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1. Introduction. Meir and Sharma [l] have suggested a 
modification of Romberg quadrature using Newton-Cotes and, in 
particular, Simpson sums in place of trapezoidal sums. By comparing 
the error term with that obtained by Bulirsch [3] for trapezoidal sums, 
they concluded that the use of Simpson sums would lead to an 
improvement of the results. The procedure adopted by Meir and 
Sharma [l] permits them to obtain an expression for the error in the 
numerical quadrature. However, for the purpose of numerical 
computation, this procedure appears to be less suitable. In section 3, 
we give an alternative formulation which would enable us to carry out 
the computation, using Simpson sums, in the same wasy as is done in 
the case of Romberg quadrature with trapezoidal sums. Some 
numerical results are discussed in section 4. 

Z. For a given Riemann integrable function f(x) defined on 
[0, l] and for a given h, 0 < h <C 1 with 1/h an integer, the trapezoidal 
sum T(h) is given by 

T(h) = h[jf(0) +f(h) + . . . + | f ( D ] . 

In case of Romberg quadrature [Z] we choose a sequence h. such that 

lim h = 0 and form the sums T(h.) = T ( l ) . Th ese values of T 
i l o o 

l-*-QO 

for i = 0, 1, . . . are written in the first column of a triangular array. 
The other columns are computed from a recurrence relation 

(2.1) T ( k ) = p ( k )T / k )
+ ( l - P (k ))T <k+1> 

m m m-1 m m- 1 

where n (k) Z . . . Z , 2 , . t 

(3 ' = h /(h - h ) k = 0, 1, . . . , m - 1 . 
r m m+k m+k k 

(k) 
Convergence of the T - column and also the diagonal sequences T 

o m 
as m-* oo to the value of the integral has been discussed in [2], while 
the error [3, Th.Z] is given by 
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1 (o) _ (m+1) 
(2.2) f f(x)dx - T ""' = R 

J o m + 1 

w h e r e R T
( m + 1 ) = (-1)™ B 2 m + 4 f 2 m + 4 ( £ ) / ( (m+2)I ) 2(2m+4)l . 

On the o the r hand, the S impson sum S(h) i s g iven by 

(2 .3) S(h) = h[f(0) + 4f(h) + 2f(2h) . . . + f ( l ) ] / 3 . 

If we take a su i tab le s equence h. as be fo re and f o r m the s u m s 
l 

S ( h ) = S , then as in [1 , eq. 28] 

(2 .4) f f ( x ) d x - S d . S n
( i ) = R Q

( n ) , 
o i=o n l ° s 

w h e r e 

,„, .- . .-B.^U-z'-'-'V^.t, 
S 2 ' 

(n+l)(n+2)(2n+3)((2n+4)!)((n+l)i ) 

H e r e S c o r r e s p o n d s to N (h.) used in [ l ] and {d } i s a 

t r i a n g u l a r m a t r i x with 

n n 
(2 .5) 2 d . = 1 and S d h. + S = 0 for s = 0, 1, . . . , n - 1 . 

. n ni . ft m l 
i=0 i=0 

A c o m p a r i s o n of the e x p r e s s i o n s for R and R in (2 .2) 
-J- O 

and (2 .4) shows the p r e s e n c e of an addi t iona l fac tor of o r d e r 1/n 
(n) 

in R . This i nd i ca t e s that for a p a r t i c u l a r magn i tude of the e r r o r , 
u s e of S impson s u m s would r e q u i r e fewer ( ^ 1/nth) s t e p s . As wil l be 
seen l a t e r , m u c h of this advantage is los t in ac tua l computa t ion b e c a u s e 
of the addi t iona l work involved in comput ing the f i r s t co lumn of 

c ( Î ) . , r rp ( Ï ) 

o n m p lace of T 

In o r d e r to e s t i m a t e the va lue of the i n t e g r a l by 

(2.6) c (0) _ ^ , c (D S v ' 
n 

= 2 d . S 
. r, ni 0 
i = 0 
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we require the coefficients d . for a given n to be determined by 
m 

solving the set of (n+1) equations (2.5). For any other value of n 
these equations will have to be solved again. It is possible to solve 
these equations for various values of n and for a given sequence h. 

once for all and tabulate them. However, from the point of view of 
pract ical computation such a procedure is not very efficient as it 
would require that all these numbers be first read and stored before the 
method is used. Alternatively, one can also write down the solutions of 
these equations explicitly, as will be shown later, and compute d . as 

and when required. Although, it is possible to write down the 
expressions for d . in compact form, it is easily seen from the 

ni 
number of multiplications required in their determination that this 
procedure is also not suitable. 

3. Instead of solving the system (2.5) we shall develop here a 
procedure similar to that used in Romberg quadrature with trapezoidal 

sums [2]. We first compute Simpson sums S for a part icular 

° (k) 
sequence h. and write it as a f i rs t column of a triangular a r ray S 

^ l rn 

(m = 0, 1, 2, . . . , k = 0, 1,2, . . . . ). Every entry S v ' (m + 0) is 
m 

computed from the formula 

i-K A \ Q ( k ) ( k ) q ( k ) +M „ H q ( k + 1 ) 

(3.1) S - a S + (1 - <x ) & 
m m m-1 m m-1 

(k) 
We shall show below that it is possible to determine a. such that 

m 
the algorithm described by (3.1) is equivalent to solving (2.5), to 
obtain S ^ 0 ) f rom (2.6). The advantage of using (3.1) is that one 

can compute S as well as S for successive values of m and 
m m 

k until some desired convergence is attained. 

F rom (2.6) we see that the value of S is obtained by a linear 
m 

combination of the values of S , . . . , S . The coefficients 

(k) 
d ( i = 0, 1, . . . , m) satisfy (2. 5). In a similar manner we define S 

mi m 
such that 

(3 Z) c* (k) ^ j (k) „ (i+k) 
K ' ' S v ; = S d . ' S„v , k = 0, 1, . . . , 

m . . mi 0 
i = 0 

where d are now denoted by d . Also d . satisfy 
mi mi mi 
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m . m . 
(3.3) E d ( k ) = 1 2 d , ( k , h . , = 0 for s = 0 , l m - 1 , 

. ^ rai ' . . mi î+k 
1=0 i=0 

so that for k = 0 the equations (3.2) and (3.3) go over to (2.6) and 

(k) 
(2,5). The value of S is obtained by a linear combination of the 
x m 
values of S , . . . , S . From equations (2. 5) and (3. 3) it is 

(k) 
clear that the expressions for d . can be written down from those 

(0) 
of d by simply increasing the subscripts of each h. appearing 

m i l 
in d . ( 0 ) by k. In fact S ( k ) has the same interpretation as S ( 0 ) 

mi m m 
(k) 

except that in case of S we consider Simpson sums formed 

(k) ITL 

starting from S 

Starting from the first column S of Simpson sums, we 

(k) 
defined the elements S ^ Qf the triangular array by means of (3.2), 

(k) 
where the coefficients d . satisfy (3.3). On the other hand we 

m i 

have also defined S by means of (3. 1). We shall now show that 

for a proper choice of a , the two ways of defining S are 
m & m 

consistent. From (3.1) and (3.2) we have 

q (k) ^ , (k) (i+k) (k) (k) (k) (k+l) 
S = 2 d . Sn -a s . + [1 - a ) S 
m . _ mi 0 m m-1 m m-1 

1 = 0 

_ (k)™"1 (k) o(i+k) (k)™'1 (k+l) (i+k+1) 
- a 2 d , • S + (1 - a ) 2 d . . S 

m . ^ m-1 , î 0 m . _ m-1, i 0 
i = 0 i = 0 

Comparing the coefficients of S for i = 0, 1 . . . , m we get 

, (k) _ (k) j (k) 
m,0 m m- 1 , U , 

(3.4) à - a d , . + (1 - a d . . 
m,j m m-1 , j m m-1 , j - 1 j = l , . . . , m - l . 

d ( k ) = (1 - a <k)) d ( k + 1 ) 

m, m in m - 1 , m-1 . 

(k) , (k) , , (k+l) , . n , v 
Assuming now that d . , d and a (i = 0, 1, . . . ) 

m, i m-1 , i m _ a> ! 
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(k) sa t is fy (3 .3) , if we can d e t e r m i n e a value of a which will sat isfy 
m 

al l the (m+1) equat ions (3 .4) our a s s u m p t i o n (3 . 1) will be jus t i f i ed . 
(k) 

This wil l a l so d e t e r m i n e the r equ i r ed value of a 
m 

By using C r a m e r ' s r u l e the solut ion of the equat ions (3.3) can 
be w r i t t e n down expl ic i t ly as 

(k) m 2 4 m 2 m 2 2 
(3.5) d(k> = n \\.I[K± s ( i / h f x . ) n (KM.-KM)] 

m , r . ^ k+i k+r . _ k+i . n k+i k+r 
i=0 i = 0 i = 0 

r = 0 , 1 , . . . , m . 

F r o m the f i r s t equat ion (3 .4) using (3.5) we get 

(3.6) « ( k ) = d ( k ) / d ( k ) , = h? . ™ ( 1 / h 2 )/[(h? - h J ) S l /h 2
+ . ] 

m m , 0 m - 1 , 0 k+m . . k+i k+m k . . k+i 
i=0 i=0 

It is now a m a t t e r of s t r a igh t fo rward but tedious ca lcu la t ions to ver i fy 
that the r ema in ing equat ions (3.5) a r e sat isf ied for the s a m e value of 

(k) 
a . This comple t e s the proof. Note that we can a lso wr i t e 

m 

(k)
 fl <k) T 4 h - 2 / r = h"2> 

1=0 1=0 

(k) (k) (k) 
W h e r e (3 i s t h e s a m e a s in ( 2 . 1 ) . I t i s c l e a r t h a t \a |< I (3 I 

m (k) ^ (k) m m 1 

and for l a rge m we have a = 6 
m m 

4. N u m e r i c a l r e s u l t s . T h r e e different sequences for h. have 

been c o n s i d e r e d , These sequences a r e chosen in such a way that the 
number of points ( i . e . 1/h.) i n c r e a s e s rapidly , m o d e r a t e l y and slowly. 

In the c a s e when the number of points i n c r e a s e s v e r y rap id ly , the amount 
of computa t ion involved in calcula t ing the f i r s t column i n c r e a s e s . On the 
o ther hand, for those sequences for which the number of points i n c r e a s e s 
v e r y slowly, t h e r e is the danger of round-off e r r o r s accumula t ing . 
Va r ious i n t e g r a l s have been evaluated using Simpson sums and the 
a l g o r i t h m given in (3 .1 ) . The s a m e i n t e g r a l s have a lso been evaluated 
using t r a p e z o i d a l sums and s i m i l a r s e q u e n c e s . 

In the following -( denotes a p a r t i c u l a r sequence (h . ) and f 
iJ m 

denotes the number of function eva lua t ions r equ i r ed to compute the 

f i r s t co lumn up to S for a given m . 

2 2 1 
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Sequence y : 1/2 
(i+1) 

1, 2, 

m 

If 
m 

0 

3 

1 

5 

2 

9 

3 

17 

4 

33 

5 

65 

6 

129 

Sequence ^ 

h. = 
l / 2 ( i + 4 ) / 2 

l / 3 - 2 ( i + 1 ) / 2 i = 1 , 3 , 5 , 

m 

if 
m 

0 

5 

1 

9 

2 

13 

3 

17 

4 

25 

5 

33 

6 

49 

7 

65 

8 

97 

9 

129 

1 0 i 

193 

Sequence X h = 1/2(1+1) 
i 

i = 0, 1, 2, . 

m 

f m 

0 

3 
M2 
5 1 9 

3 

13 

4 

21 

5 

25 

6 

37 

7 

45 

8 

57 

9 

65 

10 

85 

11 

93 

12 

117 

13 ! 

129 

V a r i o u s i n t e g r a l s such as 

TT/2 

i) f sin x dx, i) j x cos 3x dx, 
1 

i i i ) f 2x dx, 
0 

r 2 4 
r) J X dx, 

2 2 
v) J" ( l / [ ( l + x )(4+x )]) dx, 

0 

vi) J tan" { ( ( l / 2 ) s i n x ) / ( l - ( l / 2 ) cos x) } . ( l / s i n x ) d x . 
0 

have been computed using double p r e c i s i o n on IBM 7040. On the b a s i s 
of these ca l cu l a t i ons , i t was found tha t the p r o b l e m of round-off e r r o r was 
not s e r i o u s in using any of the s e q u e n c e s , al though, as was expected , 
the round-off e r r o r s show up for the sequence y . S imi l a r l y , for a 

given o r d e r of a c c u r a c y , **f r e q u i r e s m o r e function ev a lu a t i o n s . IT 

t h e r e f o r e a p p e a r s to be a b e t t e r cho ice . 
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The s a m e i n t e g r a l s have a l so been evaluated using t r a p e z o i d a l 
s u m s and sequences 

T : h. = 1/21 i = 0, 1, 2, . . . 
4 l 

i = 0 

y : h. =( 1/2VA ' A / , ~ i = 1, 3, 5, . . . 

U / 3 . 2 ( i " 2 ) / 2 i = 2, 4 , 6 , . . . 

^ 6 : h = 1 and h = l / 2 i i = 1, 2, . . . 
0 i 

Na tura l ly , for a given m the r e s u l t s using Simpson sums a r e 
m o r e a c c u r a t e as was expec ted . However , this way of compar ing the 
two p r o c e d u r e s i s not sa t i s f ac to ry , b e c a u s e , depending upon the 
complexi ty of the function, m o s t of the computing t ime could be spent 
in evaluat ing the function at v a r i o u s points and a lso in ca lcula t ing the 
f i r s t co lumn. If we take this a s p e c t into cons ide ra t ion , we find that 
t h e r e i s s t i l l some sl ight advantage in using Simpson s u m s over 
t r a p e z o i d a l s u m s , provided i t i s known that the function to be 
in t eg ra ted is sufficiently smooth and the bas ic a s sumpt ion that the e r r o r 

4 
S(h) - I i s 0(h ) i s sa t i s f i ed . Sornet imes the t r ap ezo id a l r u l e g ives 

2 
b e t t e r r e s u l t s b e c a u s e the e r r o r i s 0(h ) and the function m a y not be 
sufficiently smooth [see 2, p . 213]. F ina l ly , for c e r t a i n i n t e g r a l s 
such as v) and vi) above, the conve rgence was v e r y slow both in 
c a s e of t r a p e z o i d a l and Simpson s u m s . 

Based on these and o ther [4] computa t ions , one can say that the 
advantage in us ing S impson s u m s i s not so g r e a t as i t m a y appear f r o m 
the e r r o r a n a l y s i s . Regard ing conve rgence , t h e r e i s no evidence that 
the use of S impson s u m s i m p r o v e s the s i tua t ion in any way. However , 
when the t ime r e q u i r e d for the evaluat ion of the function is of 
i m p o r t a n c e , t h e r e i s some advantage gained in us ing Simpson s u m s . 
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