MORITA DUALITY AND ARTINIAN LEFT DUO RINGS

WEIMIN XUE

We characterise artinian left duo rings via Morita duality, and show that there is a large class of such rings that possess a duality.

Azumaya [2] and Morita [7] proved that there is a duality between the finitely generated left modules over a ring R and the finitely generated right modules over some ring S if and only if R is left artinian and the indecomposable injective left R-modules are all finitely generated. Azumaya [3] proved that his exact rings have duality and conjectured that they have self-duality.

A ring is called *left duo* (right duo) if each left (right) ideal is a two-sided ideal, and it is *duo* if it is both left and right duo. Habeb [6] observed that artinian duo rings are exact. In [10], we verified Azumaya's conjecture for a large class of artinian duo rings. (for example, those with Jacobson radical square zero.) Rosenberg and Zelinsky [8] gave an example of a local left artinian left duo ring without duality. In this example the ring is not right artinian. Motivated by this example, we study (two-sided) artinian left duo rings and Morita duality. A presentation of Morita duality can be found in Anderson and Fuller [1, Section 23, Section 24].

As Habeb [6] noted, artinian left duo rings are finite direct sums of local artinian left duo rings, therefore we need consider only local artinian left duo rings. Throughout this paper, R is a local artinian left duo ring with Jacobson radical $J \neq 0$. According to [8, Theorem 1 and Remark 1], we can assume that $J^2 = 0$. Let D = R/J be the division ring. Then $_DJ_D$ is a bi-vector space with finite dimensional on each side, since R is artinian. By [8, Theorem 1], the ring R has a duality if and only if $_D \operatorname{Hom}_D(J, D)$ is finitely generated.

Since R is left duo, $Da \supseteq aD$ for each $0 \neq a \in J$, so there is a ring monomorphism

$$\sigma_a \colon D \longrightarrow D$$

given by $\sigma_a(d)a = ad$ for all $d \in D$. And $\sigma_a(D)$ is a division subring of D.

Received 11 July 1988

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/89 \$A2.00+0.00.

LEMMA 1. For each $0 \neq a \in J$, $D_{\sigma_a(D)}$ is finite dimensional.

PROOF: Since R is artinian left duo, $(Da)_D$ is a finitely generated right D-module. Let

$$Da = \bigoplus_{j=1}^{m} (d_j a) D = \bigoplus_{j=1}^{m} d_j \sigma_a(D) a$$

for some $d_1, \ldots, d_m \in D$, and then $D = \sum_{j=1}^m d_j \sigma_a(D)$.

Our main result gives a complete characterisation of artinian left duo rings via Morita duality.

THEOREM 2. For the local artinian left duo ring R we have the following:

- (1) if dim $(_D J) > 1$, then R has a duality; in this case D is a field;
- (2) if dim $(_DJ) = 1$; let J = Da and $\sigma = \sigma_a$; then
 - (i) if $\sigma(D)D$ is finite dimensional, R has a duality; in particular, if D is a field then R has a duality;
 - (ii) if $\sigma(D)D$ is not finite dimensional, R does not have a duality.

PROOF: (1) First we use an idea in the proof of [6, Theorem 3.11] to show that the monomorphism σ_a does not depend on a.

Let a and $b \in J$ be linearly independent over D. Then for each $d \in D$, we have

$$\sigma_a(d)a = ad, \sigma_b(d)b = bd, \text{ and } \sigma_{a+b}(d)(a+b) = (a+b)d$$

So $\sigma_a(d) = \sigma_{a+b}(d) = \sigma_b(d)$, and hence $\sigma_a = \sigma_b$.

Now let $0 \neq a$ and $0 \neq b \in J$ be linearly dependent over D. Since $\dim(_DJ) > 1$, we can find $c \in J$ such that c is linearly independent of a whence linearly independent of b. From the discussion above, we have $\sigma_a = \sigma_c = \sigma_b$.

This proves that all the non-zero elements determine the same monomorphism, say, $\sigma: D \longrightarrow D$. Let $0 \neq d_1$, $d_2 \in D$ and $0 \neq a \in J$, then by the uniqueness of σ we have

$$d_1\sigma(d_2)a = d_1ad_2 = \sigma(d_2)d_1a.$$

So $d_1\sigma(d_2) = \sigma(d_2)d_1$, which says that $\sigma(D)$ is contained in the centre of D. In particular, $\sigma(D)$ is a subfield of D. But $D \cong \sigma(D)$, so D is a field. It follows from Lemma 1 that $\sigma(D)D$ is finitely generated.

Let $D = \sum_{j=1}^{m} \sigma(D) d_j$ and $J = \bigoplus_{i=1}^{n} Da_i$ for some $d_1, \ldots, d_m \in D$ and $a_1, \ldots, a_n \in J$. By the uniqueness of σ , we have

$$\sigma(d)a_i = a_i d$$

.

[2]

Morita duality

for all $d \in D$ and all $i, 1 \leq i \leq n$. Since $Da_i \supseteq a_i D$, we have

$$_{D}\operatorname{Hom}_{D}(J,D)\cong \bigoplus_{i=1}^{n}\operatorname{Hom}_{D}(Da_{i},D)$$

as left *D*-modules. So we only need to show that each $_D \operatorname{Hom}_D(Da_i, D)$ is finitely generated. To do so, let $a = a_i$ be fixed.

We define $f_j \in \operatorname{Hom}_D(Da, D)$ by $f_j(a) = d_j$, $1 \leq j \leq m$, and claim that $D \operatorname{Hom}_D(Da, D) = \sum_{j=1}^m Df_j$. In fact, for each $f \in \operatorname{Hom}_D(Da, D)$, we have $f(a) = \sum_{j=1}^m \sigma(t_j)d_j$ for some $t_j \in D$. Then

$$\left(\sum_{j=1}^m t_j f_j\right)(a) = \sum_{j=1}^m f_j(at_j) = \sum_{j=1}^m f_j(\sigma(t_j)a)$$
$$= \sum_{j=1}^m \sigma(t_j)f_j(a) = \sum_{j=1}^m \sigma(t_j)d_j = f(a).$$

Therefore $f = \sum_{j=1}^{m} t_j f_j$ which proves our claim. It follows that $D \operatorname{Hom}_D(J, D)$ is finitely generated.

(2) (i) Since $\sigma(D)D$ is finitely generated, we let $D = \sum_{j=1}^{m} \sigma(D)d_j$ for some $d_1, \ldots, d_m \in D$. Defining the same f_j 's as that given in the proof of (1), one shows that

$$_{D}\operatorname{Hom}_{D}(J, D) =_{D}\operatorname{Hom}_{D}(Da, D) = \sum_{j=1}^{m} Df_{j}$$

which is finitely generated. If D is a field, then by Lemma 1 $_{\sigma(D)}D$ is finite dimensional.

(2) (ii) For $f_1, \ldots, f_n \in \operatorname{Hom}_D(Da, D)$, let $f_i(a) = d_i$. Since $\sigma(D)D$ is not finitely generated, there is a $d \in D \setminus \left(\sum_{i=1}^n \sigma(D)d_i\right)$. Define $f \in \operatorname{Hom}_D(Da, D)$ by f(a) = d. Then $f \notin \sum_{i=1}^n Df_i$ and so $D \operatorname{Hom}_D(Da, D)$ is not finitely generated. It follows that R does not have a duality.

It should be noted that artinian left duo rings arise much more frequently than artinian duo rings. A typical example is Dlab and Ringel's "exceptional (1, 2) ring" [5, Proposition II.3.3]. These rings belong to the class of artinian left duo rings described in our Theorem 2(2)(i).

W. Xue

Cohn [4] (respectively, Schofield [9]) has shown that there is a division ring D with a division subring C such that, dim (D_C) is finite but dim $(_CD) = \infty$ (respectively, both dim (D_C) and dim $(_CD)$ are finite but different). From this one constructs an artinian ring $\begin{bmatrix} D & D \\ 0 & C \end{bmatrix}$ without a duality (respectively, which has a duality but without self-duality). The author is unable to answer the following questions.

Question 1 (respectively, 2): Do there exist division rings D and C described above with $D \cong C$ as rings?

If Question 1 (respectively, 2) is true, using the same method as in [8, p.375] we can construct a local artinian left duo ring without a duality (respectively, with a duality but without self-duality). Simply let $_DJ = _DD$ as left D-module, and as a right D-module, define jd = jg(d) in D, where $g: D \cong C$. And set $R = D \times J$ with multiplication

$$(d_1, j_1)(d_2, j_2) = (d_1d_2, d_1j_2 + j_1d_2).$$

Then R is the ring we need. If Question 1 is false, the set of the rings in Theorem 2(2) (ii) is empty. In this event we conclude that every artinian left duo ring has a Morita duality.

REFERENCES

- F.W. Anderson and K.R. Fuller, Rings and categories of modules (Springer-Verlag, Berlin, Heidelberg, New York, 1974).
- [2] G. Azumaya, 'A duality theory for injective modules', Amer. J. Math. 81 (1959), 249-278.
- [3] G. Azumaya, 'Exact and serial rings', J. Algebra 85 (1983), 477-489.
- [4] P.M. Cohn, 'On a class of binomial extensions', Illinois J. Math. 10 (1966), 418-424.
- [5] V. Dlab and C.M. Ringel, 'Balanced rings', in Lectures on rings and modules: Lecture Notes in mathematics 246, pp. 73-143 (Springer-Verlag, Berlin, Heidelberg, New York, 1972).
- [6] J.M. Habeb, 'On Azumaya's exact rings and Artinian duo rings', in Ph.D. Thesis (Indiana University, 1987).
- [7] K. Morita, 'Duality for modules and its applications to the theory of rings with minimum condition', Tokyo Kyoiku Daigaku Ser A6 (1958), 83-142.
- [8] A. Rosenberg and D. Zelinsky, 'Finiteness of the injective hull', Math. Z. 70 (1959), 372-380.
- [9] A.H. Schofield, 'Artin's problem for skew field extensions', Math. Proc. Cambridge Philos. Soc. 97 (1985), 1-6.
- [10] Weimin Xue, 'Artinian duo rings and self-duality', Proc. Amer. Math. Soc. 105 (1989), 1-5.

Department of Mathematics The University of Iowa Iowa City, Iowa 52242 United States of America Current address: Department of Mathematics University of Maine Orono, Maine 04469 United States of America