ON A MODIFICATION OF ROMBERG QUADRATURE
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1. Introduction. Meir and Sharma [1] have suggested a
modification of Romberg quadrature using Newton- Cotes and, in
particular, Simpson sums in place of trapezoidal sums. By comparing
the error term with that obtained by Bulirsch [3] for trapezoidal sums,
they concluded that the use of Simpson sums would lead to an
improvement of the results. The procedure adopted by Meir and
Sharma [1] permits them to obtain an expression for the error in the
numerical quadrature. However, for the purpose of numerical
computation, this procedure appears to be less suitable. In section 3,
we give an alternative formulation which would enable us to carry out
the computation, using Simpson sums, in the same wasy as is done in
the case of Romberg quadrature with trapezoidal sums. Some
numerical results are discussed in section 4.

2. For a given Riemann integrable function f(x) defined on
[0, 1] and for a given h, 0< h< 1 with 1/h an integer, the trapezoidal
sum T(h) is given by

T(h) = h[EE0) +1(w) +... +25(1)].

In case of Romberg quadrature [2] we choose a sequence h, such that

. i .
lim h, = 0 and form the sums T(h ) =T (1). These values of T (@)
ior 00 1 1 o o
for i=0,1,... are written in the first column of a triangular array.

The other columns are computed from a recurrence relation

(k) _ (k) (k) (k) (k+1)
(2.1) T = e T e ST
where sm(k) = hfmk/(h2 e hi) k= 0,1,..., m1

(k)

Convergence of the To - column and also the diagonal sequences T
m

as m - o to the value of the integral has been discussed in [2], while
the error [3, Th.2] is given by

*This work was done when the author was a graduate student at the
University of Saskatchewan, Saskatoon.
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1
(o) _ (m+1)
(2.2) fo f(x)dx - T_ = R, ,

(m+1) _ m
where RT = (-1) B2

m+4f2m+4(g Y ((m+2)! )% (2m4)! .

On the other hand, the Simpson sum S(h) is given by
(2.3) S(h) = h[f(0) + 4f(h) + 2f(2h) ... +£(1)]/3.

If we take a suitable sequence h, as before and form the sums
i

(i)

S(hi) = SO , then as in [1, eq. 28]
' . (5) (n)
(2.4) fo f(x)dx - Eodm S, | = Rg ,
where
n (-2n-1), .2n+4
w DB, ,-2 11 )
RS =

(n+1){(n+2)(2n+3)((2n+4))((n+1)! )2

(i)

Here SO corresponds to NZ(hi) used in [1] and {dnk} is a
triangular matrix with

n n

+

2.5) = d. =1 and © d h %20 for s = 0,1, ,n-1

. ni . ni i

i=0 i=0

+

A comparison of the expressions for R (n+1) and Rs(n) in (2.2)

and (2.4) shows the presence of an additional factor of order 1/n

(n)
s -
use of Simpson sums would require fewer (2 1/nth) steps. As will be
seen later, much of this advantage is lost in actual computation because
of the additional work involved in computing the first column of

(i)
0 -

in R This indicates that for a particular magnitude of the error,

So(l) in place of T

In order to estimate the value of the integral by

(2.6) s - % g s @
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we require the coefficients d . for a given n to be determined by
ni

solving the set of (n+1) equations (2.5). For any other value of n
these equations will have to be solved again. It is possible to solve
these equations for various values of n and for a given sequence hi

once for all and tabulate them. However, from the point of view of
practical computation such a procedure is not very efficient as it

would require that all these numbers be first read and stored before the
method is used. Alternatively, one can also write down the solutions of
these equations explicitly, as will be shown later, and compute dni as

and when required. Although, it is possible to write down the
expressions for dni in compact form, it is easily seen from the

number of multiplications required in their determination that this

procedure is also not suitable.

3. Instead of solving the system (2.5) we shall develop here a
procedure similar to that used in Romberg quadrature with trapezoidal

sums [2]. We first compute Simpson sums So(l) for a particular
sequence h, and write it as a first column of a triangular array Sm(k)
i
= - (k) .
(m=0,1,2, ..., k=0, 1,2, ... .). Every entry Sm (m # 0) is

computed from the formula

(3.1) S (k) _ o (k) ¢ (k) t(-a (k))S (k+1)
m m m-1 m m-1

(k)

We shall show below that it is possible to determine a such that

the algorithm described by (3.1) is equivalent to solving (2.5), to
(0)

from (2.6). The advantage of using (3.1) is that one
(0) (k)
m

obtain S

can compute S as well as S for successive values of m and
m

k until some desired convergence is attained.

(o)

From (2.6) we see that the value of Sm is obtained by a linear

combination of the values of SO(O), e, So(m). The coefficients
d . (i=0,1, ..., m) satisfy (2.5). In a similar manner we define S (k)
mi m

such that

m .
(3.2) s (® s aq Mg (”k), k=0,1,...,
-0 mi 0

i

Also d ,(k) satisfy
mi

(0

where d ., are now denoted by d |,
mi mi
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m m
(3.3) = d . =1, > d ,(k) h'4+Zs = 0 for s=0,1, ..., m-1
-0 mi i=0 mi itk

)

i

so that for k = 0 the equations (3.2) and (3.3) go over to (2.6) and
(k)

(2.5). The value of Sm is obtained by a linéar combination of the

(k) (k+m)
0 oo So

clear that the expressions for dm

(0)

values of S From equations (2.5) and (3.3) itis

.(k) can be written down from those
i

of d .
m

by simply increasing the subscripts of each hi appearing
i

in d (© by k. Infact Sm(k) (©)

mi
k
except that in case of S (k) we consider Simpson sums formed

(k)
0 -

has the same interpretation as Sm

starting from S

(i)

Starting from the first column S

(k)

defined the elements Sm of the triangular array by means of (3.2),

(k)

of Simpson sums, we

where the coefficients d .
mi

(k)

satisfy (3.3). On the other hand we

have also defined Sm by means of (3.1). We shall now show that

(k) (k)
m

for a proper choice of « , the two ways of defining S are
m

consistent. From (3.1) and (3.2) we have

k i k
s O L 5 g gl _ ) 0, (k) g (k)
m . mi 0 m m-1 -1
i=0
m-1 m-1
k k i k+ i
D W G0 gGH  0) T )  (en)
m . m-1,1 0 . m-1,i O
i=0 i=0
. s (i+k) .
Comparing the coefficients of SO for i=0,1 ..., m we get
(k) _ (k) (k)
dm’o h am dm"1 yO s
k k
(3.4) d ( .) =« ( )d (k). +(1 -0 (k)) d (kﬂ)
m,) m m-1,] m m-1,j-1 j=1, ,m-1
N R N ()
m, m m m-1,m-1 .
(k) (k) o (kH)
i , d and d (=01, ...)
Assuming now that dm,i m-1 i m-1, i
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(k)
m
all the (m+1) equations (3.4) our assumption (3.1) will be justified.

(k).

This will also determine the required value of o

satisfy (3.3), if we can determine a value of « which will satisfy

By using Cramer's rule the solution of the equations (3.3) can
be written down explicitly as

m m m
(k) 2 4 2 2 2
(G.5) d = T oh b B0 Ty Ry )]
i=0 i=0 i=0
itr
r = 0,1, , m
From the first equation (3.4) using (3.5) we get
m-1 m
(k) (k) (k) 2 2 2 2 2
= = - h
(3-6) @ 9, 0791, 0 Pictm fo W Dy k)fo 1/ ]

It is now a matter of straightforward but tedious calculations to verify
that the remaining equations (3.5) are satisfied for the same value of

af(k) . This completes the proof. Note that we can also write
m
m-1 m
R N (& - T
m N Bm . k+1" . k+i
i=0 i=0

k k k
Where B (k) is the same as in (2.1). It is clear that |a ( )]<|B ( )!
m m m

and for large m we have anik) =B (k)_

m

4. Numerical results. Three different sequences for hi have

been considered, These sequences are chosen in such a way that the
number of points (i.e. 1/h,) increases rapidly, moderately and slowly.
i

In the case when the number of points increases very rapidly, the amount
of computation involved in calculating the first column increases. On the
other hand, for those sequences for which the number of points increases
very slowly, there is the danger of round-off errors accumulating.
Various integrals have been evaluated using Simpson sums and the
algorithm given in (3.1). The same integrals have also been evaluated
using trapezoidal sums and similar sequences.

In the following ¥ denotes a particular sequence {hi} and f
m

denotes the number of function evaluations required to compute the

(m)

first column up to SO for a given m.
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(i+1)

Sequence 3"1: hi = 1/2 i=1,2,...
m 0 1 2 3 4 5 6
frn 3 5 L 9 17 33 65 129

Sequence 372:

i+4)/2
1/2(1 )/ i=0,2,4,
h, = .
! 11/3.2(1“)/2 = 1,3,5,
m 0 1 2 3 4 5 6 7 8 9 10
fm 5 9 13 17 25 33 49 65 97 129 193
Sequence 3'/3: hi = 1/2(i+1) i = 0,1, 2, ...

f 3157910143121 125| 37 |45 |57 |65 (85|93 | 117 129

Various integrals such as

w/2

T 1
i) f sin x dx, ii) f x cos 3x dx, iii) f 2x dx,

0 0 0
1 0

iv) f x24 dx, v) f (1/[(1+x2)(4+xz)]) dx,
0 0
T 1

vi) f tan~ {((1/2)sin x)/ (1-(1/2) cos x) } . (1/sin x) dx.
0

have been computed using double precision on IBM 7040. On the basis

of these calculations, it was found that the problem of round-off error was
not serious in using any of the sequences, although, as was expected,

the round-off errors show up for the sequence f}"’3. Similarly, for a

1 requires more function evaluations. /5'/2
therefore appears to be a better choice.

given order of accuracy, F
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The same integrals have also been evaluated using trapezoidal
sums and sequences

Y o h,:1/.zi i = 0,1, 2,
4 i
f1 i= 0
¥, b, :ﬁi/z(lﬂ)/z i=1,3,5, ...
l1/3.20-2)/2 i= 2, 4,6,
LS hy= 1 and h o= 1/2i i = 1,2,
1

Naturally, for a given m the results using Simpson sums are
more accurate as was expected. However, this way of comparing the
two procedures is not satisfactory, because, depending upon the
complexity of the function, most of the computing time could be spent
in evaluating the function at various points and also in calculating the
first column. If we take this aspect into consideration, we find that
there is still some slight advantage in using Simpson sums over
trapezoidal sums, provided it is known that the function to be
integrated is sufficiently smooth and the basic assumption that the error

S(h) - I is O(h4) is satisfied. <Sometimes the trapezoidal rule gives

better results because the error is O(hz) and the function may not be
sufficiently smooth [see 2, p.213]. Finally, for certain integrals
such as v) and vi) above, the convergence was very slow both in
case of trapezoidal and Simpson sums.

Based on these and other [4] computations, one can say that the
advantage in using Simpson sums is not so great as it may appear from
the error analysis. Regarding convergence, there is no evidence that
the use of Simpson sums improves the situation in any way. However,
when the time required for the evaluation of the function is of
importance, there is some advantage gained in using Simpson sums.
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