex Σ is called a chamber complex if all max-
imal simplices have the same dimension and any two can be connected by a gallery.
The maximal simplices are called chambers. The hypergraph in Figure 1 is a cham-
ber complex, the hypergraph in Figure 2 is not a chamber complex. A labelling of
the chamber complex Σ by a set I is a function which assigns to each vertex of Σ an
element of I in such a way that the vertices of every chamber are mapped bijectively
onto I. Labelling one chamber completely determines the labelling on any adjacent

https://doi.org/10.4153/CMB-2001-039-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2001-039-x


Commuting Partial Laplacians 387

chamber and therefore on the entire chamber complex. Thus any two labellings of
the same chamber complex are isomorphic. A chamber complex Σ is said to be la-
bellable if there is a labelling of Σ. We will say that a hypergraph is labellable if it is
a chamber complex which is labellable. The hypergraph in Figure 3 is a labellable
hypergraph. The hypergraph in Figure 4 is not labellable.
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By omitting all faces of dimension higher or equal to 2 from a hypergraph X we
obtain the underlying graph of X, denoted by X.

3 The Partial Laplacians

Assume now that X is a finite labellable hypergraph with rank n + 1 such that X
is s-regular. The dimension of the chambers is then equal to n. Fix a labelling
{0, 1, . . . , n} of X. Let x(i), i = 0, 1, . . . , n, denote a vertex labelled i. If x is any
vertex in X, we denote by Ai(x) the subset of A(x) consisting of vertices labelled i.
As an operator on L2

(
V (X)

)
, the combinatorial Laplacian ∆ on X is an averaging

operator. It is defined by

∆ f (x) = d(x) f (x)−
∑

y∈A(x)

f (y), f ∈ L2
(

V (X)
)
.

Since X is s-regular, ∆ = sI − δ, where δ is the adjacency matrix of X and I is the
identity matrix. We will also denote by δ the adjacency operator on L2

(
V (X)

)
whose

matrix is the adjacency matrix. For each i = 1, . . . , n we define an operator ϕi on
L2
(

V (X)
)

in such a way that for f ∈ L2
(

V (X)
)

the value of ϕi( f ) at a vertex x
labelled 0 is the sum of the values of f at vertices in Ai(x). The value of ϕi( f ) at the
other vertices is determined by permuting the labelling.

ϕi( f )(x(k)) =
∑

y∈Aα(x(k))

f (y), where α = (i + k) mod(n + 1).

Definition For each i = 1, 2, . . . , n, the operator ϕi defined above will be called the
i-th partial Laplacian of the hypergraph X.

4 The Affine Building

Following [10] we introduce the notion of the affine building. If L is a field endowed
with a nontrivial discrete valuation val, let OL be its ring of integers and pL its prime
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ideal. Assume that L is complete and the residue field OL/pL is finite. In this section
alone let G be a connected reductive algebraic group. We denote by T a maximal
L-split torus of G, by N (resp. Z) the normalizer (resp. the centralizer) of T in
G. The group of rational points of N (resp. Z) over L will be denoted by N(L)
(resp. Z(L)). We will denote the group of characters (resp. co-characters) of T by
X∗ = X∗(T) = HomL(T,Mult) (resp. X∗ = X∗(T) = HomL(Mult,T)). Then V will
denote the real vector space X∗ ⊗ R, φ = φ(G,T) ⊂ X∗ will be the set of roots of G
relative to T and Ua, for a ∈ φ, will be the unipotent subgroup of G normalized by T
and corresponding to the root a. Since G is connected, the group W = N(L)/Z(L) is
the Weyl group of the root system.

Associated to G, T and L there is a canonical affine space A = A(G,T, L) under V

on which N(L) operates, a system φa f = φa f (G,T, L) of affine functions on A, and a
mapping α → Xα of φa f onto a set of subgroups of G(L), such that s−1Xαs = Xα◦s,
for s ∈ N(L), that the vector parts v(α) of the functions α ∈ φa f are elements of φ,
and that, for a ∈ φ, the groups Xα with v(α) = a form a filtration of Ua(L). The
system φa f is called the affine root system and its elements are called affine roots.

Let ν : Z(L)→ V be the homomorphism defined by

χ
(
ν(z)
)
= − val

(
χ(z)
)

for z ∈ Z(L) and χ ∈ X∗(Z).

There is an extension of ν to a homomorphism, which we will also denote by ν, of N

in the group of affine transformations of A. The group N(L) operates on A through
ν. The affine space A is called the apartment of T relative to G and L.

For every affine function α such that a = v(α) ∈ φ, we denote by Aα the set
α−1([0,∞]) and by ∂Aα the set α−1(0). The sets Aα (resp. ∂Aα) for α ∈ φa f

are called the half-apartments (resp. the walls). The chambers are defined as the
connected components of the complement in A of the union of walls. The facets
of the chambers are also called the facets of A. Chambers are facets of maximum
dimension. If G is quasi-simple the facets are simplices, if G is semisimple they are
polysimplices and in general they are direct products of a polysimplex and a real
affine space.

There is the notion of an affine reflection rα. Its vector part is the reflection ra

associated with a = v(α) ∈ φ and its fixed hyperplane is ∂Aα. The group Wa f

generated by all rα, α ∈ φa f , is called the Weyl group of the affine root system. The
affine root system, φa f , is stable by the group W̃a f = ν

(
N(L)

)
. It follows that the

half-apartments, the walls and the chambers are permuted by W̃a f , and that Wa f is a
normal subgroup of W̃a f . The Weyl group Wa f is simply transitive on the set of all
chambers. Attached to the apartment there is a Dynkin diagram as in [10, 1.8].

For x ∈ A, we denote by φx the subset of φ consisting of the vector parts of all
affine roots vanishing in x, and by Wa f ,x the group generated by all reflections rα for
α ∈ φa f with α(x) = 0. The point x is called special for φa f if every element of the
root system φ is proportional to some element of φx, that is, if φ and φx have the same
Weyl group. If x is special, then Wa f is the semidirect product of Wa f ,x by the group
of all translations contained in Wa f .

The building B = B(G, L) of G over L can be constructed by “gluing together”
the apartments of the various maximal L-split tori. Below we give a more precise
definition. By a “G(L)-set” we mean a set with a left action of G(L) on it.
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Definition Let A be the affine space introduced before. Then there exists one and,
up to unique isomorphism, only one G(L)-set B containing A and having the fol-
lowing properties: B =

⋃
g∈G(F) gA, the group N(L) stabilizes A and operates on it

through ν, and, for every affine root α, the group Xα fixes the half-apartment Aα
pointwise. The set B is called the building attached to the group G.

The sets gA with g ∈ G(L) are called the apartments of the building. Let gT be
the torus obtained from T by conjugating the elements in T by g and let gN(L) be the
group obtained from N(L) by conjugating all elements by g. The apartment gA can
be identified with “the” apartment of the maximal split torus gT. This gives a one-
to-one correspondence between the apartments of B and the maximal L-split tori of
G. The apartment gA is the only one stable by gT, and gN(L), which determines gT,
is the stabilizer of gA in G(L).

Since the stabilizer N(L) of A in G(L) preserves the affine structure and its parti-
tion into facets, each apartment gA of B is endowed with a natural structure of real
affine space and a partition into facets. These structures agree on intersections. Ac-
cording to [10, 2.2.1], if A ′ and A ′′ are two apartments, there is an element of G(L)
which maps A ′ onto A ′ ′ and fixes the intersection A ′ ∩ A ′ ′ pointwise. Moreover,
A ′ ∩A ′′ is a closed convex union of facets in A ′, hence also in A ′ ′. Therefore, there
is a partition of B into facets. The facets which are open in apartments are called
chambers. If G is quasi-simple, B is a simplicial complex. If G is semisimple, B is a
polysimplicial complex. Also, given two facets of B, there is an apartment containing
them both.

One can choose in V a scalar product invariant under W . If G is quasi-simple,
such a scalar product is unique up to a scalar factor. If G is semisimple, the scalar
product can be chosen canonically. Then we have an Euclidean distance on A and,
through the action of G(L), on any apartment. Hence the building is endowed with
a distance and in fact B is a complete metric space.

Attached to the building B there is a Dynkin diagram as in [10, 2.4]. We can
also talk about special points of B. For every subset Ω of the building B, we denote
by G(L)Ω the group of all elements of G(L) fixing Ω pointwise. If Ω is reduced to
one point x, we write G(L)x for G(L)Ω. The stabilizers G(L)x of special points x ∈
B are called special subgroups of G(L). The stabilizers of facets are called parahoric
subgroups, and the stabilizers of chambers are called Iwahori subgroups. The Iwahori
(resp. parahoric) subgroups can also be defined as the inverse images in the stabilizers
G(L)x, for x ∈ B, of the OL/pL-Borel (resp. OL/pL-parabolic) subgroups under the
reduction (mod pL)-homomorphism.

We would like to introduce two more facts from [10]. First, the special subgroups
of G(L) are maximal compact subgroups, and secondly, if G is semisimple and simply
connected, the maximal compact subgroups of G(L) are precisely the stabilizers of the
vertices of the building B.

5 The Affine Building of GLn(Fp)

Let F be a totally real number field and O its ring of integers. Let p be a prime ideal
of F and Fp the completion of F with respect to the valuation induced by p. We will
denote by Op the ring of integers of Fp. The residue field kp of Fp is finite. Let π be
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the uniformizer of Fp, i.e. π ∈ Op with p = πOp. For the remainder of the article let
G be the general linear group of rank n over the field Fp. Then G(Fp) = GLn(Fp) will
be the group of Fp-rational points in G. We denote by T a maximal Fp-split torus of
G. The Weyl group W is isomorphic to the symmetric group on n letters.

Consider the affine building B̄ of GLn(Fp). For the rest of the article building will
mean affine building, unless otherwise specified.

Proposition The building B̄ of GLn(Fp) is the direct product of the building of SLn(Fp)
and an affine line.

Proof See [1].

Below we give a picture of the apartment of SL3(Fp). The building is obtained by
“ramifying” along every edge, each edge belonging to q + 1 triangles, where q is the
cardinality of the residue field kp of Fp.
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All vertices of the building of SLn(Fp) are special [10]. Since SLn(Fp) is semisimple
and simply connected, the vertices of its building are in one-to-one correspondence
with the maximal compact subgroups of SLn(Fp) [10]. The maximal compact sub-
groups of SLn(Fp) are the group SLn(Op) and its conjugates under GLn(Fp). The
affine line has only one vertex which corresponds to O∗p , the only maximal com-
pact subgroup of F∗p . Thus, the group GLn(Fp) acts transitively on the vertices of the
building of SLn(Fp) and it fixes the vertex of the affine line.
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It is well known that the maximal compact subgroups of GLn(Fp) are the group
GLn(Op) and its conjugates. Since GLn(Op) = SLn(Op)�O∗p , it follows that the ver-
tices of B̄ are in one-to-one correspondence with the maximal compact subgroups of
GLn(Fp). Also, all vertices of B̄ are special and hence all maximal compact subgroups
of GLn(Fp) are special subgroups.

In what follows we will make use of the action of the Weyl group W =
N(Fp)/Z(Fp) on B̄, and in particular on the set of vertices. The group W acts trivially
on the affine line and for the remainder of the discussion we will ignore the affine line
when we refer to the building B̄. The building B̄ is a labellable hypergraph [5, IV.1].

6 Finite Building Quotients of B̄

Consider the unitary group in n variables U (n). For the precise definition see [8].
Let A be the ring of adeles of F, A f the ring of finite adeles defined as the restricted
direct product that defines A but without the infinite factor, and Ap

f the ring of finite
adeles at all places except p defined as the restricted direct product that defines A f

but without the term at the place p. Let G ′ be a F-form of U (n) such that G ′(Fp) ∼=
GLn(Fp) and G ′(R) is compact. For the definition of a form of U (n) see again [8].
Denote by Kp the maximal compact subgroup G ′(Op) ∼= GL3(Op) of G ′(Fp). For
each finite place v �= p, let Kv be a compact open subgroup of G ′(Fv) chosen to be
small and such that the group

K f =
∏

q finite

Kq

is a compact open subgroup of G ′(A f ). Then the group

Kp
f =

∏
q �=p

q finite

Kq

is a compact open subgroup of G ′(Ap
f ). By [4, Theorem 5.1], the number of double

cosets in

G ′(F) \ G ′(A)/G ′(R)K f

is finite and thus the number of double cosets in

G ′(F) \ G ′(A)/G ′(R)G ′(Fp)Kp
f

is finite. Let {x1, . . . , xk} be a set of representatives of these cosets. Then we have

G ′(A) =
k⋃

i=1

G ′(F)xi

(
G ′(R)G ′(Fp)Kp

f

)
.

For each i = 1, . . . , k, consider the group Γ ′i = G ′(R)G ′(Fp)Kp
f ∩ xiG ′(F)x−1

i .

Each group Γ ′i is a discrete co-compact subgroup of G ′(R)G ′(Fp). Since G ′(R) is
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compact, the projection of Γ ′i on G ′(Fp), which we also denote by Γ ′i , remains a dis-
crete subgroup. It is not difficult to see that Γ ′i is finitely generated. Then, according
to [9, Lemma 8], Γ ′i has a normal subgroup Γi of finite index which has no nontrivial
element of finite order. This implies that any element of Γi different from the identity
acts on G ′(Fp)/Kp without fixed points.

Denote by B j the building quotient of the building of G(Fp) by Γ j . It is a finite
labellable hypergraph with rank n and labelling {0, 1, . . . , n − 1}. Its underlying
graph is regular.

7 The Partial Laplacians of B j

Let K denote the maximal compact subgroup G(Op) = GLn(Op) of G(Fp) and con-
sider a vertex x in B̄ whose stabilizer is K. Since G(Fp) acts transitively on the set of
vertices of B̄ we have

[G(Fp) : StabG(Fp) x] = |OrbG(Fp) x| = |Set of vertices|.

Thus there is a one-to-one correspondence between the set of vertices of B̄ and the
quotient group G(Fp)/K and therefore a one-to-one correspondence between the set
of vertices of B j and Γ j \G(Fp)/K, the set of orbits of the action ofΓ j on the quotient
group G(Fp)/K.

Let V denote the vector space of compactly supported functions on the vertices
of B j , V = Cc

(
Γ j \ G(Fp)/K

)
. It consists of the compactly supported functions on

Γ j \ G(Fp) that are right invariant under K. Consider now the Hecke algebra Hp of
G(Fp) with respect to K,

Hp = Hp(G,K) = Cc

(
K \ G(Fp)/K

)
.

It is the set of complex valued, compactly supported functions on G(Fp) which are
bi-invariant under K, endowed with the convolution given by

( f1 ∗ f2)(g) =

∫
G(Fp)

f1(x) f2(x−1g) dx, f1, f2 ∈ Hp and g ∈ G(Fp).

The Hecke algebra Hp acts on V by the induced algebra representation attached
to the right regular representation. We denote this action by �. For ϕ ∈ Hp, f ∈ V
and x a representative in G(Fp) of a coset in Γ j \ G(Fp)/K, the action � is given by

( f � ϕ)(x) =

∫
G(Fp)
ϕ(y) f (xy) dy.

Let d(a1, . . . , an) denote the n × n diagonal matrix with entries a1, . . . , an. We
denote by ϕi , i = 0, 1, . . . , n, the characteristic function of the double coset KtiK,
where

ti = d(

n−i︷ ︸︸ ︷
1, . . . , 1,

i︷ ︸︸ ︷
π, . . . , π) ∈ G(Fp).
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The functions ϕi , i = 0, 1, . . . , n, are sometimes called the fundamental Hecke func-
tions and they generate the Hecke algebra Hp.

Theorem The fundamental Hecke functions ϕi , i = 1, . . . , n − 1, are the partial
Laplacians of B j .

Corollary The partial Laplacians of B j commute with each other and their sum is the
adjacency operator δ.

Proof of the Corollary The corollary follows immediately from the fact that the
Hecke algebra Hp is commutative [6].

Before we continue with the proof of the theorem, let us introduce some notation.
We denote by Mn,m the set of n×m matrices and by In the n× n identity matrix. For
every i = 1, . . . , n the group

Pn−i,i =

{(
A B
0 C

)
∈ G : A ∈Mn−i,n−i,B ∈Mn−i,i ,C ∈Mi,i

}

is a maximal proper parabolic subgroup of G. The subgroup Mn−i,i of Pn−i,i consist-
ing of matrices for which the block B has all entries equal to 0 is the Levi component
of Pn−i,i . We have Mn−i,i

∼= GLn−i ×GLi . The subgroup Nn−i,i of Pn−i,i consisting
of matrices with the blocks A and C each equal to the identity matrix of the cor-
responding size is the unipotent radical of Pn−i,i . We have the Levi decomposition
Pn−i,i = Mn−i,i · Nn−i,i . Up to conjugation, the groups Pn−i,i(Fp) are all the proper
maximal parabolic subgroups of G(Fp).

Proof of the Theorem Let ϕi be a fundamental Hecke function, f a function in the
vector space V and x a representative in G(Fp) of a coset in Γ j \ G(Fp)/K. Then x
corresponds to a unique vertex of B j which we also denote by x. We will also denote
by x the vertex of B̄ corresponding to the coset xK. Let A be an apartment of B̄ that
contains x and let T be the maximal Fp-split torus corresponding to A. We fix the
apartment A, and therefore the torus T, for now. Without loss of generality, we can
assume that T is the subgroup of diagonal matrices of G(Fp).

We want to determine the value of ( f � ϕi)(x). If i = 0, ϕ0 is the characteristic
function of K and ( f � ϕ0)(x) = f (x)vol (K). The measure on G(Fp) is normalized
such that vol (K) = 1. Then ( f � ϕ0)(x) = f (x) and we see that ϕ0 is not a candidate
for one of the partial Laplacians. For the rest of the proof we will assume that i �= 0.

Since ϕi is the characteristic function of KtiK and f is right invariant under K, we
have

( f � ϕi)(x) =

∫
Kti K/K

f (xy) dy.

The group K is compact open and so is KtiK. Then KtiK/K is finite and ( f � ϕ)(x)
is, in fact, a finite sum,

( f � ϕi)(x) =
∑

y∈Kti K/K

f (xy).
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We make the change of variables y = uti . Since y = k1tik2K with k1, k2 ∈ K, we have
u = yt−1

i = k1tiKt−1
i and therefore

( f � ϕi)(x) =
∑

u∈K/ti Kt−1
i ∩K

f (xuti).

Consider now the reduction (mod pOp)-homomorphism ζ : K = G(Op) →
G(kp). It is a surjective homomorphism [10, 3.4.4] and its kernel is ker ζ = {H ∈
K | H ≡ In (mod pOp)}.

Claim ker ζ ⊂ tiKt−1
i ∩ K.

Proof Write any matrix A ∈ K in block form as A = (Ai j)1≤i, j≤2 with A11 ∈
Mn−i,n−i(Op), A12 ∈Mn−i,i(Op), A21 ∈Mi,n−i(Op), A22 ∈Mi,i(Op). Then the ma-
trices in tiKt−1

i are of the form tiAt−1
i = (A ′i j)1≤i, j≤2 with A ′11 = A11, A ′12 = π

−1A12,
A ′21 = πA21, and A ′22 = A22.

Let B ∈ K be a matrix in ker ζ . Then B is of the form (Bi j)1≤i, j≤2 with B11 ∈
Mn−i,n−i(Op), B12 = πB ′12 with B ′12 ∈ Mn−i,i(Op), B21 = πB ′21 with B ′21 ∈
Mi,n−i(Op), B22 ∈ Mi,i(Op) and such that B11 ≡ In−i (mod pOp) and B22 ≡ Ii

(mod pOp). We can rewrite B12 as π−1(π2B ′12) and then B = tiCt−1
i where C =

(Ci j)1≤i, j≤2 with C11 = B11, C12 = π
2B12, C21 = B ′21, and C22 = B22. Hence

ker ζ ⊂ tiKt−1
i ∩ K.

The matrices in tiKt−1
i ∩ K are of the block form

(
A11 A12

πA21 A22

)
, where Ai j , 1 ≤

i, j ≤ 2, are as in the proof of the claim. Then the image of tiKt−1
i ∩K under ζ is the

subgroup of GLn(kp) consisting of matrices in block form

(
A1 A2

A3 A4

)
, such that all

entries of A3 ∈Mi,n−i(kp) are equal to 0,

ζ(tiKt−1
i ∩ K) =

{(
∗ ∗
0 ∗

)
∈ GLn(kp)

}
.

Hence, ζ(tiKt−1
i ∩ K) is the proper maximal parabolic subgroup Pn−i,i(kp) of G(kp).

Since the reduction (mod pOp) is surjective, by the second isomorphism theorem
G(kp) ∼= K/ ker ζ . Since the image of tiKt−1

i ∩ K under ζ is Pn−i,i(kp), we have
Pn−i,i(kp) ∼= tiKt−1

i ∩ K/ ker ζ . Hence,

G(kp)/Pn−i,i(kp) ∼= (K/ ker ζ)/(tiKt−1
i ∩ K/ ker ζ) ∼= K/tiKt−1

i ∩ K.

Denote by N(Mn−i,i ,T)(Fp) the normalizer of T in Mn−i,i(Fp) and let Wn−i,i =
W (T,Mn−i,i) = N(Mn−i,i ,T)(Fp)/T(Fp) be the Weyl group of Mn−i,i relative to T. The
group Wn−i,i is generated by reflections corresponding to the set of simple roots from
which one root has been removed. Then Pn−i,i(Fp) = B(Fp) ·Wn−i,i · B(Fp). Denote
by N(kp) the subgroup of upper triangular unipotent matrices in G(kp).
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The Bruhat decomposition [3, 21.16] holds and we have

G(kp)/Pn−i,i(kp) =
⋃

w∈W/Wn−i,i

N(kp) · w · Pn−i,i(kp)/Pn−i,i(kp).

Therefore

K/tiKt−1
i ∩ K ∼= G(kp)/Pn−i,i(kp) =

⋃
w∈W/Wn−i,i

N(kp)wPn−i,i(kp)/Pn−i,i(kp),

and ( f � ϕi)(x) becomes

( f � ϕi)(x) =
∑

w∈W/Wn−i,i

∑
u∈N(kp)wPn−i,i (kp)/Pn−i,i (kp)

f (xuti ).

We make the change of variables u = dw. Since u ∈ N(kp)wPn−i,i(kp)/Pn−i,i(kp),
dw = nwpPn−i,i(kp) with n ∈ N(kp) and p ∈ Pn−i,i(kp) and thus d =
nwPn−i,i(kp)w−1. With this change of variables the expression for ( f � ϕi)(x) be-
comes

( f � ϕi)(x) =
∑

w∈W/Wn−i,i

∑
d∈N(kp)/wPn−i,i (kp)w−1∩N(kp)

f (xdwti).

Now, if i = n, M0,n(Fp) = P0,n(Fp) = G(Fp) and W0,n = W is the entire Weyl
group. Then ( f �ϕn)(x) = f (xtn) and again we see that ϕn is not a candidate for one
of the partial Laplacians. Thus, for the rest of the proof i = 1, 2, . . . , n− 1.

We can choose the vertex x such that its stabilizer is K. We want to investigate the
vertices xdwti as w ranges through a set of representatives of the cosets in W/Wn−i,i

and d ranges through N(kp)/wPn−i,i(kp)w−1 ∩ N(kp).
Fix a chamber C0 in the apartment A such that x is one of its vertices and the

other vertices in C0 are stabilized by the maximal compact subgroups tiKt−1
i , i =

1, 2, . . . , n − 1. We refer to C0 as the standard chamber. We can assume that the
stabilizer of C0 is the Iwahori subgroup which is the inverse image under the reduc-
tion (mod pOp)-homomorphism of the kp-Borel subgroup B(kp) of upper triangu-
lar matrices in G(kp). The dimension 1 face determined by the vertices x and xti ,
corresponding to K and tiKt−1

i respectively, is stabilized by the parahoric subgroup
which is the inverse image under the reduction (mod pOp)-homomorphism of the
kp-parabolic subgroup Pn−i,i(kp).

For w ∈W let nw ∈ N(kp) be a representative of w in the normalizer of T and de-
note by w

(
B(kp)

)
the conjugate nw ·B(kp) ·n−1

w . Then, by [3, 21.23], w→ w
(

B(kp)
)

is a bijection of Wn−i,i onto the set of minimal parabolic subgroups of Pn−i,i(kp) con-
taining T(kp). Hence we have a bijection of Wn−i,i onto the set of chambers C of B j

which are in the apartment A corresponding to T and which contain the dimension
1 face determined by x and xti .

Suppose that x is a vertex labelled 0. The link of x in B̄, and therefore in B j , is
canonically isomorphic with the spherical building of G(kp) [10, 3.5.4]. If w = In,
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then wPn−i,i(kp)w−1 ∩ N(kp) = N(kp) and d ∈ {In}. In this case xdwti = xti is the
vertex stabilized by tiKt−1

i . After an eventual relabelling of the hypergraph, xti is the
vertex labelled i in the standard chamber C0.

Consider now the case when w is a representative of a coset in W/Wn−i,i such that
w �= In. Then, if d = In, the vertex xwti is a vertex in the apartment A in a chamber
that does not contain the face of dimension 1 determined by x and xti . Thus, for
w �= In and d = In, the summands in ( f � ϕi)(x) are the values of f at the vertices in
Ai(x) that are in the chambers C �= C0 belonging to the apartment A.

Let now T1 and T2 be two maximal kp-split tori which are both Levi components
of the Borel subgroup B(kp). Then they are conjugate by a unique element in the
unipotent radical of B(kp) which is N(kp) [3, 20.5]. Denote by Al the apartment
in the spherical building corresponding to the torus Tl, l = 1, 2. Since T1 and T2

are both Levi components of B(kp), the chamber stabilized by B(kp) belongs to both
apartments: A1 and A2. Then, for a representative w of a coset in W/Wn−i,i such that
w �= In and d ∈ N(kp)/wPn−i,i(kp)w−1 ∩ N(kp), d �= In, the vertex xdwti belongs
to an apartment different from A and in this case the summands in ( f � ϕi)(x) are
the values of f at the vertices in Ai(x) belonging to apartments different from A. By
taking left cosets of wPn−i,i(kp)w−1 ∩ N(kp) multiple countings of the value at the
same vertex are avoided.

Thus ( f � ϕi)(x) is the sum of the values of f at all vertices in Ai(x). The value of
( f �ϕi)(x) at the other vertices is obtained by permuting the labelling. Therefore, for
i = 1, 2, . . . , n− 1, each fundamental Hecke function ϕi is the i-th partial Laplacian
for B j . This concludes the proof of the theorem.

Thus, as stated in the corollary, the adjacency operator is a sum of fundamental
Hecke operators. These operators are well understood. Estimating the eigenvalues of
the adjacency matrix of the underlying graph of B j reduces to estimating the eigen-
values of the fundamental Hecke operators. This can be achieved using the represen-
tation theory of the Hecke algebra and its connection with the theory of unramified
representations of the group GLn(Fp). We will undertake this estimation for the case
n = 3 in a paper to follow.

References
[1] C. Ballantine, Hypergraphs and Automorphic Forms. PhD Thesis, Toronto, 1998.
[2] B. Bollobas. Extremal Graph Theory. LMS Monographs, Academic Press 1978.
[3] A. Borel. Linear algebraic groups. Springer-Verlag 1991.
[4] , Some finiteness properties of adele groups over number fields. Inst. Hautes Études Sci. Publ.

Math. 16(1963), 5–30.
[5] K. S. Brown. Buildings. Springer-Verlag, New York, 1989.
[6] P. Cartier. Representations of p-adic groups: A survey. Automorphic forms, representations, and

L-functions, Proc. Sympos. Pure Math. 33, Part I (eds. A. Borel and W. Casselman), Amer. Math.
Soc., Providence, R.I. 1979, 111–155.

[7] A. Lubotzky. Discrete groups, expanding graphs and invariant measures. Progress in Math. 125,
Birkhauser Verlag, 1994.

[8] J. D. Rogawski. Automorphic representations of the unitary group in three variables. Ann. of Math.
Studies 123, Princeton Univ. Press, Princeton, New Jersey, 1990.

https://doi.org/10.4153/CMB-2001-039-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2001-039-x


Commuting Partial Laplacians 397

[9] A. Selberg. On discontinuous groups in higher-dimensional symmetric spaces. Contributions to
Function Theory, International Colloquia on Function Theory, Bombay, 1960, 147–164, Tata
Institute of Fundamental Research, Bombay, 1960.

[10] J. Tits. Reductive groups over local fields. Automorphic forms, representations, and L-functions,
Proc. Sympos. Pure Math. 33, Part I (eds. A. Borel and W. Casselman), Amer. Math. Soc.,
Providence, R.I. 1979, 29–69.

Department of Mathematics
University of Toronto
Toronto, Ontario
M5A 3G3

Department of Mathematics
Bowdoin College
Brunswick, Maine 04011
U.S.A.
e-mail: cballant@bowdoin.edu

https://doi.org/10.4153/CMB-2001-039-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2001-039-x

