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This study explores an interesting fluid–structure interaction scenario: the flow past a
flexible filament fixed at two ends. The dynamic performance of the filament under various
inclination angles (θ ) was numerically investigated using the immersed boundary method.
The motion of the filament in the θ–Lr space was categorised into three flapping modes
and two stationary modes, where Lr is the ratio of filament length to the distance between
its two ends. The flow fields for each mode and their transitions were introduced. A more
in-depth analysis was carried out for flapping at a large angle (FLA mode), which is widely
present in the θ–Lr space. The maximum width W of the time-averaged shape of the
filament has been shown to strongly correlate with the flapping frequency. After non-
dimensionalising based on W , the flapping frequency shows little variation across different
Lr and θ . Moreover, two types of lift variation process were also identified. Finally, the
total lift, drag and lift-to-drag ratio of the system were studied. Short filaments, such as
those with Lr � 1.5, were shown to significantly increase lift and the lift-to-drag ratio
over a wide range of θ compared with a rigid plate. Flow field analysis concluded that the
increases in pressure difference on both sides of the filament, along with the upper part of
the flexible filament having a normal direction closer to the y direction, were the primary
reasons for the increase in lift and lift-to-drag ratio. This study can provide some guidance
for the potential applications of flexible structures.
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1. Introduction
The motion of flexible bodies in fluid flows is a widespread phenomenon in nature.
For example, fish obtain thrust for swimming forwards through active bending of their
bodies (Huber 2000; Triantafyllou, Triantafyllou & Yue 2000; Müller 2003), trees and
aquatic plants passively alter their shapes in wind or water to reduce drag (Alben,
Shelley & Zhang 2002; Gosselin et al. 2010; Zhang, He & Zhang 2020), and flags
flap in the wind. All these natural phenomena can be simplified into the motion of
one or more flexible bodies in fluid flows, which, despite their structural simplicity,
contain complex dynamics, including thrust generation, drag reduction and self-excited
oscillations. Inspired by these natural scenarios, extensive research has been conducted to
explore the underlying mechanical principles governing the motion of flexible bodies in
fluid flows. As a relatively fundamental model, the motion of three-dimensional (3-D) flags
or simplified two-dimensional (2-D) filaments in a uniform inflow has received extensive
attention. Zhang et al. (2000) conducted soap film experiments to simulate the motion of
a filament with its head fixed in a 2-D flow field, discovering two motion states related to
the filament length: the stretched-straight state and the oscillatory state. Subsequently, as
shown in figure 1(a), numerical simulations for a single head-fixed filament immersed in
a flow field were conducted, where the effects of filament length, inflow velocity, bending
coefficient and the mass ratio between the filament and fluid on the flapping of the filament
were extensively studied (Zhu & Peskin 2002; Farnell, David & Barton 2004; Connell &
Yue 2007; Huang, Shin & Sung 2007; Alben & Shelley 2008; Michelin, Smith & Glover
2008). Notably, compared with Zhang et al. (2000), a new chaotic mode was discovered
(Connell & Yue 2007; Alben & Shelley 2008; Michelin et al. 2008). Numerous numerical
simulations also indicated that higher inflow velocities, smaller bending coefficients and
larger mass ratios are more conducive to the filament entering the flapping state.

In the above scenarios, a common feature of the flexible filaments is that their heads
are fixed while their tails are free. In addition to the basic study on the motion modes,
the applications of this model has also been investigated, especially in energy capture
(Tang, Païdoussis & Jiang 2009; Michelin & Doaré 2013). Apart from this most basic
installation method, figure 1(b,c) illustrates two other methods for flexible filaments or
plates corresponding to different boundary conditions, both of which have also been
extensively studied in terms of fundamental research and related applications. The first
is where the head of the filament is free and the tail is clamped, forming an inverted flag.
Inverted flags with different lengths and bending coefficients also exhibit different motion
modes including straight stationary mode, flapping mode and chaotic mode through
interaction with fluids like the head-fixed filament (Kim et al. 2013; Gurugubelli & Jaiman
2015; Sader et al. 2016; Yu, Liu & Chen 2017). The second installation method is to
clamp both edges of the filament. The filament under this kind of boundary condition
can exploit fluid forces from the surrounding fluid to exhibit unique snap-through (Kim
et al. 2021; Mao, Liu & Sung 2023). Due to the lower self-excitation speeds of the two
models shown in figure 1(b,c), related applied research has also explored the use of the
motion of flexible structures for energy harvesting (Orrego et al. 2017; Kim et al. 2020;
Bai et al. 2022; Mazharmanesh et al. 2022). The device based on the model in figure 1(c)
has been designed to capture fluid energy in wind and waves (Kim et al. 2020; Bai et al.
2022).
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Figure 1. Four fluid–structure interaction models involving a flexible filament: (a) the head is fixed by the
simply supported condition, while the tail is free; (b) the head is free, while the tail is clamped; (c) both the
head and tail are clamped; (d) both head and tail are fixed by the simply supported condition.
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Figure 2. Schematic diagram of a flexible filament with two fixed ends under different inclination angles (θ ).

Apart from the three filament installation scenarios corresponding to different boundary
conditions mentioned above, there is another basic scenario where the filament is fixed
in a uniform inflow at both ends through the simply supported condition, as shown in
figure 1(d). The impact of this new boundary condition on fluid–structure interactions
remains unknown. Investigating this interaction can provide insights into the motion
modes of filaments and potentially contribute to applications involving flexible structures,
such as enhancing dynamic performance and optimising energy harvesting. In addition,
many common scenarios in nature that involve rich dynamic mechanisms, such as
parachutes, paragliders and hot air balloons in the air, as well as fixed banners in the wind,
are related to this simplified model. Although the model in figure 1(d) is a simplification
of a finite-span thin plate in the real world, this fundamental model has not yet been
extensively studied. Therefore, this paper will investigate the motion of a filament fixed by
simply supported boundary conditions in a uniform flow, where the bending stiffness of the
filament is very small to minimise its impact. Since the filament length and inflow angle
have significant influence on the filament motion, for instance, at an inflow angle close to
zero, shorter filaments may oscillate up and down between the two fixed points under the
action of fluid, while too long filaments may extend a long tail past the downstream fixed
point. Additionally, when the filament length is small and the inflow angle is appropriate,
the filament is similar to a 3-D membrane wing (Song et al. 2008; Waldman & Breuer
2017; Tzezana & Breuer 2019; He & Wang 2020; Mathai et al. 2022), which could be
beneficial for enhancing dynamic performance. Therefore, the inflow angle and the length
of the filament are the main parameters studied in this paper.

The remainder of this paper is structured as follows. Section 2 details the computational
framework, encompassing the physical model, numerical approach and validation of the
code. Following this, in § 3, we discuss the findings from our numerical results. Finally,
the conclusions are presented in § 4.

2. Computational model

2.1. Problem definition
Figure 2 illustrates the fluid–structure interaction (FSI) system studied in this paper,
which consists of a single filament fixed at both ends by the simply supported conditions.
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Here, L and D represent the length of the filament and the distance between the endpoints
of the filament, respectively. In this context, D is used as the characteristic length to
non-dimensionalise L , yielding the length ratio Lr = L/D. The system is placed in a
uniform inflow parallel to the x-axis, with an inflow velocity of U . The angle of the inflow
is denoted by the acute angle formed between the line connecting the endpoints of the
filament and the x-axis, also referred to as the inclination angle (θ ) of the structure. In fact,
the model of a one-dimensional (1-D) filament placed in a 2-D flow field is a simplification
of the model where a spanwise infinite membrane is placed in a 3-D flow field.

In this system, the 2-D incompressible viscous flow is governed by the dimensionless
Navier–Stokes (N-S) equations as follows:

∂u
∂t

+ u · ∇u = −∇ p + 1
Re

∇2u + f , (2.1)

∇ · u = 0, (2.2)

where u = (u, v), t , p and Re denote the velocity vector, time, pressure and Reynolds
number, respectively. Here, f denotes the Eulerian momentum force acting on the
adjacent fluid, used to maintain the no-slip condition along the immersed boundary
(IB). Additionally, u, t , p and f are non-dimensionalised by U , D/U , ρ0U 2 and
ρ0U 2/D, respectively, where ρ0 is the fluid density. The Reynolds number is defined as
Re = ρ0U D/μ, with μ representing the fluid dynamic viscosity.

The deformation and motion of the flexible filament are described using Lagrangian
variables and are expressed as

∂2 X
∂t2 = ∂

∂s

(
T

∂ X
∂s

)
− ∂2

∂s2

(
γ

∂2 X
∂s2

)
− F, (2.3)

∂ X
∂s

· ∂ X
∂s

= 1, (2.4)

where s represents the Lagrangian coordinate along the filament. Here, X(s, t) denotes
the Eulerian position of a Lagrangian point s at time t . Additionally, T is the tension
force along the filament and γ is the bending coefficient defined as γ = E I , where E I
is the bending rigidity of the fiament (Huang et al. 2007; Ye et al. 2017); F signifies the
Lagrangian momentum force exerted on the flexible filament by the surrounding fluid.
The inextensibility condition is satisfied by introducing (2.4). Using (2.3) and (2.4), a
Poisson equation for calculating the tension force T can be derived (Huang et al. 2007).
Equations (2.3) and (2.4) have been non-dimensionalised by introducing the following
characteristic scales: ρ1U 2/D for F, ρ1U 2 for T and ρ1U 2 D2 for γ , where ρ1 denotes
the line density difference between the filament and the surrounding fluid. The present
dimensionless approach has been widely used in many previous studies (Uhlmann 2005;
Yu 2005; Huang et al. 2007; Ye et al. 2017; Mao et al. 2022).

At the two fixed ends, the simply supported boundary conditions are applied

X|s=0 = X0,
∂2 X
∂s2

∣∣∣∣
s=0

= (0, 0), (2.5)

X|s=Lr = X Lr ,
∂2 X
∂s2

∣∣∣∣
s=Lr

= (0, 0), (2.6)

where X0 and X Lr represent the coordinates of the two fixed ends of the filament within
the Eulerian coordinate system.
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2.2. Numerical methods
In this study, the immersed boundary method (IBM) is employed to describe the
interaction between the fluid and the structure, which has been extensively adopted for
simulating similar scenarios (Peskin 2002; Mao et al. 2022). The Lagrangian force F can
be calculated by the feedback law (Goldstein, Handler & Sirovich 1993; Huang et al. 2007;
Mao et al. 2021; Sun et al. 2022)

F(s, t) = α

∫ t

0
(U ib(s, t) − U(s, t)) dt ′ + β (U ib(s, t) − U(s, t)) , (2.7)

where α and β are large negative constants (Huang et al. 2007; Ye et al. 2017), with
β = α�t used to eliminate one free constant, β (Huang & Sung 2009). The velocity of the
filament, U(s, t), is expressed by U(s, t) = dX(s, t)/dt . The fluid velocity at the IB, U ib,
is obtained by interpolation at the IB using the surrounding fluid velocity

U ib(s, t) =
∫

Ω

u(x, t)δ (X(s, t) − x) dx. (2.8)

The Dirac delta function δ is employed to facilitate the transformation between Eulerian
and Lagrangian variables (Peskin 2002). In this way, the Eulerian momentum force f can
also be calculated by spreading the Lagrangian momentum force F to the surrounding
Eulerian grids,

f (x, t) = ρ

∫
Γ

F(s, t)δ (x − X(s, t)) ds, (2.9)

where ρ = ρ1/(ρ0 D) is the result of non-dimensionalisation and Γ denotes the structure
domain.

The computational framework for the entire FSI system consists of three components.
The fluid motion part is implemented based on the finite volume method (FVM), with
modifications made to the icoFOAM fluid solver within OpenFOAM-8. The filament
motion is resolved through the finite difference method (FDM), with spatial discretisation
in the Lagrangian coordinate. The fluid–structure interaction component is developed
based on (2.7), (2.8) and (2.9). A detailed description of the discretisation and solution
of the filament motion equations and the IBM equations can be found from Huang et al.
(2007). During the solver development process, we make modifications based on the
icoFOAM solver. First, we add the Eulerian momentum force f , as shown in (2.1), into the
process of solving the N-S equations in icoFOAM solver. Furthermore, we incorporated
the structural solver algorithm and the fluid–structure coupling algorithm into our fluid
solver file. The calculation process is shown as follows.

(i) At the nth time step, we know the fluid velocity field un and the filament positions
Xn and Xn−1. Then we can calculate the Lagrangian momentum force Fn by (2.7).

(ii) Update the position of the filament to obtain Xn+1 by (2.3).
(iii) Spread the Lagrangian momentum force Fn to get the Eulerian momentum force

f n using Equation (2.9). Solve N-S equations to update the fluid velocity field and
pressure field.

In this study, a multi-block Cartesian mesh strategy is employed to reduce computing
costs. The mesh around the IB is sufficiently fine to meet the requirements for high
computational accuracy. The boundary condition of the computational domain is set as
follows: a uniform velocity profile (u = U , v = 0) is specified at the inlet, symmetry
boundary conditions ( ∂u

∂y = 0, v = 0) are applied at the top and bottom boundaries,
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Time
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(d )
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Time
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Bagheri et al. (2012)

Mesh size: 1/50 (Present)

Mesh size: 1/25 (Present)

0.5

0

–0.5

Figure 3. (a,b) Schematic diagram of the system including a circular cylinder and an attached filament with
lengths of 1.5 and 3. (c,d) Position of the end point of the filament in the y direction.

while zero gradient conditions ( ∂u
∂x = 0, ∂v

∂x = 0) are imposed at the outlet. Subsequently,
some models containing flexible filaments will be simulated to validate our code.

2.3. Validation
We first simulated the flow past a circular cylinder with a single attached filament, as
depicted in figure 3(a,b). The simply supported boundary condition was employed at the
attachment point of the filament. The diameter of the circular cylinder was dimensionless
and set to 1, with the dimensionless lengths of the filament being 1.5 and 3, respectively.
For other critical parameters, such as filament mass and bending coefficient, we referred
entirely to Bagheri, Mazzino & Bottaro (2012). However, it should be noted that the
non-dimensionalisation process of our method is different from that of Bagheri et al.
(2012), where the fluid density was used to non-dimensionalise the bending coefficient.
The filament positions at different times are illustrated in figure 3(a,b). Additionally,
figure 3(c,d) displays the varying positions of the endpoints of two filaments in the
y direction over time, using two different fluid grid sizes �x . Our results show good
agreement with the work of Bagheri et al. (2012).

To further validate our numerical method, we simulated the flow over a flexible filament
clamped at two edges, as shown in the inset of figure 4(a). The filament was placed along
the flow direction, with the distance between its two fixed endpoints being D, and the
filament length was L . This paper simulated the movement of two filaments of different
lengths and monitored the midpoint trajectories in both the x and y directions. The
parameters for the two filaments were D/L = 0.5, γ = 0.02 and D/L = 0.589, γ = 0.005,
respectively. The midpoint positions of the filaments from our simulation results are shown
in figure 4(a,b), exhibiting a high level of consistency with the results obtained by Mao
et al. (2023). The results indicate that our solver has good accuracy in solving the motion
of a single filament in a uniform flow.

Furthermore, some numerical trials were conducted to determine the key computational
parameters for subsequent formal calculations, including the size of the computational
domain, the minimum grid size �x of the computational domain, the time step �t
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Mao et al. (2023)

Figure 4. Position of the midpoint of the filament in the x and y directions when length ratio is equal to
(a) 0.5 and (b) 0.589. The inset in figure 4(a) illustrates the simulated model including a flexible filament
clamped at two edges.
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�x = 1/48

�x = 1/64
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�x = 1/96

�t = 0.00025

�t = 0.00020

�t = 0.00015

�t = 0.00010

α = –100 000

α = –10 000

α = –1000

α = –100

32 × 16

32 × 24

32 × 32

Cd

Cd

Cd

Cd

Figure 5. Impact of (a) the size of computational domain, (b) fluid mesh size �x , (c) time step �t and
(d) free parameter α on the drag coefficient Cd .

and the value of the free coefficient α in (2.7). In these simulations, the filament
length Lr = 2.0 and inclination angle θ = 45◦ were fixed. Figure 5 illustrates the
variation of the drag coefficient Cd over time under different parameter settings.
In this study, drag is obtained by integrating the Lagrangian momentum force F,
and after further non-dimensionalisation, the drag coefficient Cd is obtained, where
Cd = − ∫

Fx ds/1
2ρ0U 2 D with Fx representing the component of F in the x direction. In

summary, selecting a computational domain size of 32 × 24, a mesh size of �x = 1/64, a
time step of �t = 0.00025 and a free parameter of α = −10 000 can ensure computational
accuracy and minimise computational costs. All subsequent calculations will be performed
using these parameters.
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Figure 6. Impact of the bending coefficient γ on the motion trajectory of the midpoint of the filament.

Finally, the object of the study is an inextensible and sufficiently flexible filament,
meaning that the bending coefficient is non-zero, but the system is not highly sensitive
to changes in bending coefficient. Therefore, it is necessary to conduct a sensitivity
analysis of the bending coefficient of the filament to meet the research requirements.
We still simulated the motion of a filament with Lr = 2.0 and θ = 45◦, conducting a
bending coefficient sensitivity analysis by plotting the motion trajectories of the midpoint
of the filament under different γ , as shown in figure 6. When γ exceeded 0.01, the
motion trajectory was significantly affected by γ . However, when γ < 0.01, its impact
was significantly reduced. Particularly, when γ was less than 0.001, the effect of γ was
minimal, indicating that the filament was sufficiently flexible. Therefore, for the remaining
calculations in the study, the bending coefficient was fixed at 0.001.

3. Results and discussion

3.1. Motion modes of the filament
This section investigates the motion modes and related dynamic performance of filaments
under various length ratios (Lr ) and inclination angles (θ ). The range of Lr is set from
1.0 to 5.0 and θ spans from 0◦ to 90◦. Notably, when Lr = 1.0, the filament forms a
straight line and remains stationary. Therefore, if the motion equation for an inextensible
filament is used for simulation, extremely small time steps are required. For this reason,
this paper directly substitutes the filament in this scenario with a rigid plate for simulation.
The Reynolds number Re is fixed at 100 and the bending coefficient γ is set to 0.001,
as determined from the results of the previous section. Other numerical computation
parameters, including the size of the computational domain, grid size and time step, are
also set based on the test results presented in the previous section.

Figure 7 illustrates the distribution of filament motion modes in the θ–Lr parameter
space, capturing various behaviours influenced by both filament length and inclination
angle. At low θ and Lr , a rich variety of motion modes is observed, necessitating
higher resolution in this region for detailed analysis. To better visualise these modes,
breakpoints are added to the axes of figure 7. When Lr = 1.0, the filament is inextensible
and equivalent to a 2-D plate. Based on whether vortex shedding occurs at different θ ,
the motion can be categorised into two modes: for θ < 30◦, no vortex shedding occurs in
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FBE mode

FEE mode
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Figure 7. Distribution diagram of filament motion modes in the θ–Lr space. The FBE mode represents the
filament flapping between two ends. The FEE mode represents the filament flapping and extending beyond two
ends. The FLA mode represents the filament flapping at a large angle. The SBE mode represents the filament
being stationary between two ends. The SEE mode represents the filament being stationary and extending
beyond two ends. The right column displays the motion trajectories of the filament corresponding to different
modes.

the flow field and for θ � 30◦, clear vortex shedding is observed. However, when Lr > 1.0,
the length of the filament exceeds the distance between the two fixed ends, thus allowing
for the possibility of motion. Depending on whether the filament moves and the shape
features of its motion, five distinct filament motion modes are identified, including three
flapping modes and two stationary modes, namely, FBE (flapping between two ends), SBE
(stationary between two ends), SEE (stationary and extends beyond the two ends ), FEE
(flapping and extending beyond the two ends) and FLA (flapping at a large angle).

As shown in figure 7, the FBE mode occurs when both θ and Lr are very small, such
as θ < 0.25◦ and Lr � 1.1875. The corresponding filament motion trajectory can be found
in the right column of figure 7. Figure 8 illustrates the instantaneous shape changes of
a filament in the FBE mode over one cycle, with system parameters being θ = 0◦ and
Lr = 1.0625. It can be observed that points along the filament do not oscillate up and
down in the same phase. Instead, there exists a wave propagating along the filament
in the x direction, resulting in phase differences at various positions. For instance, the
lowest position in the y direction occurs near the midpoint of the filament at t = 0.
As t increases, this lowest position continuously moves downstream, approaching the
downstream fixed point by t = T/2. Moreover, when observing the shape of the filament
near the downstream fixed point, a sudden transition in the position of the filament due
to wave propagation can be found. From t = 0 to t = 3T/8, the end part of the filament
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Figure 8. Shape variation of a filament in the FBE mode within one cycle, with parameters being θ = 0◦ and
Lr = 1.0625.

moves from its upper limit position to a middle position. However, in the shorter time
span from t = 3T/8 to t = T/2, due to the propagation of the trough along the x direction,
the end part of the filament abruptly shifts from the middle position to its lower limit
position. This rapid change in the filament position over a short period resembles the snap-
through oscillation mentioned by Mao et al. (2023). Furthermore, as shown in figure 7, the
FBE mode only occurs within a specific parameter range, specifically when θ � 1.5◦ and
Lr � 1.25. Even within this θ range, the flapping of the filament weakens with an increase
in θ and the flapping becomes asymmetric when θ �= 0◦. As either θ or Lr continues to
increase, the FBE mode cannot be sustained and the filament gradually transitions into a
stationary mode.

As depicted in figure 7, based on whether the filament extends beyond the downstream
fixed point or not, the stationary modes are categorised into two SBE and SEE modes.
When Lr remains at a relatively small and constant value while θ increases, the flapping
of most filaments in the FBE mode will weaken and become stationary between two ends
(SBE mode). The shape of the filament under the SBE mode is also displayed in figure 7,
where θ = 1◦ and Lr = 1.0625. Due to the small θ in this case, the filament accumulates
near the downstream fixed end under the influence of the incoming flow, remaining in a
relatively relaxed state. However, as θ increases, the influence of the incoming flow on
the underside of the filament significantly strengthens. Even though the filament remains
stationary between the two ends, its shape will be deformed into a ‘bow’ under the effect
of the fluid.

Similarly, when θ remains at a relatively small constant value while Lr increases, the
filament in the FBE mode will eventually transition into a stationary state as well. At this
point, due to the relatively large Lr exhibiting redundancy, the filament becomes stationary
and extends beyond the two ends (SEE mode). Figure 7 also displays the shape of the
filament under SEE mode, where θ = 0.5◦ and Lr = 1.75. At this point, due to the small
θ , the filament will be positioned very close to the downstream fixed point and may even
break off at the downstream fixed point. The extended portion will also form a narrow
tail behind the downstream fixed point. As θ increases, the distance between the filament
and the downstream fixed point grows due to the influence of the incoming flow. This
means the opening of the downstream loop structure gradually enlarges, allowing the loop
to encompass more fluid.

It is noteworthy that when the tail formed by the filament being separated at the
downstream fixed point is relatively short, the filament is in the SEE mode. However,
when a longer filament results in a sufficiently long tail, the filament can no longer remain
stationary and will transition into a new flapping mode. In this case, the filament is flapping
and extending beyond the two ends (FEE mode), as shown in figure 7. Additionally, it is
observed that the FEE mode is highly sensitive to θ , occurring only when θ is very small.
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In our computational space, the FEE mode appears only at θ < 0.5◦ and is not observed in
the range of 0.5◦ � θ � 1◦.

In fact, although the four motion modes were previously described in detail, they only
occupy a relatively small portion of the θ–Lr space. As can be seen from figure 7, these
modes occur only when θ � 20◦. Instead, the filament will exhibit a more widespread
flapping at a large angle (FLA mode). In this mode, flapping is directly caused by periodic
vortex shedding that occurs when θ increases and exceeds a critical value. For example,
when θ exceeds 30◦, vortex shedding begins for a rigid plate. Thus, within this range of
angles, a flexible filament with Lr > 1 will also experience vortex shedding, leading to
flapping. Additionally, as Lr increases, the critical value of θ at which vortex shedding
begins decreases. For instance, as shown in figure 7, the filament with Lr = 5 enters the
FLA mode at as small as θ = 2◦.

3.2. Flow field under various motion modes
To investigate the flow field surrounding the filament in different motion modes, figure 9
presents the instantaneous vorticity and time-averaged pressure around the filament
with Lr = 1.125 under various θ , encompassing the FBE mode, SBE mode and FLA
mode. Figure 9(a,c,e) respectively represent the instantaneous vorticity ωz for θ = 0◦, 1◦
and 2◦. In these figures, the green lines indicate the instantaneous positions of the filament.
When θ = 0◦, the filament is in the FBE mode, oscillating up and down between the two
fixed ends. Observing its motion trajectory over time shown in the inset of figure 9(a),
the filament tends to accumulate near the downstream fixed point under the influence of
the fluid. As a result, the downstream portion of the filament exhibits more significant
motion compared with the upstream portion. Consequently, stable shear layers form on
both sides of the upstream portion of the filament, where the formation of vortices is also
observed, as indicated in figure 9(a). Vortices weaken as they move downstream but are
reinvigorated by the flapping of the filament, particularly at points of higher curvature
(Farnell et al. 2004), as seen in figure 9(a). The periodic flapping of the filament results
in a variation of vorticity over time, which is reflected in the instability of the vortices in
the wake. The initiation of filament flapping in the FBE mode occurs because the length
of the filament exceeds the distance between the two fixed ends, leading to an asymmetric
shape at the initial moment. As a result, the filament begins to flap under the corresponding
asymmetric fluid forces. However, once the filament starts flapping, if θ = 0◦, the effects of
fluid forces on both sides of the filament become balanced and, as shown in figure 9(b), the
time-averaged pressure on both sides of the filament is equal. In summary, a comparison
with the traditional 1-D flag model shows that the motion of the filament in the FEE mode
is just the result of adding a fixed point to the tail of a 1-D flag (Zhang et al. 2000; Zhu
& Peskin 2002; Connell & Yue 2007; Huang et al. 2007). Although the motion mode
of the filament remains unchanged as θ increases from 0◦ to 1◦, with the filament still
flapping between two fixed points, the change in θ results in asymmetric flapping and
reduced motion amplitude, as shown in the inset of figure 9(c). The shape of the vortices
remains largely consistent with those at θ = 0◦, but wake vortex instability is reduced. This
is attributed to the decreased amplitude of the flapping of the filament. As θ increases, the
flapping of the filament continuously weakens. When θ reaches 2◦, the filament enters the
SBE mode and its flapping ceases. As illustrated in figure 9(e), in appearance, the shape
of the filament appears very similar to its configuration at θ = 1◦. However, due to the
filament being stationary, no instability of vortices is observed in the wake. Figure 9(b,d,f )
illustrates the changes in the time-averaged pressure around the filament as θ varies from
0◦ to 2◦. It can be observed that when θ = 0◦, the fluid forces on both sides of the filament
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Figure 9. (a,c,e,g,i) Instantaneous vorticity and (b,d,f ,h,j) time-averaged pressure of the flow field at various
θ when Lr = 1.125. The green solid lines represent the shape of filament. The insets in figure 9(a,c) represent
the motion trajectories of the filament.

have exactly the same effect, resulting in a symmetric flapping. However, when θ �= 0◦, the
system becomes asymmetric, causing the lower side of the filament to encounter stronger
fluid impacts, leading to the formation of relatively high pressure on the lower side. This
high pressure suppresses the flapping of the filament, leading the filament to enter the SBE
stationary mode when θ = 2◦. It can be argued that the intrinsic asymmetry introduced by
the increase in θ is the principal factor driving the transition of the motion mode from
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Figure 10. Instantaneous vorticity of the flow field for Lr = 1.75 and 5.0 under (a,c) θ = 0◦ and (b,d) θ = 5◦.

FBE to SBE. When θ increases from 2◦ to 20◦, the filament remains in the SBE mode,
but is subjected to more intense fluid impact, causing it to splay out into a ‘bow’ shape.
Figure 9(h) show the time-averaged pressure around the filament at θ = 20◦. Compared
with figure 9(b,d,f ), figure 9(h) covers a larger pressure range, hence, a different range
legend is chosen to display more details of the pressure distribution. When θ = 20◦, a
significant positive pressure and negative pressure appear at the front and rear of the
filament, and the ‘bow’ shape of the filament forms from the combined effects of these
two pressures. This pressure distribution pattern differs from the alternating high and low
pressure distribution observed when θ is smaller. In addition, when θ increases to 60◦, only
negative vortices are observed near the upper upstream fixed point, while only positive
vortices are observed near the lower downstream fixed point, as shown in figure 9(i). This
is quite different from the simultaneous appearance of positive and negative vortices near
the upstream fixed point, as seen in figure 9(a,c,e,g). The vortices detach from the ends of
the filament and extend downstream, with vortex shedding occurring behind the filament.
The periodic vortex shedding causes variations in the external forces around the filament,
inducing flapping and causing the filament to transition from the SBE mode to the FLA
mode. The appearance of the Kármán vortex street is a prominent characteristic of the
FLA mode, as shown in figure 9(g,i).

To further investigate the flow fields under various motion modes involved and the
transition of the motion modes as Lr increases, figure 10 shows the instantaneous vorticity
of the filament with Lr = 1.75 and 5.0 under θ = 0◦ and 5◦. This figure describes
the transition from SEE mode to FEE mode or FLA mode, and the characteristics of
the vorticity field under the three aforementioned modes. When Lr = 1.75 and
θ = 0◦, the filament is stationary, with a pair of vortices appearing on either side of the
upstream filament and extending downstream. After detaching from the filament, they
gradually weaken steadily and no vortex shedding occurs. Additionally, when Lr = 1.75,
the filament extends beyond the downstream fixed point, forming a short tail. Due to
θ = 0◦, the filament itself remains close to the downstream fixed point and is separated
by it. Since this short tail does not flap in the incoming flow, the entire system remains
stationary. This explains why the filament, initially in the FBE mode, flapping between the
two ends, transitions into the SEE stationary mode after extending beyond the downstream
fixed point due to the increase in Lr . However, as Lr continues to increase and the length
of the tail surpasses a threshold, the SEE mode cannot be maintained and the filament
tail begins to perform periodic motion. At this point, since the filament is separated by
the downstream fixed point, the motion between the two ends is very weak, while the
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tail exhibits relatively larger flapping, as shown in figure 7. The tail behaves similarly
to a single flapping filament and the shape of the vortices also resembles that of a
single filament under certain parameters (Connell & Yue 2007). For a single filament, the
flapping is self-excited, where a longer filament results in an easier onset of self-induced
flapping. This is consistent with the reason why the SEE mode transitions into the FEE
mode as Lr increases. However, when θ increases to 5◦, although the filament remains
in the SEE mode, the filament with Lr = 1.75 captures more fluid at its tail under the
influence of the incoming flow. As the filament length increases, the tail is full, which
promotes vortex shedding and induces flapping, causing the filament to transition into the
FLA mode, as shown in figure 10(b,d). Compared with the FEE mode, the FLA mode
has a larger amplitude of movement, the vorticity of the wake vortex is stronger and the
spacing in the y direction is larger. In summary, as seen in figures 9 and 10, maintaining
the stationary mode for the filament requires rather stringent parameter conditions. As θ

increases, the filament can easily transition into the FLA mode due to vortex shedding.
Similarly, with an increase in Lr , the filament may transition into either the FEE or FLA
mode.

3.3. Analysis of the FLA mode
As can be seen from figure 7, the FLA mode occupies a very large proportion of the θ–Lr
space, especially when θ exceeds 30◦, all filaments are in the FLA mode. Therefore, it is
necessary to conduct a more detailed study on this mode.

Under the FLA mode, the flapping of the filament is caused by periodic vortex shedding
behind the filament, and the flapping frequency ( f ) of the filament is consistent with the
vortex shedding frequency. As an important parameter characterising the flapping of the
filament, it is necessary to first study the changes in the flapping frequency under the FLA
mode with respect to θ and Lr . The flapping frequency is determined by calculating the
frequency of motion at the midpoint of the filament. This is achieved by recording the
time-varying position coordinates of the midpoint of the filament in the y direction and
performing a Fourier transform to obtain the frequency information. For Lr = 1.0, which
represents a rigid plate, f is specified as the vortex shedding frequency. It should be noted
that since we have non-dimensionalised all parameters prior to the numerical calculations,
the frequency f we obtain is also non-dimensional, i.e. f = fdim D/U , where fdim
represents the actual dimensional frequency. Figure 11(a) illustrates the variation of f with
respect to Lr and θ , with all simulation results in the FLA mode included. Overall, f tends
to decrease as both Lr and θ increase. However, when θ � 60◦, the frequency difference
under different θ is large, especially when θ is very small. When θ > 60◦, the change
in θ has a smaller effect on the frequency. Additionally, at larger θ , the variation range
of the flapping frequency with respect to Lr becomes smaller. For instance, at θ = 30◦,
the range of flapping frequency varies from 0.125 to 0.245 under different Lr . However,
at θ = 90◦, the range of flapping frequency is between 0.115 and 0.165. Since the non-
dimensionalisation process uses fixed values of D and U , the variation range of f also
reflects the actual variation in dimensional frequency. Furthermore, the frequency can also
be re-non-dimensionalised using a new characteristic length. Here, we use the maximum
width W of the time-averaged shape of the filament. Figure 11(b) illustrates the definition
of W , where the green line represents the time-averaged shape of the filament. Figure 11(c)
shows the variation of W/D with Lr and θ . It can be observed that the maximum width
of filament, which is vertical to the incoming flow and represented by W/D, increases
monotonically with the increase of Lr and θ . The re-non-dimensionalised frequency fW
can be calculated based on W and can be derived from f , as
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Figure 11. (a) Variation of the filament flapping frequency f with Lr and θ under the FLA mode.
(b) Schematic diagram used to define the maximum width W of the time-averaged shape of the filament in the
y direction. (c) Variation of W/D with Lr under various θ . (d) Variation of re-non-dimensionalised frequency
fW with Lr under various θ .

fW = fdim W

U
= fdim D

U
· W

D
= f · W

D
. (3.1)

After re-non-dimensionalisation, as shown in figure 11(d), the flapping frequency of the
filament in the FLA mode shows little variation with respect to Lr and θ , exhibiting only a
slight increase with Lr . In most cases, fW remains approximately 0.17. This indicates that
W is a fundamental parameter influencing the flapping frequency, and a larger W results
in both a smaller fdim and f . Therefore, based on the increasing trend of W with Lr and θ

shown in figure 11(c), f decreases with increasing Lr and θ , as illustrated in figure 11(a).
Finally, as observed in figure 11(d), although using W for re-non-dimensionalisation yields
generally good results in most cases, for θ � 10◦, the re-non-dimensionalised results tend
to be slightly underestimated and for Lr � 1.5, there are certain θ values where the results
are also slightly smaller. This suggests that using W for re-non-dimensionalisation may
not be entirely appropriate in these cases.

The flapping of the filament directly affects the variation in the lift of the filament,
making it essential to study the lift variation curve to analyse the specific impact
of filament flapping on the lift variation process in the FLA mode. Similar to
Cd , the lift coefficient Cl is obtained by non-dimensionalising the lift, denoted as
Cl = − ∫

Fyds/1
2ρ0U 2 D, where Fy represents the component of the Lagrangian

momentum force F in the y direction. Through the analysis of Cl and the position of
the midpoint in the y direction Ym at θ � 30◦, we found two types of lift variation process.
Figure 12 displays the results under two sets of parameters: θ = 90◦, Lr = 2.0 and θ = 90◦,
Lr = 4.0, to illustrate the two types of lift variation process. First, in figure 12(a), the solid
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Figure 12. Lift coefficient Cl , the position of the midpoint in the y direction Ym , the frequency spectra of Cl
and the pressure distribution at the critical moment under two types of lift variation process. (a–d) First lift
variation process in which Cl changes monotonically during the monotonic variation of Ym . (e–h) Second lift
variation process in which Cl fluctuates during the monotonic variation of Ym . (b,d,f ,h) Instantaneous pressure
at moments A, B, C and D. The arrows represent the direction of the local forces induced by the pressure
difference on either side of the filament.

line and dashed line represent Cl and Ym changing with time, respectively. It can be seen
that Cl varies periodically with time and the shape is close to a sinusoidal shape. At the
same time, Cl and Ym are in-phase. This means that as Ym changes from its minimum value
to its maximum value, the filament moves from its extreme lower position to its extreme
upper position, and the lift also changes from its minimum value to its maximum value. In
other words, Cl changes monotonically during the phase where Ym changes monotonically.
The spectrum obtained after the Fourier transform of Cl is shown in figure 12(c). There
is only a distinct single peak at f = 0.145 in the frequency spectrum, which is both the
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flapping frequency of the filament and the vortex shedding frequency. Figure 12(e) exhibits
the other lift variation process. While Cl still changes periodically with time and has a
strong correlation with the change of Ym , the variation curve of Cl does not maintain a
sinusoidal-like shape like Ym . The maximum value of Cl does not appear at the maximum
of Ym , but appears in the process when Ym is changing to its maximum value. When
Ym is at its maximum, the lift is at a local minimum. This indicates that, as the filament
moves towards an extreme position on one side, Ym moves monotonically to an extreme
value, but Cl no longer changes monotonically and instead exhibits fluctuations. From the
frequency spectra shown in figure 12(g), in addition to the frequency peak at f = 0.125
which corresponds to the flapping frequency and vortex shedding frequency, some other
frequency peaks can also be observed. To explain the reasons for the emergence of the two
types of lift variation process, the pressure distribution around the filament is shown in
figure 12(b,d,f ,h). Figure 12(b,d) represents the pressure distribution at two representative
moments in figure 12(a), where figure 12(b) represents the moment when the filament is at
its extreme position and the lift is maximum, as marked at moment A, while figure 12(d)
represents the moment when the filament is at its intermediate position and the lift is
close to 0, as marked at moment B. At moment A, the external pressure on the upper
part is significantly lower than that on the lower part, which leads to the maximum lift of
the filament as shown in figure 12(a). At moment B, the shape of the filament is nearly
symmetrical. The difference in external pressure on the upper and lower parts decreases
and its lift is closer to 0, which is lower than the lift at moment A. When the filament
continues to move to its lower extreme position, the pressure distribution is just the
opposite of that in figure 12(b) and the filament receives the maximum force in the negative
y direction. The lift then changes with the flapping of the filament through this process.
Similarly, in figure 12(e), we choose moments C and D to represent the moments with the
maximum Cl and the maximum Ym , respectively. At moment C, the pressure distribution
around the filament is shown in figure 12(f ). The pressure inside the cavity formed by the
filament is higher, causing a difference in the forces on the upper and lower parts of the
filament. The total force F+ experienced by the upper part is in the positive y direction,
while the total force F− experienced by the lower part is in the negative y direction. Due to
the higher pressure in the upper part of the cavity and a distinct low-pressure region behind
the filament, a larger resultant force is formed in the positive y direction at moment C. At
moment D, the filament is at its upper extreme position, as shown in figure 12(h). Since
the filament has a broader width in the y direction at this moment, the part of the filament
near the upper fixed point is directly attacked by the incoming flow, hence its external
pressure is higher, thus inducing a force F− in the negative y direction. As a result of
this influence, the total lift experienced by the filament at this moment is significantly
reduced compared with moment C, as shown in figure 12(e). Even though Ym is maximum
at moment D, the lift is lower than at moment C and reaches a local minimum. Therefore,
the reason why the lift fluctuates rather than changes monotonically during the period of
monotonically varying Ym is that the filament undergoes complex overall shape changes
due to elastic deformation during flapping. Some of these shapes, such as the elongated
shape at moment C, are conducive to generating lift, while others, like the wider shape at
moment D, are less favourable for lift generation.

To explore the influence of different Lr and θ on the lift variation process in the
FLA mode, figure 13 further illustrates the distribution of two types of lift variation
process at θ � 30◦. It can be observed that Lr = 2.5 serves as a distinct boundary. When
Lr < 2.5, Cl always changes monotonically during the monotonic variation of Ym , but
when Lr > 2.5, Cl always fluctuates during the monotonic variation of Ym . This is because
when the filament length is larger, the shape of the filament changes more complexly due
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Figure 13. Distribution of two types of lift variation process under the θ–Lr space. In the first lift variation
process represented by �, Cl changes monotonically during the monotonic variation of Ym . In the second lift
variation process represented by ◦, Cl fluctuates during the monotonic variation of Ym .

to elastic deformation during its flapping process, so the lift is more likely to fluctuate.
In contrast, when the filament length is shorter, the flapping shape is uniform. Moreover,
as can be seen from figure 13, θ has a slight impact on the length corresponding to the
transition between two regions. At smaller θ , Cl is more likely to exhibit fluctuations. This
phenomenon occurs because the cavity formed by the filament holds a smaller amount of
fluid at smaller angles, resulting in a reduced degree of filling. This allows the filament
greater freedom in elastic deformation, which is more conducive to the emergence of lift
fluctuation.

3.4. Variation of time-averaged lift and drag
Lift and drag are critical dynamic parameters in fields such as shipbuilding, marine
engineering and aerospace, with extensive research conducted on aerofoils in the
aerospace sector. Studies on flexible structures have also shown that the dynamic
performance of a system can be improved by locally placing flexible membranes on the
aerofoil structure or by using an entire flexible membrane (Song et al. 2008; Waldman &
Breuer 2017; Tzezana & Breuer 2019; He & Wang 2020; Mathai et al. 2022). Therefore,
for the system in the present study, the variations in lift and drag of the flexible filament
under different parameters also deserve attention.

Figure 14(a,b,c) shows the time-averaged drag coefficient Cd , time-averaged lift
coefficient Cl and the ratio of lift to drag Cl/Cd under different θ and Lr , respectively. In
figure 14(a), it can be found that as θ increases, the drag always increases monotonically,
with the maximum drag generally occurring at θ = 90◦. However, the change in drag with
increasing Lr exhibits two distinct trends. When θ < 60◦, the drag monotonically increases
with Lr . In contrast, when θ > 60◦, the drag initially decreases and then increases as
Lr increases. This trend is clearly visible in the contour lines of figure 14(a), where
the system drag for θ > 60◦ always reaches its minimum at approximately Lr = 2.0. At
this point, the drag experienced by the filament is significantly lower than that of a bare
plate. This indicates that, within this range of angles, using a filament with a specific
length in place of a flat plate can reduce drag. This unusual trend in drag variation is
attributed to the specific filament causing delayed flow separation and vortex shedding,

1009 A5-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

17
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.172


Journal of Fluid Mechanics

0.88

1.39

1.89

2.07

2.39

2.07

2.89

2.39

3.40

3.90

0.11

0.11

0.37

0.62

0.88

1.14

–0.14

1.39

1.60

0.18

0.46
0.75

1.03

–0.11

0 30 60 90
1

2

3

4

5

0.38

1.39

2.39

3.40

4.40

Cd(a) (b)

(c)

0 30 60 90
1

2

3

4

5

0.11

0.62

1.14

1.65

Cl

0 30 60 90
1

2

3

4

5

0.18

–0.39

–0.40

0.75

1.31

1.88

Cl/Cd

θ (°)

Lr Lr

θ (°)

θ (°)

Lr

Figure 14. (a) Time-averaged drag coefficient Cd , (b) time-averaged lift coefficient Cl and (c) lift-to-drag ratio
Cl/Cd under various θ and Lr . The black solid line represents the boundary between the FLA mode and other
motion modes.

resulting in an increase in pressure behind the filament and, consequently, a reduction
in drag, a phenomenon that has been widely studied (Mao et al. 2021; Sun et al. 2022).
Considering the distribution of motion modes, it is evident that the drag in the FLA mode
is significantly higher than that in other motion modes, as shown in figure 14(a), where the
black solid line represents the boundary between the FLA mode and other motion modes.
This is because, in the other motion modes, θ is relatively small, resulting in a weaker
direct impact of the incoming flow on the filament. At this point, the frictional drag on
the filament becomes more pronounced. A longer filament results in a greater frictional
drag. Consequently, in figure 14(a), a slight increase in drag with Lr can be observed in
these modes. Additionally, during the transition to the FLA mode, there is a significant
increase in drag, especially when Lr is large. For instance, for a filament with Lr = 5.0,
when θ increases from 1◦ to 1.5◦, the system transitions from the SEE mode to the FLA
mode, resulting in a steep increase in drag, which is visible in the upper left corner of
figure 14(a). However, as Lr decreases, the magnitude of the drag increase during mode
transitions decreases.
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Figure 14(b) presents the contour plot of the system lift, where it is evident that the
high-lift region is concentrated in the lower half of the plot. By analysing the contours, it
can be observed that at θ = 5◦, the lift of the filament with Lr = 1.0625 already surpasses
that of the corresponding bare plate. As θ increases, the range of filament lengths capable
of enhancing lift expands. In the range of 30◦ < θ < 60◦, filaments with Lr � 2.0 can
effectively enhance lift. However, when θ exceeds 70◦, the contribution of the filament
to lift enhancement becomes negligible. When considering filament length, it is evident
that filaments with Lr � 2.0 have the potential to enhance lift. In contrast, filaments with
Lr > 2.0 do not contribute to lift enhancement and may even result in negative lift.
However, the maximum lift in the entire parameter space is observed at Lr = 1.25 and
θ = 40◦, representing a 45.5 % increase compared with the lift of the bare plate. This
indicates that although shorter filaments are generally more effective, the shortest filament
is not always the best. In figure 14(b), a region including all cases of lift enhancement,
specifically where Cl > 0.37 is selected. Within this region, it is observed that the lift
consistently increases and then decreases with increasing θ . A similar trend is also seen in
the variation of lift with Lr . The phenomenon discovered in this study, where the lift of
a filament with a specific length is significantly higher than that of a rigid plate, has also
been observed in many studies on 3-D flexible membrane wings, with lift enhancement
reaching as much as 40 % (Song et al. 2008; He, Guo & Wang 2022). Furthermore,
when considering motion modes of the filament, it can be observed that the regions of
lift enhancement correspond to the SBE mode at larger θ and the FLA mode at smaller
Lr . In these scenarios, the filament generally forms a bow-like shape, and either vortex
shedding does not occur or, due to the smaller Lr , vortex shedding does not significantly
increase the amplitude of the motion of the filament. This suggests that lift enhancement
is not strongly related to vortex shedding. Instead, the primary factor is the deformation
of the flexible filament in the flow field, which maintains a relatively stable ‘bow’ shape,
thereby altering the surrounding pressure distribution and ultimately increasing the lift. In
other motion modes, the filament does not contribute to lift enhancement.

To take into account the effects of both lift and drag, figure 14(c) shows the changes
in the lift-to-drag ratio in the θ–Lr space. It can be found that the distribution of the
lift-to-drag ratio closely resembles that of the lift. Within the range of 10◦ < θ < 60◦,
filaments of specific lengths have the potential to enhance the lift-to-drag ratio of the
system compared with the bare plate. However, it is evident that enhancing the lift-to-drag
ratio imposes stricter requirements on filament length compared with increasing lift. A
significant improvement in the lift-to-drag ratio is only observed when Lr � 1.5. Longer
filaments do not contribute to an improved lift-to-drag ratio. Then, the presence of the
filaments can also increase the value of θ corresponding to the maximum lift-to-drag ratio.
For instance, the maximum lift-to-drag ratio for the plate occurs at θ = 15◦, whereas that
for filaments with Lr = 1.0625 and 1.25 are 20◦ and 30◦, respectively. Additionally, it can
be observed that Lr = 1.0625 is an optimal length, which allows the filament to achieve the
maximum lift-to-drag ratio within the range of 10◦−30◦. Notably, at θ = 20◦, this length
yields the maximum value of 1.88 in the parameter space. However, for scenarios where θ

exceeds 30◦, a higher Lr is required to ensure the maximum lift-to-drag ratio. Based on the
simulation results, Lr = 1.0625 and 1.125 are two suitable filament lengths that can ensure
optimal outcomes within 10◦−40◦. It is important to note that Lr = 1.0625 is the smallest
filament length employed in this numerical study and this length is sufficiently small to
reveal the relevant rules of lift-to-drag ratio enhancement. Similar to the lift distribution,
regions with a high lift-to-drag ratio correspond to the SBE mode at larger θ and the FLA
mode at smaller Lr , while the filament in other motion modes has no beneficial impact.
However, the key difference is that the peak of the lift-to-drag ratio occurs in the SBE
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Figure 15. Time-averaged pressure, vorticity and streamlines around the filament with (a,b) Lr = 1.0,
(c,d) 1.0625 and (e,f ) 1.25 under θ = 20◦.

mode rather than the FLA mode. This is because, although the lift is greater in the FLA
mode, the drag is also significantly higher due to the larger θ . Consequently, the lift-to-
drag ratio is not as high. In contrast, within the SBE mode, although the lift is relatively
small, the drag is also minimal, resulting in a higher lift-to-drag ratio.

To investigate the mechanism by which short filaments increase the lift and the lift-
to-drag ratio, figures 15 and 16 show the time-averaged pressure field, vorticity field
and streamline distribution around the filament at θ = 20◦ and 40◦, respectively, where
the lengths of the filament are Lr = 1.0, 1.0625 and 1.25. At θ = 20◦ and Lr = 1.0625,
the filament achieves the highest lift-to-drag ratio, while at θ = 40◦ and Lr = 1.25, the
filament achieves the maximum lift. Figure 15(a) shows the pressure distribution of the
rigid plate at θ = 20◦. Low and high pressures can be observed on the upper and lower
sides of the plate, respectively. The pressure difference leads to the generation of the lift
and drag on the plate. Figure 15(b) shows the corresponding vorticity field, where the black
arrow lines represent the streamlines around the plate. It can be seen that the flow forks at
the leading edge of the plate, with some fluid leaving the plate at the upstream fixed point,
resulting in flow separation. The rest of the fluid flows along the lower side of the plate
and forms strong vortices through shear, and finally leaves the plate at the downstream
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fixed point. For Lr = 1.0625, the surrounding pressure distribution resembles that of the
flat plate, as shown in figure 15(c). However, it is evident that under the influence of the
fluid, the flexible filament forms a ‘bow’ shape and the high pressure below the filament is
higher compared with that below the rigid plate, while the low pressure above the filament
is lower than that above the plate. This results in a greater pressure difference between the
two sides of the filament. Notably, the inclination angle is only 20◦ at this case, making
the normal direction of points on the filament align more closely with the y direction.
Consequently, the increased pressure difference has a greater impact on enhancing lift
compared with drag, leading to an improved lift-to-drag ratio. However, as Lr increases
to 1.25, the pressure distribution differs from that of Lr = 1.0 and 1.0625, with the high
pressure appearing near the downstream fixed point. This is because a recirculation zone
exists near the upstream fixed point, as shown in figure 15(e,f ). The fluid does not flow
along the shape of the filament from the upstream fixed point to downstream fixed point
as shown in figure 15(b,d), but flows past the side of the recirculation zone and directly
towards the filament, and then flows up or down after being obstructed by the filament,
as shown in figure 15(f ). Moreover, as seen in figure 15(e), the normal direction of the
filament around the high-pressure area is closer to the x direction. Therefore, the effect of
higher pressure on increasing the drag is larger than the lift, resulting in a lower lift-to-drag
ratio at Lr = 1.25 compared with that at Lr = 1.0625.

When θ = 40◦, the pressure difference on both sides of the filament is greater, which
is the direct reason for the increase in lift of the system compared with when θ = 20◦.
The pressure distribution around the filament under different Lr is the same and the high-
pressure region appears near the upstream fixed point, as shown in figure 16(a,c,e). Under
scenarios with different Lr , the fluid uniformly bifurcates around the upstream fixed point,
with a part flowing upward around the upstream fixed point of the filament and another
part flowing along the filament bypassing the downstream fixed point. For Lr = 1.25, there
is no recirculation zone on the underside of the filament, as shown in figure 15(f ), nor a
change in the high-pressure position caused by the recirculation zone. This also indicates
that the presence of the recirculation zone beneath the filament only occurs when θ is
relatively small. In figure 16(c,e), point Q is introduced to divide the filament into upper
and lower parts, where the tangent direction of the filament at Q forms the same angle with
the x-axis as the inclination angle. The pressure difference between both sides of the upper
part of the filament, compared with the rigid plate, is increased, and its normal direction
is closer to the y-axis, thereby enhancing lift. For the lower part of the filament, although
its normal direction increasingly deviates from the y-axis, this adverse effect is offset by
the increased pressure difference. Therefore, for the entire filament, the lift is increased,
especially at Lr = 1.25, achieving the maximum lift within the parameter space. However,
compared with θ = 20◦, the increase in inclination angle leads to a wider width attacked
by the flow, resulting in a significant increase in drag. This leads to a lower lift-to-drag
ratio at θ = 40◦. Overall, the increase in lift and the lift-to-drag ratio compared with the
rigid plate is attributed to the elevated pressure difference on both sides of the filament
and the deformation of the filament, which causes the normal direction of the upper part
to align more closely to the lift direction.

3.5. Discussion on the motion modes
To deepen the understanding of the fixed-ends flexible filament system, this section will
provide a simplified introduction to the motion behaviour of the filament. First, when not
considering whether the filament is in motion or stationary, four basic filament shapes can
be extracted from the computational results, as shown in figure 17. Based on the relative
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Figure 16. Time-averaged pressure, vorticity and streamlines around the filament with (a,b) Lr = 1.0,
(c,d) 1.0625 and (e,f ) 1.25 under θ = 40◦. Point Q is introduced to divide the filament into upper and lower
parts, where the tangent direction of the filament at Q forms the same angle with the x-axis as the inclination
angle.

values of Lr and θ , the parameter space is divided into four regions: the Lrsθs region,
where both Lr and θ are relatively small; the Lrsθl region, where Lr is small and θ is
large; the Lrlθs region, where Lr is large and θ is small; and the Lrlθl region, where both
Lr and θ are relatively large. In the Lrsθs region, due to the small values of both Lr and θ ,
the filament curls near the downstream fixed point under the influence of the fluid. In the
Lrsθl region, the filament forms a ‘bow’ shape under the influence of stronger incoming
flow force. In the Lrlθs region, the filament extends beyond the downstream fixed point
and, due to the smaller θ , it forms a narrow loop behind the downstream end. In the Lrlθl
region, the tail of the filament opens wider under the influence of the flow and wraps
around more fluid. It should be noted that figure 17 is merely a schematic diagram and the
boundaries between different regions in the figure are, in fact, not simple straight lines.

The four basic filament shapes described in figure 17 are intuitive and can even be
summarised purely through imagination without the need for numerical simulations.
However, further analysis reveals that each region contains both a stationary part and a
flapping part. In the Lrsθs region, when θ is very small, the filament undergoes flapping
between the two fixed ends. As θ increases, the stronger fluid forces below the filament
suppress the flapping, transitioning the filament into a stationary state. In the Lrsθl region,
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Figure 17. Schematic diagram of the distribution of the shapes of filaments in the θ–Lr space. Based on the
relative values of Lr and θ , the parameter space is divided into four regions: the Lrsθs region, where both Lr
and θ are relatively small; the Lrsθl region, where Lr is small and θ is large; the Lrlθs region, where Lr is
large and θ is small; and the Lrlθl region, where both Lr and θ are relatively large. The four filament shapes
reflect the characteristics of their respective regions. Moreover, each region consists of two parts: a stationary
(S) part and a flapping (F) part.

the presence or absence of vortex shedding, primarily controlled by θ , determines the
boundary between the stationary parts and the falpping part, which is similarly the case
in the Lrlθl region. In the Lrlθs region, the filament length is the dominant factor in
separating the stationary and flapping parts. A larger Lr leads to a more extended narrow
tail downstream, which eventually becomes unstable and begins to flap. In summary,
compared with figure 7, the flapping part in the Lrsθs region corresponds exactly to the
FBE mode. The stationary parts in the Lrsθs region and Lrsθl region both belong to the
SBE mode. The stationary parts in the Lrlθs region and Lrlθl region belong to the SEE
mode. The flapping part in the Lrlθs region matches the FEE mode, and the flapping parts
in the Lrsθl region and Lrlθl belong to the FLA mode.

3.6. Effect of γ on the motion modes
In § 2, the variations in the motion trajectories of the midpoint of the filament under
different bending coefficients were investigated. It was observed that when γ < 0.01, the
changes in γ had minimal impact on the motion of the filament. As a result, a fixed value of
γ = 0.001 was chosen to conduct the main study, disregarding the influence of γ . Although
the primary focus of our study is on the very soft filament and a carefully chosen value of
γ was determined through a reasonable approach, it is undeniable that γ , as an important
parameter of the filament, will impact the motion modes of the system. Thus, based on
the results shown in figure 6, the filament with a larger bending coefficient of γ = 0.1 is
selected for further investigation to evaluate the impact of bending coefficient.

Figure 18 illustrates the motion mode distribution of filament in the θ–Lr space for
γ = 0.1. Compared with γ = 0.001, the motion mode distribution of filament under a
higher γ exhibits only two main differences. First, the FBE mode does not occur at very
small Lr , but instead emerges at larger Lr . For instance, at γ = 0.001, a filament with
Lr = 1.0625 and θ = 0◦ flaps between two fixed ends. However, under γ = 0.1, a filament
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Figure 18. Distribution diagram of filament motion modes in the θ–Lr space at γ = 0.1.

with the same Lr and θ remains in a stationary state, as shown in the lower left corner of
figure 18 under the SBE mode. This is because the increased bending coefficient makes the
filament stiffer, allowing it to resist unbalanced fluid forces and maintain a stationary state.
As the filament length increases, the imbalance of fluid forces on both sides of the filament
becomes more pronounced, preventing the filament from maintaining a stationary state and
resulting in flapping motion. As shown in figure 18, the filament enters the FBE mode only
when its length increases to Lr = 1.1875 at θ = 0◦. Second, the region of the FLA mode
expands to scenarios with smaller θ , especially when Lr is relatively large. For example,
at γ = 0.001, a filament with θ = 1◦ and Lr = 5.0 is in the SEE mode, where the filament
extends from the downstream fixed end, with its tail remaining narrow in the y direction
and in a stationary state. However, at γ = 0.1, due to the higher bending coefficient, the
filament with the same θ and Lr cannot undergo large-curvature deformation to maintain
a narrow tail. Instead, the tail exhibits a greater width in the y direction, which promotes
vortex shedding and causes the filament to flap, transitioning into the FLA mode.

4. Conclusions
This paper investigated the dynamic performance of a flexible filament fixed at both ends
at different inclination angles θ . The immersed boundary method (IBM) was used to
solve the interaction between the fluid and the structure. A set of parameters was obtained
to guarantee computational accuracy through independent analyses of the computational
domain size, fluid grid size, computational time step and the free coefficient in the IBM.
By testing the effects of different bending coefficients on filament motion, a sufficiently
small bending coefficient γ = 0.001 was chosen to preserve the authenticity of the filament
and reduce the influence of bending forces.
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First, the motion of the filament in the θ–Lr space was divided into three flapping modes
and two stationary modes according to its shape features, and a detailed introduction was
given to the shape features and the distribution in the θ–Lr space of different modes.
The flow field characteristics of different motion modes and the mode transition were
analysed by showing the pressure field and the vorticity field of different motion modes.
Second, since the FLA mode occupied a very large proportion in the θ–Lr space, a more
in-depth study of this mode was conducted. The results showed that the dimensionless
flapping frequency f based on the distance D between two fixed ends, generally decreased
with the increase of Lr and θ , whereas the dimensionless flapping frequency fW , non-
dimensionalised by the maximum width W of the time-averaged shape of the filament,
showed little variation with the change in Lr and θ . This indicated that W was an
important parameter influencing the flapping frequency of the filament, and the effects
of Lr and θ on the flapping frequency were related to their impact on W . In addition,
under this mode, two types of lift variation process were observed. More specifically, as
the filament moved in a certain direction, with Ym changing monotonically, Cl exhibited
either a monotonic change or fluctuations. The fluctuations in Cl were further attributed
to the effects of various shapes resulting from the elastic deformation of the filament. By
studying the distribution of these two types of lift variation process in the θ–Lr space, it
was found that Lr = 2.5 was a boundary. Longer filaments, due to their greater degrees
of freedom in shape variation, were more likely to exhibit lift fluctuations. Lastly, an in-
depth study of the total lift, drag and lift-to-drag ratio of the system was conducted. The
drag rose with the increase in θ , with the maximum drag occurring at θ = 90◦. Here,
θ = 60◦ was a critical angle. The drag increased with the increase of Lr at θ < 60◦, but at
θ > 60◦, the minimum drag always occurred at Lr = 2.0, which suggests that a filament of
a specific length can reduce drag compared with a rigid plate. Overall, the drag in the FLA
mode is significantly higher than that in other motion modes. As for lift, only at Lr � 2.0
would the filament produce greater lift than the plate. The largest lift was obtained at
θ = 40◦ and Lr = 1.25, which was approximately a 45.5 % increase compared with the
rigid plate. The improvement in the lift-to-drag ratio imposes stricter requirements on the
filament length, with filaments at Lr � 1.5 having a non-negligible effect on enhancing the
lift-to-drag ratio. By judging from the computational results, filaments with Lr = 1.0625
and Lr = 1.125 could distinctly enhance the filament lift-to-drag ratio within a large θ

range. Considering the motion modes of the filament, the regions with higher lift and
lift-to-drag ratios often correspond to the SBE mode with a larger θ or the FLA mode
with a smaller Lr , where the filament exhibits a ’bow’ shape. Upon performing flow field
analysis, it can be concluded that the main reasons for the increase in lift are the increase in
pressure difference on both sides of the filament and the upper part of the flexible filament
having a normal direction closer to the y direction. Coupled with the fact that the drag on
the filament with small Lr did not significantly increase compared with a flat plate, this
ultimately led to a greater lift-to-drag ratio.

This paper uses an in-house fluid–structure interaction solver to study the motion
of flexible filaments in two-dimensional flow under different θ , providing a deeper
understanding of this system. However, there are still some limitations to this research.
First, the 1-D flexible filament studied in this paper is a simplification of a membrane with
infinite span in a 3-D flow field, which still differs from a real-world full 3-D models with
finite span. For the model with finite span, the flow along the spanwise direction as well
as the overall flapping along the span and local 3-D bending need to be considered. These
factors contribute to a more complex motion modes of the system. To give the simplest
example, when θ is large enough to cause vortex shedding, the model with finite span
requires attention not only to vortex shedding at the fixed leading and trailing edges, but

1009 A5-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

17
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.172


Journal of Fluid Mechanics

also to vortex shedding at the spanwise edges. In this case, the span length itself has a
significant impact on vortex shedding and the final motion of the membrane. Second, due
to the constraints of the developed solver, this paper can only examine laminar flow at
low Reynolds numbers, which differs from the high-Reynolds-number turbulent problems
faced in actual engineering. Therefore, our future work will focus on developing of a full
3-D high-Reynolds-number solver and conducting wider research on related problems.
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