FUNCTION CLASSES RELATED TO RUSCHEWEYH DERIVATIVES

O. P. AHUJA and H. SILVERMAN

(Received 8 April 1988)

Abstract

We investigate a family consisting of functions whose convolution with $z/(1-z)^{n+1}$ is starlike of order α , $0 \le \alpha < 1$. We determine extreme points, inclusion relations, and show how this family acts under various linear operators.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): primary 30 C 45; secondary 30 C55.

1. Introduction

Let A denote the class of functions $f(z) = z + \sum_{k=2}^{\infty} a_k z^k$ that are analytic in the unit disk $\Delta = \{z : |z| < 1\}$. Let $S^*(\alpha)$ and $K(\alpha)$ denote the usual classes consisting of functions starlike of order α and convex of order α , respectively. In [4], Ruscheweyh introduced subclasses

$$K_n = \left\{ f \in A \colon \operatorname{Re} \frac{D^{n+1} f(z)}{D^n f(z)} > \frac{1}{2}, z \in \Delta \right\}$$

of $S^*(1/2)$, where

(1)
$$D^n f(z) = \frac{z}{(1-z)^{n+1}} * f(z), \qquad n \in \mathbb{N}_0 = \{0, 1, 2, \dots\},$$

and the operation * stands for the Hadamard product of power series, that is, if $f(z) = z + \sum_{k=2}^{\infty} a_k z^k$ and $g(z) = z + \sum_{k=2}^{\infty} b_k z^k$ then $(f * g)(z) = z + \sum_{k=2}^{\infty} a_k b_k z^k$. Here $K_0 = S^*(1/2)$, $K_1 = K(0)$ and $K_{n+1} \subset K_n$, $n \in N_0$

This research was completed while the second author was a Visiting Professor at the University of Papua New Guinea.

^{© 1989} Australian Mathematical Society 0263-6115/89 \$A2.00 + 0.00

(see [4]). Recently, Ahuja [1, 2] has introduced the classes, denoted by $R_n(\alpha)$, of functions f in A which satisfy the condition $\text{Re}\{z(D^n f(z))'/D^n f(z)\} > \alpha$ for some α (0 $\leq \alpha < 1$) and for all $z \in \Delta$. In particular,

(2)
$$f \in R_n(\alpha)$$
 if and only if $D^n f \in S^*(\alpha)$.

It is observed [1] that for each $n \ge 0$, $R_n(\alpha) \subset R_n(0)$, and for each $n \ge 1$, $R_n(\alpha) \subset K_n$. The class $R_n \equiv R_n(0)$ was studied by R. Singh and S. Singh [8]. In [2], it was seen that $R_{n+1}(\alpha) \subset R_n(\alpha)$ for each $n \in N_0$ and for all α . These inclusion relations establish that $R_n(\alpha) \subset S^*(\alpha)$ for each $n \ge 0$ and $R_n(\alpha) \subset K(\alpha)$ for each $n \ge 1$. In fact, for α fixed and $n = n(\alpha)$ sufficiently large, we can show that $R_n = R_n(0) \subset K(\alpha)$.

THEOREM 1. For any α , $0 \le \alpha < 1$, $R_n \subset K(\alpha)$ for $n \ge n_0 = [32/(1-\alpha)]$.

PROOF. For $f(z) = z + \sum_{k=2}^{\infty} a_k z^k \in A$, a computation applied to (1) shows that

(3)
$$D^{n} f(z) = z + \sum_{k=2}^{\infty} {k+n-1 \choose n} a_{k} z^{k}.$$

If $f \in R_n$, then $D^n f \in S^*(0)$ and we must have $\binom{k+n-1}{n}|a_k| \le k$ or, equivalently,

(4)
$$|a_k| \le k \binom{k+n-1}{n}^{-1}$$
 for every $k \ge 2$.

It is known [6] that $f \in K(\alpha)$ if $\sum_{k=2}^{\infty} k(k-\alpha)|a_k| \le 1-\alpha$. In view of (4) it thus suffices to show that $\sum_{k=2}^{\infty} k^2|a_k| \le \sum_{k=2}^{\infty} k^3 \binom{k+n-1}{n}^{-1} \le 1-\alpha$ for $n \ge n_0$. Since $\sum_{k=2}^{\infty} (1/k^2) < 1$, we need only show that $\sum_{k=2}^{\infty} k^3 \binom{n+k-1}{n}^{-1} \le (1-\alpha) \sum_{k=2}^{\infty} (1/k^2)$, $n \ge n_0$, which is true if

(5)
$$c_k = k^5 \binom{n+k-1}{n}^{-1} \le 1-\alpha \qquad (n \ge n_0, \ k \ge 2).$$

Now $\binom{n+k-1}{n}^{-1}$ is a decreasing function of n, so it suffices to prove (5) for $n=n_0$. Inequality (5) follows for k=2 because $c_2=32/(n_0+1) \le 1-\alpha$. The proof will be completed by showing that c_k is a decreasing function of $k(\ge 2)$ for $n=n_0$. We have that $c_{k+1}/c_k=(1+1/k)^5(k/(n_0+k)) \le 1$ is equivalent to $g(k)=(n_0-5)k^4-10k^3-10k^2-5k-1 \ge 0$. But $g(k)\ge 27k^4-10k^3-10k^2-5k-1 \ge k^4>0$ and the proof is complete.

The extreme points of the closed convex hull of $S^*(\alpha)$ and $K(\alpha)$ were determined by Brickman, Hallenbeck, MacGregor, and Wilken in [3]. We

denote the closed convex hull of a family F by $\overline{\operatorname{cl}} F$ and make use of some results in [3] to determine the extreme points of $\overline{\operatorname{cl}} R_n(\alpha)$.

2. Extreme points

THEOREM 2. The extreme points of $\overline{\operatorname{cl}}\ R_n(\alpha)$, $0 \le \alpha < 1$, are given by the functions

(6)
$$f_x(z) = z + \sum_{k=2}^{\infty} \frac{(2 - 2\alpha)_{k-1} n! x^{k-1} z^k}{(k+n-1)!},$$

$$|x| = 1, z \in \Delta, where (a)_k = a(a+1) \cdots (a+k-1).$$

PROOF. In [3] it is shown that the extreme point of $S^*(\alpha)$ are

$$\left\{ \frac{z}{(1-xz)^{2(1-\alpha)}} = z + \sum_{k=2}^{\infty} \frac{(2-2\alpha)_{k-1}}{(k-1)!} x^{k-1} z^k, |x| = 1 \right\}.$$

Since D^n : $f o D^n f$ is an isomorphism from $R_n(\alpha)$ to $S^*(\alpha)$, and consequently preserves extreme points, we see from (3) that the extreme points of $\overline{\operatorname{cl}} R_n(\alpha)$ are given by

$$z + \sum_{k=2}^{\infty} {k+n-1 \choose n}^{-1} \frac{(2-2\alpha)_{k-1}}{(k-1)!} x^{k-1} z^k, \qquad |x| = 1,$$

which simplifies to $f_x(z)$ defined in (6).

REMARK. The special cases n = 0 and n = 1 in Theorem 2 reduce to the extreme points of $\overline{cl} S^*(\alpha)$ and $\overline{cl} K(\alpha)$, respectively, found in [3].

Theorem 2 enables us to solve some extremal problems in $R_n(\alpha)$; for example, we have

COROLLARY 1. If
$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k \in R_n(\alpha)$$
, then $|a_k| \le \frac{(2-2\alpha)_{k-1} n!}{(k+n-1)!}, \qquad k \ge 2,$

with equality for

$$f_x(z) = z + \sum_{k=2}^{\infty} \frac{(2-2\alpha)_{k-1} n!}{(k+n-1)!} x^{k-1} z^k, \qquad |x| = 1.$$

COROLLARY 2. If $f \in R_n(\alpha)$, then

$$|f(z)| \le r + \sum_{k=2}^{\infty} \frac{(2 - 2\alpha)_{k-1}}{(k+n-1)!} n! r^k \qquad (|z| = r),$$

$$|f'(z)| \le 1 + \sum_{k=2}^{\infty} \frac{(2 - 2\alpha)_{k-1}}{(k+n-1)!} n! k r^{k-1} \qquad (|z| = r),$$

with equality for $f_x(z)$ at $z = \bar{x}r$.

REMARK. It would be of interest to get $f_x(z)$ in (6) into closed form to obtain additional information and solutions to extremal problems. For example, we believe that the lower bounds for |f(z)| and |f'(z)| when $f \in R_n(\alpha)$ occur for $f_x(z)$ at $z = -\bar{x}r$. This is true for n = 0 and n = 1 (see [3]).

The determination of the extreme points of $\overline{cl} K_n$ is an immediate consequence of inclusion relations for K_n .

THEOREM 3. The extreme points of $\overline{cl} K_n$ are $\{z/(1-xz); |x|=1, n \in N_0\}$.

PROOF. Note first from (1) that $D^n(z/(1-xz)) = z/(1-xz)^{n+1}$ so the family of functions $\{z/(1-xz)\}$ is contained in K_n for every n. Thus we have the double inclusion

$$\{z/(1-xz)\}\subset K_n\subset K_0=S^*(1/2) \qquad (n=0,1,2,\ldots).$$

Since the extreme points of $\overline{cl} S^*(1/2)$ are $\{z/(1-xz): |x|=1\}$ (see [3]) the result follows.

3. Convolution invariance

For

(7)
$$h_n(z) = \frac{z}{(1-z)^{n+1}} = z + \sum_{k=2}^{\infty} {k+n-1 \choose n} z^k$$

we may express $D^n f$ as $D^n f = h_n * f$. We also denote by $h_n^{-1}(z)$ the function normalized by $h_n^{-1}(0) = 0$ with $(h_n^{-1} * h_n)(z) = z/(1-z)$. Then $h_n^{-1}(z) = z + \sum_{k=2}^{\infty} {k+n-1 \choose n}^{-1} z^k$. With this notation, we may rewrite (2) as $f \in R_n(\alpha)$ if and only if $h_n * f \in S^*(\alpha)$ or, equivalently, $g \in S^*(\alpha)$ if and only if $h_n^{-1} * g \in R_n(\alpha)$.

The work of Ruscheweyh and Sheil-Small in [5] shows that the convolution of a convex function with a function in $S^*(\alpha)$ yields a functions in $S^*(\alpha)$. We make use of this result in establishing convolution properties for $R_n(\alpha)$.

THEOREM 4. If $f, g \in R_n(\alpha)$, $n \ge 1$, then $(f * g)(z) \in R_n(\alpha)$.

PROOF. With h_n defined by (7) we must show that if $f * h_n \in S^*(\alpha)$ and $g * h_n \in S^*(\alpha)$, then $(f * g) * h_n \in S^*(\alpha)$. Since $f \in R_n(\alpha) \subset R_1(\alpha) = K(\alpha)$, we have $(f * g) * h_n = f * (g * h_n)$ is the convolution of a convex function with a function in $S^*(\alpha)$ and must therefore be in $S^*(\alpha)$. Hence $(f * g)(z) \in R_n(\alpha)$, and the proof is complete.

Theorem 4 may be put in an equivalent form.

THEOREM 4a. If $z + \sum_{k=2}^{\infty} {k+n-1 \choose n} a_k z^k$ and $z + \sum_{k=2}^{\infty} {k+n-1 \choose n} b_k z^k$ are both in $S^*(\alpha)$, $n \ge 1$, then so is $z + \sum_{k=2}^{\infty} {k+n-1 \choose n} a_k b_k z^k$.

Compare this with the following remarkable result of Suffridge.

THEOREM A [9]. Define $\gamma(\alpha, k)$, $\alpha \le 1$, by

$$\frac{z}{(1-z)^{2(1-\alpha)}} = z + \sum_{k=2}^{\infty} \gamma(\alpha, k) z^k.$$

If $z + \sum_{k=2}^{\infty} \gamma(\alpha, k) a_k z^k$ and $z + \sum_{k=2}^{\infty} \gamma(\alpha, k) b_k z^k$ are both in $S^*(\alpha)$, then so is $z + \sum_{k=2}^{\infty} \gamma(\alpha, k) a_k b_k z^k$.

Another equivalent form to Theorem 4a is

THEOREM 4b. If $z + \sum_{k=2}^{\infty} a_k z^k$ and $z + \sum_{k=2}^{\infty} b_k z^k$ are both in $S^*(\alpha)$, then so is $z + \sum_{k=2}^{\infty} {k+n-1 \choose n}^{-1} a_k b_k z^k$ for $n \ge 1$.

Setting $b_k = a_k$ and n = 2 in Theorem 4b, we obtain the following

COROLLARY. If
$$z + \sum_{k=2}^{\infty} a_k z^k \in S^*(\alpha)$$
, then $z + \sum_{k=2}^{\infty} \frac{2a_k^2}{k(k+1)} z^k \in S^*(\alpha)$.

REMARK. Theorem 4 cannot be extended to include the case n = 0. The Koebe function $k(z) = z/(1-z)^2$ is in $R_0 = S^*(0)$ but $(k^*k)(z) = z + \sum_{m=2}^{\infty} m^2 z^m$ is not even univalent in Δ .

We next show how to move to different classes of $R_n(\alpha)$ through convolution with hypergeometric functions. Recall the generalized hypergeometric function

$${}_{m}F_{n}(\alpha_{1},\alpha_{2},\ldots,\alpha_{m};\beta_{1},\beta_{2},\ldots,\beta_{n};z)$$

$$=\sum_{k=0}^{\infty}\frac{(\alpha_{1})_{k}(\alpha_{2})_{k}\cdots(\alpha_{m})_{k}}{(\beta_{1})_{k}(\beta_{2})_{k}\cdots(\beta_{n})_{k}k!}z^{k},$$

where $(a)_0 = 1$ and $(a)_k = a(a+1)\cdots(a+k-1)$ for $k \ge 1$. We will apply this operator after establishing the following lemma.

LEMMA. Let $J: A \to A$ be defined by $J(f) = \frac{n+1}{z^n} \int_0^z t^{n-1} f(t) dt$. Then $f \in R_n(\alpha)$ if and only if $J(f) \in R_{n+1}(\alpha)$.

PROOF. We need to show that $D^n f \in S^*(\alpha)$ if and only if $D^{n+1}J(f) \in S^*(\alpha)$. In fact, we will show that $D^n f = D^{n+1}J(f)$. For $f(z) = z + \sum_{k=2}^{\infty} a_k z^k$ we have $J(f) = z + \sum_{k=2}^{\infty} \frac{n+1}{n+k} a_k z^k$. Hence

$$D^{n+1}J(f) = z + \sum_{k=2}^{\infty} \left(\frac{k+n}{n+1}\right) \left(\frac{n+1}{n+k}\right) a_k z^k$$
$$= z + \sum_{k=2}^{\infty} {k+n-1 \choose n} a_k z^k = D^n f.$$

THEOREM 5. Let

$$H(z) = {}_{m+1}F_m(n+1, n+1, \ldots, n+1, 1; n+2, n+2, \ldots, n+2; z)$$

be a hypergeometric function. Then $f \in R_n(\alpha)$ if and only if f * zH(z) belongs to the class $R_{n+m}(\alpha)$ for any m = 1, 2, ...

PROOF. For $f(z) = \sum_{k=1}^{\infty} a_k z^k \in A$, $a_1 = 1$, and J defined in the lemma, we have that

$$J(f) = \sum_{k=1}^{\infty} \frac{n+1}{n+k} a_k z^k = \left(z \sum_{k=0}^{\infty} \frac{n+1}{n+k+1} \right) z^k * \left(\sum_{k=1}^{\infty} a_k z^k \right)$$
$$= \left(z \sum_{k=0}^{\infty} \frac{(n+1)_k (1)_k}{(n+2)_k k!} z^k \right) * f(z) = [z_2 F_1(n+1,1;n+2;z)] * f(z)$$

belongs to $R_{n+1}(\alpha)$. By repeated use of the lemma, the result follows.

Finally, we give a necessary and sufficient convolution condition for a function to be in $R_n(\alpha)$. In [7] it was shown that $f \in S^*(\alpha)$ if and only if

(8)
$$f * \frac{z + (\frac{x+2\alpha-1}{2-2\alpha})z^2}{(1-z)^2} \neq 0 \qquad (0 < |z| < 1, |x| = 1).$$

We use this result to prove

THEOREM 6. The function f is in $R_n(\alpha)$ if and only if

$$f * \frac{z + (\frac{x(1+n)+n-1+2\alpha}{2-2\alpha})z^2}{(1-z)^{n+2}} \neq 0 \qquad (0 < |z| < 1, |x| = 1).$$

PROOF. An application of (2) to (8) shows that $f \in R_n(\alpha)$ if and only if

(9)
$$f * \left(\frac{z}{(1-z)^{n+1}} * \frac{z + (\frac{x+2\alpha-1}{2-2\alpha})z^2}{(1-z)^2} \right) \neq 0 \quad (0 < |z| < 1, |x| = 1).$$

Since $g(z)*(\frac{z}{(1-z)^2}+\frac{Bz^2}{(1-z)^2})=zg'+B(zg'-g)$, the result follows from (9) upon setting $g(z)=z/(1-z)^{n+1}$ and $B=(x+2\alpha-1)/(2-2\alpha)$, and then simplifying.

References

- [1] O. P. Ahuja, 'Integral operators of certain univalent functions', *Internat. J. Math. Sci.* 8 (4) 1985, 653-662.
- [2] O. P. Ahuja, 'On the radius problem of certain analytic functions', Bull Korean Math. Soc. 22 (1) 1985, 31-36.
- [3] L. Brickman, D. J. Hallenbeck, T. H. MacGregor, and D. R. Wilken, 'Convex hulls and extreme points of families of starlike and convex mappings', *Trans. Amer. Math. Soc.* 185 (1973), 413-428.
- [4] S. Ruscheweyh, 'New criteria for univalent functions', Proc. Amer. Math. Soc. 49 (1975), 109-115.
- [5] S. Ruscheweyh, and T. Sheil-Small, 'Hadamard products of schlicht functions and the Pólya-Schoenberg conjecture', Comment. Math. Helv. 48 (1973), 119-135.
- [6] H. Silverman, 'Univalent functions with negative coefficients', Proc. Amer. Math. Soc. 51 (1975), 109-116.
- [7] H. Silverman, E. M. Silvia, and D. N. Telage, 'Convolution conditions for convexity, star-likeness, and spiral-likeness', Math. Z. 162 (1978), 125-130.
- [8] R. Singh and S. Singh, 'Integrals of certain univalent functions', *Proc. Amer. Math. Soc.* 77 (1979), 336-343.
- [9] T. J. Suffridge, 'Starlike functions as limits of polynomials', Advances in Complex Function Theory, pp. 164-202, (Lecture Notes in Math. 505, Springer, 1976).

Department of Mathematics University of Papua New Guinea Papua New Guinea Department of Mathematics College of Charleston Charleston, South Carolina 29424 U.S.A.