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Abstract

The extended diagram of a two-bridged knot is introduced, and it is shown how the coefficients
of the Alexander polynomial of the knot may be read straight from this diagram. Using this
result, it is shown by diagram manipulation that a conjecture of Fox about the coefficients of
the Alexander polynomial of an alternating knot is true at least for two-bridged knots (which
are all alternating).

1980 Mathematics subject classification (Amer. Math. Soc.): 57 M 25.

To draw a two-bridged knot or link of type (p,q) (where we assume q is odd,
p and q are coprime and 0<q<2p, see Schubert (1956)), one starts with two
overarcs ( = overcrossing arcs) placed end to end and oriented towards the centre.
Points numbered 0 top are marked off along each overarc starting from the middle.
The (oriented) underarcs are then drawn, each spiralling outwards clockwise
from the centre through the points numbered q,2q,... until they reach the outside,
and then spiralling inwards. Eventually after q— 1 changes of direction (clockwise-
anticlockwise) the tail end of an overarc is reached. One obtains a symmetric
diagram if one changes direction when one is within a distance q\2 of each end.

More precisely, the underarc is divided by the crossing points into p segments
which can be numbered consecutively. The kth segment spirals clockwise or anti-
clockwise according as [(2kq—q)l2p~\ is even or odd. See Fox (1957) or Schubert
(1956) for more details, also see Figure 1 below. For a less cluttered diagram one
can draw a number (however many are necessary) of overarcs parallel and, so to
speak, 'unwind' the diagram. Thus one gets the extended diagram, denoted
(p,q)x. An underarc instead of spiralling clockwise proceeds from left to right,
and instead of spiralling anticlockwise proceeds from right to left. Figure 1 shows
the knot projection and the extended diagram of the knot (9,5), with only one
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underarc shown in each case. One imagines the extended diagram to consist of
an infinite number of parallel overarcs extending to infinity in both directions, and
an infinite number of underarcs. Given one underarc, the others are obtained by
translation the appropriate number of steps to the right or left. The diagram
(P> 9)oo wu"l be defined again in more generality in the proof of Theorem 2.

(9,5) (9, 5)a

FIGURE 1.

On the extended diagram number all the overarcs, Wt, consecutively from — 00
to oo from left to right. A single underarc is divided by the crossing points into p
segments each of which joins two adjacent overarcs. Let the number of such
segments which join Wt to Wi+1 be denoted af. Then, surprisingly, the a( are the
absolute values of the coefficients of the Alexander polynomial A(/) of the knot
(p,q) or the reduced Alexander polynomial in the case where (p,q) is a link. For
example, knot (9,5) shown in Figure 1 has Alexander polynomial 2 — 5t+2t2.

In this paper, the word knot will include the concept of a link, and the Alexander
polynomial will be taken to mean the reduced Alexander polynomial in this case.

THEOREM 1. = £ - _ „, (-1)' B| *'.

PROOF. The right-hand side of the above expression depends of course on which
underarc is considered; however, choice of a different underarc results only in
multiplication by a factor ± tJ. The Alexander polynomial is also defined only up
to multiplication by such a factor. We consider the underarc which has its initial
point at the overarc Wo.

The knot group has two generators, A and B and a single relator A'1 B?2 ... Btlp

where e, = (—l)c''/p]. This is the usual 'over presentation'. One sees that this is
conjugate to the relator A*1 B'2... B*2', or to B'< A"2... A'2' where <5f = ( - i)K'«+*>"J
for any A. We choose in particular A = -qjl and call the resulting relator R.
Then, since 8t = -S2p-i+1, one sees that R has the form V. V*~l where V* is
the word obtained from some word V of length p by interchanging A and B. Let
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9 and \j/ be homomorphisms from the knot group into Zt (the ring of integral
L-polynomials) where A and B are sent to t by 9 and to — t by \j/. Define Ut to be
the initial segment of V of length i when 81 = — 1 and of length i— 1 when
,5. = + 1 . Now calculate A(-f) .

A(- 0 = (dR/dA)* = (dVldAf-(dV*ldAf = (dV/dAf-(dVjdBf

Now, to relate A(—t) to the extended diagram, compare the definition of 8 (

with the rule for the direction of the ith underarc segment given above (in italic
script). For 1 < i < p, then, <5f is positive if the jth underarc segment is directed
from left to right, and negative if the segment is directed from right to left. It
follows that the ith underarc segment lies between Ws and WJ+l exactly when
Ut 6 = tJ. Thus, tJ occurs in the sum £f= x Ut 9 just as many times as there are
underarc segments between Wj and WJ+1, that is, <x} times. So

A(-0=± I «jtJ
J=-00

which gives the result.
The picturesque result of Theorem 1 is useful for the rapid calculation of the

polynomials of two-bridged knots. One reads the polynomial straight from the
extended diagram. However it also has theoretical applications, and we will use
it to prove the following theorem.

THEOREM 2. The coefficients, a{ of the Alexander polynomial of a two-bridged knot
satisfy, for some integer s:

a0 < at < ... < a, = a s + 1 = ... =a,_s_! > a,_s > ... > a,_x

where I—I is the degree of the polynomial.

REMARK. K. Murasugi proved (see Murasugi (1958)) that one could write the
Alexander polynomial of any alternating knot (and so, of any two-bridged knot)
in the form £{~ J ( - l)f a, tl in which a. > 0. This also follows for two-bridged knots
from our Theorem 1. Fox (1962) conjectured that for alternating knots, the
coefficients satisfy the property expressed in Theorem 2. Thus, our theorem is a
partial solution of that conjecture.

A pair of integers (p,q) with p,q>0 and g.c.d.(p,q) = 1, and q odd will be
called admissible. Consider the transformations on pairs of integers.

Ti:(/>,?)-• (p+q,q); T2:(p,q)^(p,2p+q); and T3: (p,q)^(p,2p-q),

the last defined only when p > q. Then starting with the pair (1,1) one obtains
any admissible pair after a sequence of such transformations. Proof of this last
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statement is by induction on p + q: Suppose p + q> 1. When p>q,then (p,q) is
obtained from (p—q,q) by 7\. When q<2p<2q, then {p,q) is obtained from
(p,2p-q) by T3. When 2p< q, then (/>,#) is obtained from (p,q—2p) by T2. These
transformations give us a basis for induction on two-bridged knots by which we
will prove Theorem 2. Unfortunately, the induction is complicated, and requires
us to define carefully an extended diagram corresponding to any admissible pair.
This will correspond to the already defined extended diagram of a knot in the case
where q<2p.

Draw an infinite number of equally spaced infinite parallel lines (called grid
lines), Yt, in the plane, numbered from — oo to oo from left to right. On each
mark offp + q points consecutively numbered from — (q—1)/2 to p+(q—1)/2. The
segment of each grid line, Yt, between points marked 0 and p is the overarc W{,
the rest of the grid line acts simply as a guide line. The point numbered j on the
grid line Yt is called x^. Now, in the region between Y( and Yi+1 join the following
pairs of points by simple arcs, pairwise disjoint:

For -{q-\)j2 ^j^p-(q+l)/2 join xu to xi+1J+q.

For 1 <y < (q—1)/2 join *,.„__,- to xitP+J (call these top loops)

and also join xi+lj to Jtf+1>_j (call these bottom loops).

See Figure 2. The union of these lines, for all i makes up the underarcs.

FIGURE 2.

We now consider the single underarc which meets the overarcs Wo, Wu ...,W,
for some /, and no other overarc. Call this the principal underarc and / the length
of the diagram. The principal underarc in general contains bottom and top loops.
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We define the bottom sequence {bi}-x<i<x of the diagram (p,<?)i, such that bt is
twice the number of bottom loops of the principal underarc at the overarc Wi

(one bottom loop is counted each time the underarc loops around the bottom of
W{) plus one if the principal underarc starts at Wt. Thus, for example, the bottom
sequence of (9,5)^ shown in Figure 1 is: b0 = 2, b^ = 3, bt — 0 otherwise. The
analogously defined top sequence defined in terms of top loops of the principal
underarc satisfies, because of the obvious symmetry of the diagram,

(Al) *« = * I - I .

Now, if the principal overarc neither begins nor ends at Wu then the number
of times Y( is approached from left and right are equal. This is expressed by
a(_! +b{ — a,+ff, which because of our definition of bt and tf remains true at the
end points of the underarc also. Using (Al) we have

(A2) at-at_1=bi-bl-t.

Also useful in identifying a diagram are the formulae

i J-I

(A3) q = £ bt and p = £ a{
i=0 i = 0

but since they are not essential to our argument we leave them unproven.
Given a diagram {p,q)x with bottom sequence {bt} and a nonnegative integer h,

define the h-alternate sequence of the diagram to be the finite sequence S0,...,Sh

defined by S2j = bh-j and S2J+l — bj. The following induction hypothesis will be
called IH(p,q): If I is the length of the diagram (p,q)x, then there exists a non-
negative integer h; 1 < h < / and an integer r < h such that bt = Ofor i> h and the
h-alternate sequence satisfies

0^So<St<... <Sr = Sr+l=...=Sh.

Our induction argument will show that IH(p,q) implies IH(p',q') where
(j>',q') = Ti(p,q) for i = 1,2,3. Since IH(1,1) is obvious, this demonstrates
IH(p,q) for all admissible pairs (p,q). As consequences of IH(p,q) we need the
following properties of the diagram (p,q).

(HI) Ifh*>hand2j^h*, then bj>b^.j.

(H2) 7/0 < i < j and b( = bj, then bt = bk= bj for all k such that i < k < ; .

PROOF OF HI. By our definition, when A/2 <y < h, then bj = S2h-2j- Thus, if
hjl ^ i O , then bt ̂  bs. Now, if j < h/2, then h* -j ^ h-j > hjl and so

On the other hand, if j > hjl, then A/2 ̂ j <,h* —j and so bj ̂  bh*-}.
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PROOF OF H2. I f /> h, then bi=bj = 0, which means that / $s h. Thus, if k > i,
then bk = 0 = bt. So, we can assume that j < h. Let b( = SV, i t = S4-, 6, = S,--.
Now, if i<k<j, then £' > min(/',/). Thus, if Sv = Sr, then from IH(/>,?)
follows that Sv = Sr = Sk., and hence that bl = bk = bs.

Now we investigate the effect of the various transformations, Tf, on the extended
diagram. In each case, we can think of Tt as a change of the grid lines, Yt, whereby
the underarcs remain unchanged. This change in the grid lines, shown in Figure 3,
is then to be followed by an isotopic deformation of the plane to bring the new
grid lines into the proper position (see definition above). Thereby, of course, the
underarcs are altered.

EFFECT OF Tt. If one replaces the lines Yt in the extended diagram by new lines
in the way shown in Figure 3, then one obtains a new extended diagram for which

(A4) Z' = Z+1 and b', = b,

where primed quantities refer to the new diagram. Using (A3), or directly, one
sees that the new diagram is (p+q,q). The bottom sequences of(p,q) and (p+q,q)
are the same. Therefore, choosing h' = h, we see that IH (p+q) implies IH (p+q, q).

EFFECT OF T2. In this transformation, the overarc portion of the grid line remains
initially unchanged. When the grid lines are straightened by an isotopy of the
plane, the overarcs are rotated clockwise through 180°. See Figure 3. For the new
diagram

(A5) 6;=2aj+fi = 2a,+fe,_l and 1 = 1'.

Either directly, or using (A3), one sees that the new diagram obtained is (p,q+2p).
Let h' = / ' = / , and let S" be the A'-alternate sequence of (p',q'). Then for

2/+1 < A ' = / , holds:

j j b ^ ^ - b j = bj-bt-j > 0, by HI.

And similarly, for 2/ < /,

$2,-52,-1 =*>;_,-^- i =fey-fc/_J-+1 2*0, by HI.

Now suppose S'2j+i=S'2j and 2 / + l < / . Then bj=b,_j. By H2, bj—bt-j-i
which means S'2j+2 = S"2j+i. Similarly, S2J = S'2j_1 implies S'2j = S'2j+i. This
completes the induction step.

EFFECT OF T3. In this case, the grid lines are rotated anticlockwise when the
grid lines are straightened. As a final step in the transformation, the whole
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diagram must be reflected from right to left as is suggested by the backwards
numbering of the grid lines in Figure 3.

For the new diagram:

(A6) b't^lxt-bi and /' = /.

Directly, or using (A3) one sees that the new diagram is (p,2p—q)x.
Put h' = /. Since T3 is applied only when p > q, an application of T3 is immed-

iately preceded by Tx. Thus h<h—I. Now in a similar fashion to that above,
one sees that IH(p,q) implies IH(p,2p-q). This completes the proof of lU.(p,q)
for all admissible (p,q).

We now complete the proof of Theorem 2. Suppose 2k < /. Then (HI) yields
bk—bi-k ^ 0. Therefore according to (A2), xk > <*k-i- Furthermore, if at =aJk_1J

then bk=bt-k. According to (H2), then, 6 t + 1 = ^ , _ t _ 1 which gives at = at + 1

and completes the proof.

Given a knot (p,q), one can determine the sequence of transformations, TJ,
which transform (1,1) to (p,q). Now using the formulae (A2), (A4), (A5) and (A6),
one can calculate simultaneously the bottom sequence and Alexander poly-
nomial of the knot (p,q). This gives a rapid algorithmic method of determining
the Alexander polynomial, which for large p and q is far quicker than any standard
method.

K. Funke (see Funke (1978)) has given an algorithmic method of calculating
the genus of a two-bridged knot, and also a criterion for determining whether it is
a fibred (Neuwirth) knot. His algorithmic method is a little different from the
method discussed in this paper. As a corollary of our method, we also have:

PROPOSITION 3. Suppose q<2p and consider the sequence of transformations Tt

which transform the pair (1,1) to (j>,q). If T% occurs m times in this sequence and n
is the multiplicity of the knot (p,q) (that is 2 if p is even and 1 otherwise), then the
genus of(p,q) is equal to (m—n+l)j2. The knot is fibred if and only ifT2 does not
occur in the sequence.

PROOF. Since only Tt changes the length of the diagram, m is the degree of A(t).
Since the knot is alternating, the formula for the genus is a well-known property
of alternating knots (Crowell (1959)). The knot is fibred if and only if A(0) = 1.
A quick glance at equations (A4), (A5) and (A6) shows that if T2 occurs, the first
term of the sequence bh and hence A(0), becomes greater than 1, whereas other-
wise it remains equal to 1.

We remark that E. J. Mayland, Jr. has also considered similar methods in his
paper: 'Inductive arguments on rational (two-bridged) knots' (unpublished). Prof.
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K. Murasugi has also recently shown me some unpublished notes in which he

obtains a proof of theorem 2 by quite different methods.
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