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FUNCTION CLASSES RELATED
TO RUSCHEWEYH DERIVATIVES
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Abstract

We investigate a family consisting of functions whose convolution with z/(1 — z)7+1 is starlike
of order a, 0 < a < 1. We determine extreme points, inclusion relations, and show how this
family acts under various linear operators.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): primary 30 C 45;
secondary 30 C55.

1. Introduction

Let A denote the class of functions f(z) = z+ Y >, a; z* that are analytic in
the unit disk A = {z: |z| < 1}. Let $*(a) and K(a) denote the usual classes
consisting of functions starlike of order a and convex of order a, respectively.
In [4], Ruscheweyh introduced subclasses

Dn+l
Kn={f€A:Re—DTf(S‘)->%,ZGA}
of $*(1/2), where
(1) D"f(z)=(l___227m*f(z), neNy={0,1,2,...},

and the operation * stands for the Hadamard product of power series, that
is, if f(z) = z+ 52, az* and g(z) = z + 352, b z* then (f * g)(2) =
z+ Yo, arbiz¥. Here Ko = S*(1/2), Ky = K(0) and K41 C Ky, n € Ny

This research was completed while the second author was a Visiting Professor at the University
of Papua New Guinea.
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(2] Function classes related to Ruscheweyh derivatives 439

(see [4]). Recently, Ahuja [1, 2] has introduced the classes, denoted by R,(a),
of functions f in 4 which satisfy the condition Re{z(D" f(z))' /D" f(z)} > «
for some « (0 < a < 1) and for all z € A. In particular,

2) f € Ry(a) if and only if D" f € S$*(a).

It is observed [1] that for each n > 0, R,(a) C R,(0), and for each n > 1,
R,(a) C K,. The class R, = R,(0) was studied by R. Singh and S. Singh
[8]- In [2], it was seen that R,,,(a) C R,{a) for each n € Ny and for all a.
These inclusion relations establish that R,(a) C S*(a) for each n > 0 and
R,(a) C K(a) for each n > 1. In fact, for « fixed and n = n{a) sufficiently
large, we can show that R, = R,(0) C K(«).

THEOREM 1. Foranya, 0<a < 1, R, C K(a) for n > ny =[32/(1 - a)].

PrOOF. For f(z) = z + Y50, axz¥ € A, a computation applied to (1)
shows that

(k+n-1
(3) D"f(z)=z+ a z*.
> ()

If f € R,, then D*f € $*(0) and we must have (k+:")|ak| < k or, equiva-
lently,

-1
(4) IakISk(k+Z— 1) for every k > 2.

It is known [6] that f € K(a) if Y po, k(k — a)|lay| < 1 - a. In view of

(4) it thus suffices to show that > .2, k2|a,| < Y70, k3("+:“)_l <l-a 1for
n > ng. Since 352 ,(1/k?) < 1, we need only show that 352, k3("*~1)7" <

(1-a)Y2,(1/k%), n > ng, which is true if

-1
(5) ck=k5(n+:—1) <l-a (n>ng, k>2).

Now (""’,‘,"')_l is a decreasing function of n, so it suffices to prove (5) for
n = np. Inequality (5) follows for k = 2 because ¢; = 32/(np+1) <1 - a.
The proof will be completed by showing that ¢, is a decreasing function of
k(> 2) for n = ny. We have that ¢;, /cy = (1 + 1/k)3(k/(np + k)) < 1is
equivalent to g(k) = (ng — 5)k* — 10k3 — 10k? — 5k — 1 > 0. But g(k) >
27k* — 10k3 — 10k? — 5k — 1 > k* > 0 and the proof is complete.

The extreme points of the closed convex hull of $*(a) and K(a) were

determined by Brickman, Hallenbeck, MacGregor, and Wilken in [3]. We
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denote the closed convex hull of a family F by E_T_F and make use of some
results in [3] to determine the extreme points of ¢l R,(«).

2. Extreme points

THEOREM 2. The extreme points of ¢l R,(a), 0 < a < 1, are given by the
functions

(2 = 2a),_ nixk-1zk

(®) fx(z>—z+2 T

|x| =1, z €A, where (a)y =ala+1)---(a+k—1).

ProoF. In [3] it is shown that the extreme point of $*(a) are

(2—20)k—1 k-1 & _
{'“—--m—z+z_—17!—x Z,‘X|—1 .

Since D": f — D"f is an isomorphism from R,(a) to S*(a), and conse-
quently preserves extreme points, we see from (3) that the extreme points of
cl R,(a) are given by

S (k+n=1\""2=-2a)_1 4y x _
= () S wer

which simplifies to f;(z) defined in (6).

REMARK. The special cases n = 0 and n = 1 in Theorem 2 reduce to the
extreme points of ¢l $*(a) and ¢l K(a), respectively, found in [3].

Theorem 2 enables us to solve some extremal problems in R,(a); for ex-
ample, we have

COROLLARY 1. If f(z) = z + Y r2, ar 2% € Ry(a), then

@=20)nt

lak| < Krn-10" 2

with equality for

2-20)k ! kg k

f;c(z)—z'*'z(—km!—)c z", x| =1.
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COROLLARY 2. If f € R,(a), then

(2
|<r+2(k+ff’)",)‘, v (2l =7,

KOES! +2 1—2‘1’—1),n!kr’<'l Iz =),

with equality for f.(z) at z = Xr.

REMARK. It would be of interest to get f,(z) in (6) into closed form to
obtain additional information and solutions to extremal problems. For exam-
ple, we believe that the lower bounds for |f(z)| and |f'(z)| when f € R,(«)
occur for f,(z) at z = —xr. This is true for n = 0 and n = 1 (see [3]).

The determination of the extreme points of cl K, is an immediate conse-
quence of inclusion relations for X,,.

THEOREM 3. The extreme points of cl K, are {z/(1 - xz); |x| = 1,n € Np}.

Proor. Note first from (1) that D"(z/(1 — xz)) = z/(1 — xz)"*! so the
family of functions {z/(1 — xz)} is contained in K, for every n. Thus we
have the double inclusion

{z/(1-x2)} CK,CKo=8%(1/2) (n=0,1,2,...).

Since the extreme points of ¢l $*(1/2) are {z/(1 —xz): |x| = 1} (see [3]) the
result follows.

3. Convolution invariance

For
k+n-—
% (2) = Gy = 2 +Z( JE

we may express D" f as D" f = h, » f. We also denote by A, !(z) the function
normalized by h;'(0) = 0 with (h;! * h,)(z) = z/(1 — z). Then h;!(z) =
zZ+ Y0, (k+:_')—lzk. With this notation, we may rewrite (2) as f € R,(a)
if and only if A, * f € S*(a) or, equivalently, g € S*(a) if and only if
h;!' % g € Ry(a).

The work of Ruscheweyh and Sheil-Small in [5] shows that the convolution
of a convex function with a function in $*(a) yields a functions in S$*(a).
We make use of this result in establishing convolution properties for R,(c).
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THEOREM 4. If f,g € Ry(a), n > 1, then (f * g)(z) € Ry(a).

Proor. With h, defined by (7) we must show that if f * h, € S*(a) and
gxh, € S*(a), then (fxg)*h, € $*(a). Since f € Ry(a) C Ri(a) = K{a), we
have (f * g) * h, = f x (g * h,) is the convolution of a convex function with a
function in S*(«) and must therefore be in S*(a). Hence (f * g)(z) € Ry(a),
and the proof is complete.

Theorem 4 may be put in an equivalent form.

THEOREM 4a. If z+ 352, (**" Vayz* and z+ 52, (**"~") by z* are both

in S*(a), n > 1, then so is z + Y52, (F*" V) ayby z*.

Compare this with the following remarkable result of Suffridge.

THEOREM A [9]. Define y(a,k), a <1, by
[o ]
z
—%i=a = zZ+ Zy(a,k)zk.
k=2

If z+ 332, (e, k)agzX and z + Y32, ¥(a, k)b 25 are both in S*(a), then so
is 2 + Yopo, Yo, k)agby 25,

Another equivalent form to Theorem 4a is

THEOREM 4b. If z+ Y 5, a3 z* and z + Y32, b z* are both in S*(a), then

, -l
sois z+ Y520, (KN aybyzk forn> 1.

Setting b; = a;, and n = 2 in Theorem 4b, we obtain the following
COROLLARY. If z + Y 52, a4, 2% € S*(a), then z + Y52, sz‘-‘éﬂz" € S*(a).

REMARK. Theorem 4 cannot be extended to include the case n = 0. The
Koebe function k(z) = z/(1 — z)? is in Ry = $*(0) but (k*k)(z) =
S _,m?z™ is not even univalent in A.

We next show how to move to different classes of R,(a) through convo-
lution with hypergeometric functions. Recall the generalized hypergeometric
function

mF (01,02, aam;ﬂlaﬂb . ,ﬂn;z)

al)k(az)k (am)k Sk
E(ﬂn KB Bk ™

where (a)g = 1 and (@) = a(a+1)---(a+k — 1) for kK > 1. We will apply
this operator after establishing the following lemma.
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LEMMA. Let J: A — A be defined by J(f) = %L [F1"~1f(t)dt. Then
J € Ry(a) if and only if J(f) € Rus1(c).

PrOOF. We need to show that D"f € S*(a) if and only if D™*'J(f) €
S*(a). In fact, we will show that D" f = D"+ J(f). For f(z) = z+ Y 5o, axz*
we have J(f) = z + Y 52, 2t a;, z*. Hence

k+n n+1
n+1 _ ' §: k
b)) =2 (n+1)(n+k)akz

Z+Z(k+n )kzk=D"f.

k=2
THEOREM 5. Let
H(z)=pyFpin+L,n+1,...,n+ 1, 5n+2,n4+2,...,n+2;2)
be a hypergeometric function. Then f € R,(a) ifand only if f+zH(z) belongs
to the class Rpim(a) foranym=1,2,....

ProoF. For f(z) = Yo, axzk € 4, a; = 1, and J defined in the lemma,
we have that

+1 — n+1 —
I = Z:+ka"z (zznik+l)zk*(za"zk)
k= k=1

( Z(?n++l;§(;c)'k k) [z =[22Fi(n+1,15n+22)]% f(2)

belongs to R,.1(a). By repeated use of the lemma, the result follows.
Finally, we give a necessary and sufficient convolution condition for a
function to be in R,(a). In [7] it was shown that f € S*(a) if and only if
z+ (x+3a;1)22
(8) f*—-T:-—— fz "’)zaeo O<lzl<1, |x|=1).

We use this result to prove

THEOREM 6. The function f is in R,(«) if and only if

z+(xgl+n)tna l+2u) 2
[T 0 <lzl < 1,lx| = 1).

ProOOF. An application of (2) to (8) shows that f € R,(a) if and only if

2 z4 (x+2a—l )ZZ

(9) f*((l_z)”H* o );eo 0<|z]<1,[x|=1).
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Since g(z) * (-—)5 + —_—);) =zg' + B(zg' - g), the result follows from (9)

upon setting g(z) = z/(1 - z)"*! and B = (x + 2a — 1)/(2 — 2a), and then
simplifying.
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