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ABSTRACT. A new calving criterion is introduced, which predicts calving where the depth of surface
crevasses equals ice height above sea level. Crevasse depth is calculated from strain rates, and terminus
position and calving rate are therefore functions of ice velocity, strain rate, ice thickness and water
depth. We couple the calving criterion with three ‘sliding laws’, in which velocity is controlled by
(1) basal drag, (2) lateral drag and (3) a combination of the two. In model 1, velocities and strain rates
are dependent on effective pressure, and hence ice thickness relative to water depth. Imposed thinning
can lead to acceleration and terminus retreat, and ice shelves cannot form. In model 2, ice velocity is
independent of changes in ice thickness unless accompanied by changes in surface gradient. Velocities
are strongly dependent on channel width, and calving margins tend to stabilize at flow-unit widenings.
Model 3 exhibits the combined characteristics of the other two models, and suggests that calving
glaciers are sensitive to imposed thickness changes if basal drag provides most resistance to flow, but
stable if most resistance is from lateral drag. Ice shelves can form if reduction of basal drag occurs over a
sufficiently long spatial scale. In combination, the new calving criterion and the basal–lateral drag
sliding function (model 3) can be used to simulate much of the observed spectrum of behaviour of
calving glaciers, and present new opportunities to model ice-sheet response to climate change.

INTRODUCTION
Ice losses by calving exceed ablation by surface melting on
the Antarctic and Greenland ice sheets, and calving is a
significant ablation process on many other high- and mid-
latitude ice masses. Because calving fluxes are strongly
influenced by ice velocities, dynamic changes to outlet
glaciers and ice streams can have a large effect on ice-sheet
mass balance, providing a mechanism for rapid transfer of
water to the oceans. Recently, calving glaciers in many parts
of the world have undergone dramatic acceleration and
retreat (e.g. Venteris, 1999; Thomas and others, 2004;
Howat and others, 2005; Luckman and Murray, 2005;
Rignot and Kanagaratnam, 2006), indicating a highly non-
linear response to initial climatic forcing. Despite their
important role in modulating the effects of climate change,
the dynamics of calving glaciers are very poorly represented
in existing ice-sheet models and constitute the largest source
of uncertainty in predictions of future ice-sheet evolution.
Development of a comprehensive general model of calving
glacier dynamics is a formidable challenge involving some
of the most stubborn problems in glaciology, including
realistic parameterization of calving processes, the ‘ground-
ing-line problem’ (e.g. Vieli and Payne, 2005) and the
‘unresolved sliding problem’ (Weertman, 1979). In this
paper, we present a new framework for modelling tidewater
glacier dynamics, using a new physically based calving
criterion and alternative sliding functions. (Although not
‘laws’ in the physical sense, calving criteria and sliding
functions are often referred to as such in the literature, and
for convenience this convention is followed here.) Spe-
cifically we (1) assess the role of strain rates in calving
processes and calving glacier dynamics, (2) explore feed-
back processes between strain rates, thinning, flow accel-
eration and terminus retreat, and (3) show how the new

framework can be used to represent a wide range of
behaviours observed in tidewater glaciers and ice streams.

‘CALVING LAWS’
Calving rate, UC, is defined as the difference between ice
velocity at the glacier terminus and glacier length change
over time:

UC ¼ �UT � @L
@t

, ð1Þ

where �UT is the depth-averaged velocity at the glacier
terminus, L is the glacier length and t is time. Two
contrasting approaches can be taken to solving Equation (1).
In the first, a calving rate is estimated from independent
variables, and changes in terminus position are determined
from calving rate and ice velocity (e.g. Brown and others,
1982; Sikonia, 1982; Marshall and others, 2003; Siegert and
Dowdeswell, 2004). Empirical relationships between calv-
ing rate and water depth, DW, offer appealingly simple
boundary conditions for calving in ice-sheet models:

UC ¼ aþ bDW: ð2Þ
The intercept a and gradient b differ for freshwater and
tidewater calving glaciers (e.g. Funk and Röthlisberger,
1989; Warren, 1992), but also vary widely between regions
(Haresign, 2004) and can even change through time for
individual glaciers (Van der Veen, 1996).

The second approach inverts the problem, and deter-
mines calving losses from the ice velocity and changes in
terminus position (Van der Veen, 1996, 2002). Using data
from Columbia Glacier, Alaska, USA, Van der Veen (1996)
found that at the calving front, ice thickness is consistently
�50m greater than the flotation thickness, so that terminus
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position can be defined using a ‘height-above-buoyancy’
criterion:

HT ¼ �W
�I

DW þ 50, ð3aÞ

where �W and �I are the densities of water and ice,
respectively, and HT is the ice thickness at the terminus
(DW and HT in metres). Changes in ice thickness in the
terminal zone will cause the glacier to advance or retreat
until Equation (3a) is again satisfied. Vieli and others (2000,
2001) adopted a modified calving margin criterion, replacing
the fixed height-above-buoyancy value with a factor q :

HT ¼ �W
�I
ð1þ qÞDW: ð3bÞ

As currently formulated, neither calving-rate functions nor
terminus position criteria are based on physical principles,
and both have major drawbacks. There is currently no
means of deriving values for parameters a and b in Equa-
tion (2) from the physical configuration of the glacier (e.g.
ice thickness, width) or other relevant variables, thus
limiting its utility as a general calving law. Conversely, the
Van der Veen and Vieli height-above-buoyancy criteria
cannot represent all types of calving margin, because they
do not permit ice shelves to form. This is a major limitation
in models where the build-up of marine ice sheets is of
interest.

To overcome the limitations of existing calving laws, we
introduce a new calving criterion based on a simple model
of crevasse formation. In nature, calving occurs following
fracture propagation under local (and often complex) stress
conditions, and it is neither possible nor desirable to attempt
to model individual events. Instead, we assume that calving
is triggered by the downward propagation of transverse
surface crevasses, which open in response to down-glacier
variations in flow speed (longitudinal strain rates). While
doubtless this is a simplification of reality, we argue that this
mechanism represents an important first-order control on the
position of the calving front, on which other ‘secondary’
calving processes are superimposed.

We calculate crevasse depth following Nye (1957), by
assuming that the base of a field of closely spaced crevasses
lies at the depth where the longitudinal tensile strain rate
(which tends to open crevasses) exactly balances creep
closure resulting from the ice overburden pressure:

d ¼ 2
�Ig

_"�
A

� �1
n

, ð4Þ

where g is gravitational acceleration, A and n are the flow-
law parameters and _"� is the longitudinal strain rate (@U=@x)
minus the threshold strain rate required for crevasse
initiation ( _"CRIT). We use the Nye formulation in preference
to the more rigorous linear elastic fracture mechanics (LEFM)
approach of Smith (1976), Van der Veen (1998b) and Rist
and others (1999), for three reasons. First, crevasse depths
calculated using Van der Veen’s (1998b) LEFM approach are
highly sensitive to crevasse spacing, which is unknown a
priori. Second, field data show that the Nye approach
performs almost as well as that of Van der Veen at predicting
observed crevasse depths (Mottram and Benn, unpublished
data). Third, the much greater simplicity of the Nye formula
makes it better suited for use in time-dependent ice-sheet
models. Basal crevasses may also play a role in calving
processes. However, theoretical analyses (Van der Veen,
1998a) indicate that the height of penetration is likely to be
small except for very high longitudinal strain rates and very
low basal effective pressures, so their role is ignored here.
Equation (4) assumes plane strain, which is compatible with
the two-dimensional flowline model adopted here (see
below). Choice of an appropriate value of _"CRIT is difficult,
because a wide range of values has been reported from
laboratory and field studies (see Vaughan, 1993 for a
review). Because our aim here is to outline the overall
model structure, we adopt the simplifying assumption that
_"CRIT ¼ 0 and

_"� ¼ @U
@x

: ð5Þ

Crevasses that are partially or wholly filled with water will
penetrate deeper than predicted by Equation (4) because the
ice overburden pressure tending to close the crevasse is
opposed by water pressure (Robin, 1974; Van der Veen,
1998a, b). Incorporating the effect of water pressure into
Equation (4) yields:

d ¼ 2
�Ig

_"�
A

� �1
n

þ �wgdWð Þ
" #

, ð6Þ

where dW is the water depth in the crevasse. If the volume of
water is fixed, d will have a stable value, but, if water is
continually added to the crevasse, d will increase without
limit and can eventually penetrate the full thickness of the
glacier. Sustained water input can occur in response to
surface melt or from supraglacial ponds (e.g. Scambos and
others, 2000; Alley and others, 2005) or if a free connection
exists between the crevasse and the proglacial water body,
which is most likely if the crevasse is located close to the
glacier margin. For present purposes, we assume that such a
connection exists, so that surface crevasses will penetrate
the full glacier thickness where they reach sea or lake level.
In this case, the calving margin can be conveniently located
where d equals the glacier ‘freeboard’ above sea level, h
(Fig. 1):

x ¼ L where dðxÞ ¼ hðxÞ, ð7Þ
where x is the horizontal coordinate parallel to glacier flow,
positive downstream, L is glacier length and h ¼ H �DW.

The down-glacier velocity gradient, @U=@x, and the
difference between ice thickness and water depth, h, are
therefore considered to be the primary controls on glacier
terminus position. The crevasse-depth calving criterion
provides a simple physical explanation for the Van der
Veen/Vieli height-above-buoyancy model, while allowing

Fig. 1. Definition sketch of schematic calving terminus. The ter-
minus may be either grounded (as shown) or floating, with any bed
configuration.
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ice shelves to form. Where velocity gradients are high,
crevasses will penetrate to the waterline before the glacier
reaches flotation, producing a grounded calving front. On
the other hand, where there are only small longitudinal
velocity gradients near the grounding line, an ice shelf
may form.

‘SLIDING LAWS’
The behaviour of calving glaciers depends critically on the
ice velocity, for two reasons. First, ice velocity determines
the rate at which ice is delivered to the calving front
(Equation (1)), and is thus a primary control on calving flux.
Second, longitudinal strain rate is the first derivative of
velocity (Equation (5)), so down-glacier variations in velocity
strongly influence both the terminus position (Equation (7))
and temporal changes in ice thickness by dynamic thinning.
In this section we outline three alternative ‘sliding laws’,
each of which has different implications for the location of
the calving margin and glacier response to imposed
thickness changes. We focus on flow along the centre line
of an outlet glacier, with the x coordinate directed down-
flow, and the z co-ordinate vertical, positive upward from
sea or lake level. It is assumed that the shear stress
components, �xy and �yz , the transverse deviatoric normal
stress, �0yy , and the transverse velocity, V, are zero.

Appropriate functions for calculating basal motion, UB

(which we take to include all basal processes, including
sliding in the narrow sense and deformation of subglacial
sediment), depend on the forces resisting flow. The force-
balance approach developed by Van der Veen and Whillans
(1987) defines the relationship between driving and resisting
stresses as:

�D ¼ �B � @

@y
H �Rxy
� �� @

@x
H �Rxxð Þ, ð8Þ

where �D is the driving stress, the first term on the righthand
side is basal drag, the second term is resistance to flow
arising from lateral drag, and the third term is resistance
arising from longitudinal stress gradients. In the results
reported here, the longitudinal stress gradient term is
neglected (cf. Van der Veen, 1999), and we focus on the
role of basal and lateral drag in controlling the flow of
calving glaciers.

Model 1 assumes that basal drag is the only non-zero
resistance term:

�B ¼ �D ¼ �IgH
@h
@x

: ð9Þ

This assumption underpins the widely used ‘sliding law’
introduced by Budd and others (1979):

UB ¼ k�PDP
�Q
E , ð10Þ

where k is a sliding rate factor, PE is the effective pressure
and P and Q are empirically determined exponents. Widely
varying values of k, P and Q have been reported in the
literature (e.g. Bindschadler, 1983; Raymond and Harrison,
1987; Iken and Truffer, 1997). To our knowledge, the only
values determined for a tidewater glacier are those
obtained for Columbia Glacier, Alaska, by Nick (2006): k ¼
9.2�106ma–1 Pa0.5, P ¼ 3 and Q ¼ 3.5, and these are
adopted here. The effective pressure is the difference
between ice overburden pressure, Pl ¼ �lgH, and basal
water pressure, PW. For a calving glacier where basal water

flows towards the terminus, a minimum value for the basal
water pressure is determined by the depth of the bed below
sea level, ZB. It is therefore useful to define the effective
pressure in terms of this minimum value, plus an additional
component � associated with the subglacial transport and
storage of meltwater:

PE ¼ �IgH � �WgZB þ �ð Þ ð11Þ
(e.g. Meier and Post, 1987; Van der Veen, 1999). In the
simplest model case, � can be set to zero (cf. Vieli and
others, 2001), although this will tend to produce unrealistic
velocity distributions, as discussed below. Values of � can be
modelled explicitly (cf. Flowers and Clarke, 2002), or
prescribed using an assumed piezometric gradient.

In model 2, all of the driving stress is supported by drag at
the lateral margins. Shear stress at the margins, �S, is related
to the driving stress, �D, by a factor that varies with channel
geometry. For a rectangular channel the relationship is:

�S ¼W
H

�D: ð12Þ
This approximates the situation in ice shelves and some ice
streams (Van der Veen, 1999). The centre-line velocity is
calculated by integrating the flow law for ice from the flow-
unit margins to the centre line:

UB ¼ 2A
n þ 1

�D
H

� �n
Wnþ1, ð13Þ

where W is the flow-unit half-width. From the definition
of �D (Equation (11)), this is equivalent to:

UB ¼ 2A
n þ 1

�Ig
@H
@x

� �n

Wnþ1: ð13aÞ

Thus, velocity is independent of ice thickness, but if n ¼ 3,
centre-line velocity is proportional to the third power of the
surface slope and the fourth power of the flow-unit width.

In model 3, resistance to flow is provided by a
combination of basal and lateral drag. Theoretical sliding
laws for this situation have been proposed by Raymond
(1996) and Van der Veen and Whillans (1996). We derive a
new sliding function by (1) scaling basal drag to the driving
stress and basal water pressure and (2) using this value to
derive a modified form of Equation (13). For step (1), we
begin by assuming that �B ¼ 0 when PW ¼ PI and �B ¼ �D
when PW ¼ 0. Variation of �B between these limits is then
defined by:

�B ¼ 1� PW
PI

� �C

�D, ð14Þ

where C is a tuning parameter. In step (2), a sliding function
is obtained by replacing �D in Equation (13) with the
component of the driving stress that is not supported by
basal drag,

UB ¼ 2A
n þ 1

�D � �B
H

� �n
Wnþ1: ð15Þ

This formulation implicitly assumes a rectangular cross-
section, and that basal drag is constant across the bed.
Equation (15) is similar to the dimensionless sliding function
derived by Raymond (1996), but with the advantage that the
relationship between basal drag and effective pressure can
be easily varied using a single parameter C. Preliminary
experiments with the Columbia Glacier dataset presented
by Krimmel (2001) indicate that a good fit between
modelled and observed velocities can be obtained when
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C ¼ 0.2, and reasonable values are used for the piezometric
gradient (see below).

The velocity at the ice surface is the sum of basal motion
and the cumulative velocity, UI, resulting from vertical shear
in the ice. For fast-flowing calving glaciers, the creep
component can be assumed to be small compared to basal
sliding, and in the work presented here we assume that the
calculated basal velocity, UB, is equal to the vertically
averaged ice velocity, U. It is useful, however, to consider
the implications of the assumptions of the three flow models
for the calculation of ice creep velocities. In model 1, the
implicit assumption that the driving stress is equal to an
opposing basal drag leads to the unrealistic result that
vertical shear will occur even when the basal effective
pressure is very small. Calculated creep velocities, there-
fore, will be increasingly unrealistic as flotation is ap-
proached. In model 2, basal drag is zero, so no vertical
shear occurs. This contrast between models 1 and 2 high-
lights the difficulty of coupling sheet-flow and ice-shelf
models across the grounding line: the mutually exclusive
assumptions of the models preclude any smooth transition
between them. Model 3 overcomes this problem by dealing
with both grounded and floating ice within a single
framework. The strain rate in simple shear is given by the
constitutive relation:

_"xz ¼ A�n�1e �xz , ð16Þ
where �e is the effective stress, and

�xz ¼ h � z
H

�B: ð17Þ
By scaling �xz to �B instead of �D, vertical shear strain will
tend toward zero as basal drag vanishes, allowing a smooth
transition between grounded and floating parts of the model
domain. If it is assumed that �xy ¼ �yz ¼ �0yy ¼ 0 and
�0xx þ �0zz ¼ 0, the effective stress is given by:

2�2e ¼ 2�02xx þ 2�2xz : ð18Þ

The longitudinal deviatoric stress, �0xx , is not known, but a
first approximation can be obtained from the longitudinal
strain rate derived from the basal velocity gradient. A
consistent set of solutions for Equations (16), (18) and UB can
then be obtained iteratively.

COUPLING CALVING AND SLIDING LAWS
We now examine the behaviour of the crevasse-depth
calving law coupled with the three alternative sliding laws
(Equations (10), (13) and (15)), by analyzing how flow speed,
terminus position and dynamic thinning rates respond to
imposed changes in ice thickness and flow-unit width.
Change in ice thickness through time is obtained from the
continuity equation:

@H
@t
¼ M �U

@H
@x
�H

@U
@x
�H

@V
@y

, ð19Þ

where the first term on the righthand side is the surface or
basal mass balance (accumulation positive, ablation nega-
tive), the second term represents the advection of thicker ice
from up-glacier (advective thickening), the third term is
dynamic thinning (thickening) resulting from longitudinal
stretching (shortening), and the fourth term is dynamic
thinning (thickening) resulting from flow divergence (con-
vergence) in the y (transverse) direction (on a flowline, the
advective thickening term in the y direction is zero). By
assuming that ice in a widening channel remains in contact
with the sides, the transverse divergence term can be
expressed in terms of the velocity in the x direction, U, and
half-width, W:

@V
@y
¼ U

W
@W
@x

ð20Þ

(Sanderson, 1979; Van der Veen, 1999).
When U is calculated using model 1, ice velocity

increases as ice thickness decreases towards the flotation
thickness. Velocities calculated from ice thickness, water

Fig. 2. Model 1: (a–c) relationships between ice thickness and (a) velocity, (b) longitudinal strain rate and (c) crevasse depth; and
(d) relationship between normalized height above buoyancy and dynamic thickening rate. ZB ¼ 400m; surface slope ¼ 1.158; water
density ¼ 1030 kgm–3 (solid dark lines) and 1000 kgm–3 (dashed lines). The calving margin is located where the ice height above the
waterline (dotted line in (c)) equals crevasse depth.
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depth and surface slope values representative of the terminal
zone of Columbia Glacier in 1988 (when fast flow was well
established and terminus retreat was in progress) are shown
in Figure 2a. In the example shown, it is assumed that � ¼ 0
(Equation (11)), equivalent to a horizontal piezometric
surface at sea level. As ice thickness decreases, modelled
velocity increases non-linearly. The non-linear increase in
velocity means that the longitudinal velocity gradient,
@U=@x, also increases as ice becomes thinner (Fig. 2b),
with the result that modelled crevasse depths also increase
as the glacier thins towards the waterline (Fig. 2c). Because
@U=@x tends towards infinity as PE approaches zero, the
equality d ¼ h will always be met while the glacier is still
grounded. Thus, the physically impossible solution to
Equation (10) – a floating ice shelf with an infinite velocity
– is precluded because the calving criterion predicts that
crevasses will penetrate the full thickness of the glacier
before flotation occurs. In the present example, the model
predicts that the terminal ice cliff is 65–77m high, and that
the ice velocity at the terminus (and hence calving rate) is
2.2–3.2 kma–1, depending on fjord water salinity. The
modelled calving rate is lower than the observed value of
�5.4 kma–1. There are several possible reasons for this
discrepancy, including the unrealistic assumption that
� ¼ 0 throughout the glacier tongue (cf. Meier and others,
1994). Similar values for terminal ice cliff height and more
realistic calving rates can be obtained using a piezometric
gradient of 0.005mm–1. The impact of piezometric gradient
on modelled velocities, strain rates and calving rates is
discussed in greater detail below, with respect to model 3.

Modelled velocities, strain rates and crevasse depths are
all greater for glaciers terminating in sea water (�W ¼
1030 kgm–3) than fresh water (�W ¼ 1000 kgm–3), for any
given ice thickness (Fig. 2). This is because a greater density
difference between ice and the proglacial water body has a
large effect on the maximum possible effective pressure at
the glacier bed, and hence ice velocities (Van der Veen,
2002). For any given combination of ice thickness and water
depth, greater amounts of ice will be delivered to a tidewater
calving front than a freshwater one, explaining the oft-noted
contrast in water-depth–calving-rate functions between
marine and lake-terminating glaciers (e.g. Warren, 1992;
Van der Veen, 1996, 2002).

When output from model 1 is inserted into the continuity
equation (19), an interesting pattern emerges. Because ice
velocity increases as ice approaches flotation, the advective
thickening term increases down-glacier (Fig. 2d, upper
curve). However, thinning in response to longitudinal
stretching increases much more rapidly as ice thickness
decreases (Fig. 2d, lower curve). For the 1988 Columbia
Glacier terminus geometry, the continuity equation predicts
strong dynamic thinning, increasing exponentially as the
glacier approaches flotation. This provides a possible
explanation for the observed rapid retreat of Columbia
Glacier: an imposed thinning (due, for example, to increased
melting) will trigger accelerated ice flow and dynamic
thinning, which could then become a self-sustaining
process. A dynamic thinning feedback will trigger terminus
retreat because (1) as ice thickness decreases, it is increas-
ingly likely that crevasses will penetrate down to the
waterline, and (2) increased longitudinal strain rates result
in deeper crevasses. In combination, these two effects will
cause the glacier terminus to retreat up-glacier until it is able
to stabilize in shallower water. Any tendency to dynamic

thinning will be increased if the channel width increases
downstream, and damped if it decreases due to the lateral
divergence term in the continuity equation (Equations (19)
and (20)). Thus, despite its simple formulation, model 1
successfully exhibits the well-known tendency for calving
glaciers to stabilize at ‘pinning points’ (e.g. narrow or
shallow sections of a fjord), and to retreat rapidly between
pinning points during periods of negative mass balance (cf.
Vieli and others, 2000, 2001). The model also predicts that
sensitivity to imposed thinning is stronger for tidewater than
freshwater-terminating glaciers.

In model 2, where ice velocity is controlled entirely by
lateral drag, glacier response to changes in ice thickness and
channel width contrasts markedly with model 1. Imposed
glacier thinning will not result in flow acceleration unless
thinning is also associated with an increase in surface slope.
The lack of a direct relationship between ice thickness and
velocity means that ice can become fully buoyant without
experiencing the high longitudinal velocity gradients re-
quired for crevasse propagation and calving failure. In
contrast, ice velocity is proportional to the third power of
surface slope and the fourth power of channel width (for
n ¼ 3; Fig. 3). Thus, flow acceleration will occur if the
glacier steepens, and particularly strong acceleration will
occur at channel widenings. Where W increases, accelerat-
ing flow leads to longitudinal stretching, so that crevasses
are likely to penetrate to the waterline and trigger calving
failure at such locations. This sensitivity to channel width is
much stronger than in model 1, in which velocity is
influenced by W only through the lateral divergence term
in the continuity equation. This feature of model 2 provides
the most likely explanation for the tendency for tidewater
glacier and ice-shelf margins to be located at topographic
widenings.

In model 3, sliding velocity is sensitive to changes in both
ice thickness relative to water depth and channel width.
Figure 4 illustrates the behaviour of the combined basal–
lateral-drag ‘sliding law’ (Equation (15)) using ice-thickness
and driving-stress values representative of the 1988 Colum-
bia Glacier geometry, and C ¼ 0.2. The half-width of the
glacier terminus was�2.5 km at that time, and it can be seen
that the model predicts velocities in the correct range

Fig. 3. Model 2: centre-line velocity as a function of channel half-
width, W, and surface gradient.
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(�5 kma–1) when Pw/PI � 0.95. Like model 1, velocities
increase non-linearly as basal water pressure approaches the
ice pressure (i.e. as basal drag tends towards zero), but
unlike model 1 velocities have a finite value when flotation
occurs. This means that calving will not necessarily occur
before the terminus goes afloat (as in model 1), but will
depend on the spatial scale over which �B vanishes. If basal
drag diminishes rapidly as the ice approaches flotation,
calving will occur while the ice is still grounded, whereas if
the transition from high to low values of �B occurs over a
long distance, high longitudinal strain rates are avoided and
an ice shelf can form. Thus, lateral drag potentially has a
stabilizing effect on calving glacier termini.

Modelled velocity gradients, crevasse depths and dynam-
ic thickening rates for the Columbia Glacier example are
shown in Figure 5. Figure 5a, c and e show results for � ¼ 0
(horizontal piezometric surface at sea level), and Figure 5b,
d and f show results for the more realistic situation of � rising
up-glacier (equivalent to a piezometric gradient of 0.012,
chosen to achieve the best fit with the observed velocities).
Allowing � to rise up-glacier has the effect of reducing
modelled longitudinal strain rates and crevasse depths
relative to the � ¼ 0 case. Both model runs over-predict
glacier length, and calving does not occur until the glacier is
within �0.98 of flotation. In physical terms, this over-
prediction may reflect deficiencies in the crevasse depth
model, or the omission of important factors such as
longitudinal stress gradients, surface meltwater entering
crevasses, or ‘secondary’ calving processes associated with
longitudinal stress gradients in the immediate vicinity of the
ice front (cf. O’Neel and others, 2003). Despite these
difficulties, however, the model performs remarkably well at
predicting the approximate position of the calving margin.
Figure 5e and f show calculated dynamic thinning rates for
the two modelled cases. The thinning tendency is greater for
� ¼ 0, because of higher longitudinal stretching rates, but in
both cases the model indicates that the glacier terminus is
unstable and ‘locked into’ a self-reinforcing thinning
process. We propose that this modelled behaviour captures
the fundamental process responsible for the observed
behaviour of Columbia and other tidewater glaciers: an

imposed thinning triggers a positive feedback between
acceleration, dynamic thinning and calving retreat. Import-
antly, the model predicts that this feedback is much less
likely to operate where surface gradients are low, basal drag
diminishes over large distances, and lateral drag provides
most resistance in the vicinity of the grounding line. Thus,
model 3 suggests that water-terminating glaciers will tend to
be potentially unstable if basal drag provides most resistance
to flow in the terminal zone, and stable if most resistance is
provided by lateral drag.

Centre-line velocities calculated from Equation (15) are
also highly sensitive to changes in glacier width (Fig. 4).
High longitudinal strain rates and deep crevasses will
therefore occur at widenings of fjords and embayments,
making it likely that calving margins will be located in such
places. Conversely, where W decreases down-glacier, vel-
ocity will decrease for any given value of the driving stress.
Of course, continuity requires that dynamic thickening must
occur if W and U both decrease; this tendency means that
the driving stress will increase until sufficient ice is
discharged through the constriction.

In its present form, model 3 does not include longitudinal
stress gradients. Higher-order modelling by Payne and others
(2004) and Hindmarsh (2006) suggests that this term in the
force balance plays an important role in modulating the
transition between equilibrium states, and further work is
required to establish where and when the assumptions of
model 3 are appropriate. Nevertheless, model 3 represents a
considerable improvement on existing methods of repre-
senting calving processes and their relationship with ice
dynamics, and has the potential to explain and simulate
many elements of the observed behaviour of calving glaciers.

CONCLUSIONS
A simple physically based calving law, which defines the
position of the glacier terminus as the point where crevasse
depth equals the ice ‘freeboard’ above sea level, provides a
more flexible and robust marine boundary condition for ice-
sheet models than existing calving laws.

Terminus retreat can be triggered either by increases in
longitudinal strain rates (which cause deeper crevasses), or
by decreases in ice thickness (which increase the likelihood
that crevasses will reach the waterline).

Modelled glacier dynamics depends critically on the
choice of sliding law. Where sliding velocity is inversely
proportional to effective pressure, any imposed thinning on
a calving glacier will lead to ice acceleration and retreat of
the calving front because effective pressure is influenced by
water depth. Feedbacks between ice thickness, sliding
velocity and dynamic thinning provide a powerful means
of amplifying initial signals. Increased melting in the
terminal zone can trigger acceleration, thinning and ter-
minus retreat. This scenario was modelled by Vieli and
others (2001) and suggests that, where resistance to flow is
mainly from basal drag, calving glaciers are highly sensitive
to external triggers, because of the dynamical instability of
the system as ice approaches flotation.

In contrast, where all resistance to flow is provided by
lateral drag, ice velocity is insensitive to imposed thickness
changes, unless these are associated with changes in ice
surface gradient. The position of the calving front is strongly
influenced by topography, because ice velocity is propor-
tional to the fourth power of channel half-width. Channel

Fig. 4. Model 3: centre-line velocity as a function of PW/PI and
W�D ¼ 95 kPa, H ¼ 480m, C ¼ 0.22 (values representative of the
marginal zone of Columbia Glacier in 1988).
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widening will therefore result in higher ice velocities and
longitudinal strain rates, increasing the likelihood that the
calving margin will occur at such locations. Outlet glaciers
and ice streams controlled by lateral drag should be in-
sensitive to imposed thickness changes, and be relatively
stable.

A new sliding function is proposed that parameterizes the
effects of both lateral and basal drag. This model exhibits
sensitivity to imposed thickness changes, but the stabilizing
effects of lateral drag mean that the system will not
necessarily exhibit dynamic instability as the glacier ap-
proaches flotation. Ice shelves will form where reduction of
basal drag (and the corresponding flow acceleration and
longitudinal strain rates) occurs over a sufficiently long
spatial scale. This analysis yields significant new insights
into the essential features of calving margins, which can be
tested against new observations.
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Funk, M. and H. Röthlisberger. 1989. Forecasting the effects of a
planned reservoir which will partially flood the tongue of
Unteraargletscher in Switzerland. Ann. Glaciol., 13, 76–81.

Haresign, E.C. 2004. Glacio-limnological interactions at lake-
calving glaciers. (PhD thesis, University of St Andrews.)

Hindmarsh, R.C.A. 2006. The role of membrane-like stresses in
determining the stability and sensitivity of the Antarctic Ice
Sheets: back pressure and grounding line motion. Philos. Trans.
R. Soc. London, Ser. A., 364(1844), 1733–1767.

Howat, I.M., I. Joughin, S. Tulaczyk and S. Gogineni. 2005. Rapid
retreat and acceleration of Helheim Glacier, east Greenland.
Geophys. Res. Lett., 32(22), L22502. (10.1029/2005GL024737.)

Iken, A. and M. Truffer. 1997. The relationship between subglacial
water pressure and velocity of Findelengletscher, Switzerland,
during its advance and retreat. J. Glaciol., 43(144), 328–338.

Krimmel, R.M. 2001. Photogrammetric data set, 1957–2000, and
bathymetric measurements for Columbia Glacier, Alaska. USGS
Water-Resour. Invest. Rep. 01-4089.

Luckman, A. and T. Murray. 2005. Seasonal variations in velocity
before retreat of Jacobshavn Isbræ, Greenland. Geophys. Res.
Lett., 32(8), L08501. (10.1029/2005GL022519.)

Fig. 5. Velocities (a, b), crevasse depths (c, d) and dynamic thinning rates (e, f) calculated from model 3, using the same input values as in
Figure 4, assuming a horizontal piezometric surface (a, c, e), and a piezometric surface rising up-glacier (b, d, f).

Benn and others: Calving and sliding ‘laws’ 129

https://doi.org/10.3189/172756407782871161 Published online by Cambridge University Press

https://doi.org/10.3189/172756407782871161


Marshall, S.J., D. Pollard, P.U. Clark and S.H. Hostetler. 2003.
Coupling ice sheet and climate models for simulation of former
ice sheets. In Gillespie, A., S.C. Porter and B.F. Atwater, eds. The
Quaternary period in the United States. Amsterdam, Elsevier,
105–126.

Meier, M.F. and A. Post. 1987. Fast tidewater glaciers. J. Geophys.
Res., 92(B9), 9051–9058.

Meier, M. and 9 others. 1994. Mechanical and hydrologic basis for
the rapid motion of a large tidewater glacier. 1. Observations.
J. Geophys. Res., 99(B8), 15,219–15,229.

Nick, F.M. 2006. Modelling the behavior of tidewater glaciers.
(PhD thesis, Utrecht University.)

Nye, J.F. 1957. The distribution of stress and velocity in glaciers and
ice-sheets. Proc. R. Soc. London, Ser. A., 239(1216), 113–133.

O’Neel, S., K.A. Echelmeyer and R.J. Motyka. 2003. Short-term
variations in calving of a tidewater glacier: LeConte Glacier,
Alaska. J. Glaciol., 49(167), 587–598.

Payne, A.J., A. Vieli, A. Shepherd, D.J. Wingham and E. Rignot.
2004. Recent dramatic thinning of largest West Antarctic ice
stream triggered by oceans. Geophys. Res. Lett., 31(23), L23401.
(10.1029/2004GL021284.)

Raymond, C. 1996. Shear margins in glaciers and ice sheets.
J. Glaciol., 42(140), 90–102.

Raymond, C.F. and W.D. Harrison. 1987. Fit of ice motion models
to observations from Variegated Glacier, Alaska. IAHS Publ. 170
(Symposium at Vancouver 1987 – The Physical Basis of Ice Sheet
Modelling), 153–166.

Rignot, E. and P. Kanagaratnam. 2006. Changes in the velocity
structure of the Greenland Ice Sheet. Science, 311(5673),
986–990.

Rist, M.A. and 6 others. 1999. Experimental and theoretical fracture
mechanics applied to Antarctic ice fracture and surface
crevassing. J. Geophys. Res., 104(B2), 2973–2987.

Robin, G.deQ. 1974. Correspondence. Depth of water-filled
crevasses that are closely spaced. J. Glaciol., 13(69), 543.

Sanderson, T.J.O. 1979. Equilibrium profile of ice shelves.
J. Glaciol., 22(88), 435–460.

Scambos, T.A., C. Hulbe, M. Fahnestock and J. Bohlander. 2000.
The link between climate warming and break-up of ice shelves
in the Antarctic Peninsula. J. Glaciol., 46(154), 516–530.

Siegert, M.J. and J.A. Dowdeswell. 2004. Numerical reconstruc-
tions of the Eurasian Ice Sheet and climate during the Late
Weichselian. Quat. Sci. Rev., 23(11–13), 1273–1283.

Sikonia, W.G. 1982. Finite-element glacier dynamics model
applied to Columbia Glacier, Alaska. USGS Prof. Pap. 1258-B.

Smith, R.A. 1976. The application of fracture mechanics to the
problem of crevasse penetration. J. Glaciol., 17(76), 223–228.

Thomas, R.H., E.J. Rignot, K. Kanagaratnam, W.B. Krabill and
G. Casassa. 2004. Force-perturbation analysis of Pine Island
Glacier, Antarctica, suggests cause for recent acceleration. Ann.
Glaciol., 39, 133–138.

Van der Veen, C.J. 1996. Tidewater calving. J. Glaciol., 42(141),
375–385.

Van der Veen, C.J. 1998a. Fracture mechanics approach to
penetration of bottom crevasses on glaciers. Cold Reg. Sci.
Technol., 27(3), 213–223.

Van der Veen, C.J. 1998b. Fracture mechanics approach to
penetration of surface crevasses on glaciers. Cold Reg. Sci.
Technol., 27(1), 31–47.

Van der Veen, C.J. 1999. Fundamentals of glacier dynamics.
Rotterdam, A.A. Balkema.

Van der Veen, C.J. 2002. Calving glaciers. Progr. Phys. Geogr.,
26(1), 96–122.

Van der Veen, C.J. and I.M. Whillans. 1989. Force budget: I. Theory
and numerical methods. J. Glaciol., 35(119), 53–60.

Van der Veen, C.J. and I.M. Whillans. 1996. Model experiments on
the evolution and stability of ice streams. Ann. Glaciol., 23,
129–137.

Vaughan, D.G. 1993. Relating the occurrence of crevasses to
surface strain rates. J. Glaciol., 39(132), 255–266.

Venteris, E.R. 1999. Rapid tidewater glacier retreat: a comparison
between Columbia Glacier, Alaska and Patagonian calving
glaciers. Global Planet. Change, 22(1–4), 131–138.

Vieli, A. and A.J. Payne. 2005. Assessing the ability of numerical ice
sheet models to simulate gounding line migration. J. Geophys.
Res., 110(F1), F01003. (10.1029/2004JF000202.)

Vieli, A., M. Funk and H. Blatter. 2000. Tidewater glaciers:
frontal flow acceleration and basal sliding. Ann. Glaciol., 31,
217–221.

Vieli, A., M. Funk and H. Blatter. 2001. Flow dynamics of tidewater
glaciers: a numerical modelling approach. J. Glaciol., 47(159),
595–606.

Warren, C.R. 1992. Iceberg calving and the glacioclimatic record.
Progr. Phys. Geogr., 16(3), 253–282.

Weertman, J. 1979. The unsolved general glacier sliding problem.
J. Glaciol., 23(89), 97–115.

Benn and others: Calving and sliding ‘laws’130

https://doi.org/10.3189/172756407782871161 Published online by Cambridge University Press

https://doi.org/10.3189/172756407782871161

