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Determinantal construction of orthogonal polynomials

associated with root systems

J. F. van Diejen, L. Lapointe and J. Morse

Abstract

We present an explicit construction of the Macdonald polynomials and of the Heckman–
Opdam generalized Jacobi polynomials associated with root systems.

1. Introduction

The main objective of this work concerns the explicit computation of families of orthogonal poly-
nomials associated with root systems. Key examples of the families under consideration are the
Macdonald polynomials [Mac95, Mac98, Mac01] and the Heckman–Opdam generalized Jacobi
polynomials [HS94, Opd95]. The origin of the Heckman–Opdam polynomials lies in the harmonic
analysis of simple Lie groups, where they appear (for special parameter values) as zonal spherical
functions on compact symmetric spaces [HS94, Hel94]. Other important applications of these poly-
nomials arise in mathematical physics, where they are used to express the eigenfunctions of the
quantum Calogero–Sutherland one-dimensional many-body systems [Sut71, Sut72, OP83, HS94].
The Macdonald polynomials have similar applications: they appear as zonal spherical functions on
compact quantum symmetric spaces [Nou96, Sug99], and they are used to express the eigenfunc-
tions of Ruijsenaars’ (q-)difference Calogero–Sutherland systems [Rui87, Die96]. Depending on the
specific application of interest, our work may thus be viewed as providing an explicit construction
for the zonal spherical functions on compact (quantum) symmetric spaces or for the eigenfunctions
of the (difference) Calogero–Sutherland type quantum many-body models.

The usual definition of the Heckman–Opdam and Macdonald polynomials involves a Gram–
Schmidt type orthogonalization of the monomial basis with respect to a generalized Haar measure
[HS94, Opd95, Mac98, Mac01]. This definition, although most appropriate from a theoretical point
of view, is not very adequate for the explicit computation of the polynomials in question. The main
result of this paper is a determinantal formula for the Heckman–Opdam and Macdonald polynomials
that gives rise to an efficient recursive procedure from which their expansion in the monomial
basis can be constructed explicitly. For the type A root systems the Heckman–Opdam polynomials
reduce (in essence) to Jack’s polynomials [Sta89, Mac95] and the Macdonald polynomials reduce
to Macdonald’s symmetric functions [Mac95]. In this case the determinantal construction of the
polynomials under consideration was laid out in previous work by Lapointe, Lascoux and Morse
[LLM98, LLM00]. More specifically, the results of the present paper constitute a generalization of
the methods of [LLM98, LLM00] to the case of arbitrary root systems. For the Heckman–Opdam
families we consider general (not necessarily reduced) root systems and general values of the root
multiplicity parameters. For the Macdonald families, however, we restrict for technical reasons to
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those (reduced) root systems for which the dual root system R∨ has a minuscule weight (thus
including the types AN , BN , CN , DN , E6 and E7 while excluding the types BCn, E8, F4 and G2).

2. Triangular operators in the symmetrized group algebra

In this section we define the concept of a triangular operator in the Weyl-group invariant component
of the group algebra over the weight lattice of a root system. For preliminaries on root systems the
reader is referred to e.g. [Bou68, Hum72].

Let E, 〈·, ·〉 be a real Euclidean space spanned by an irreducible root system R with Weyl
group W . We write Q and Q+ for the root lattice and its non-negative semigroup generated by the
positive roots R+

Q = SpanZ(R), Q+ = SpanN(R
+). (2.1)

The weight lattice P and the cone of dominant weights P+ are given by

P = {λ ∈ E | 〈λ, α∨〉 ∈ Z, ∀α ∈ R} (2.2)

and

P+ = {λ ∈ E | 〈λ, α∨〉 ∈ N, ∀α ∈ R+}, (2.3)

where α∨ = 2α/〈α,α〉. The weight lattice is endowed with the natural partial order

λ � µ ⇐⇒ λ − µ ∈ Q+. (2.4)

Let Q∨ denote the dual root lattice generated by the dual root system R∨ = {α∨ | α ∈ R}.
The group algebra over the weight lattice R[P] is the algebra generated by the formal exponentials
eλ, λ ∈ P subject to the multiplication relation eλeµ = eλ+µ. This algebra can be realized explicitly
as the algebra A of (Fourier) polynomials on the torus T = E/(2πQ∨) through the identification

eλ = ei〈λ,x〉, λ ∈ P (2.5)

(with x ∈ T). Symmetrization with respect to the action of the Weyl group produces the basis of
monomial symmetric functions {mλ}λ∈P+ for the space AW of Weyl-group invariant polynomials
on T, where

mλ =
∑

µ∈W (λ)

eµ, λ ∈ P, (2.6)

with W (λ) denoting the orbit of λ with respect to the action of the Weyl group.
We write AW

λ for the finite-dimensional highest weight subspace of AW with highest weight
λ ∈ P+, i.e., AW

λ = Span{mµ}µ∈P+,µ�λ.

Definition. A linear operator D : AW → AW is called triangular if D(AW
λ ) ⊆ AW

λ for all λ ∈ P+.

3. Determinantal diagonalization

The triangularity of a linear operator D in AW reduces its eigenvalue problem to a finite-dimensional
one. In this section we diagonalize the triangular operators through a determinantal representation
of the eigenfunctions.

Let D be a triangular operator and let {sλ}λ∈P+ be a second basis of AW that is related to the
monomial basis by a unitriangular transformation:

mλ =
∑

µ∈P+,µ�λ

aλµsµ, aλλ = 1 (3.1)
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(λ ∈ P+). The triangularity implies that the expansion of Dmλ in the basis {sλ}λ∈P+ is of the form

Dmλ =
∑

µ∈P+,µ�λ

bλµsµ, bλλ = ελ, (3.2)

with the diagonal matrix elements ελ, λ ∈ P+ being precisely the eigenvalues of D.

Definition. The triangular operator D is called regular if εµ 
= ελ when µ ≺ λ.

For a regular triangular operator the eigenvalues ελ, λ ∈ P+ are semisimple. Let {pλ}λ∈P+ be
a corresponding basis of eigenfunctions diagonalizing D. Clearly, pλ has a monomial expansion of
the form

pλ =
∑

µ∈P+,µ�λ

cλµmµ, cλλ = 1, (3.3)

where we have normalized such that pλ is monic. The following theorem provides an explicit
determinantal formula for pλ, given the action of D on mλ expressed in the basis sλ, i.e., given
the expansion coefficients aλµ and bλµ in Equations (3.1) and (3.2).

Theorem 3.1 (Determinantal formula). Let D be a regular triangular operator in AW whose action
on the monomial symmetric functions is given by Equations (3.1) and (3.2). Then the monic basis
{pλ}λ∈P+ of AW diagonalizing D, in the sense that

Dpλ = ελpλ, ∀λ ∈ P+,

is given explicitly by the (lower) Hessenberg determinant

pλ =
1
Eλ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

mλ(1) ελ(1) − ελ(n) 0 . . . . . . 0
mλ(2) dλ(2)λ(1) ελ(2) − ελ(n) 0 . . . 0

...
...

. . .
. . .

...
...

...
...

. . . 0
mλ(n−1) dλ(n−1)λ(1) dλ(n−1)λ(2) · · · ελ(n−1) − ελ(n)

mλ(n) dλ(n)λ(1) dλ(n)λ(2) · · · · · · dλ(n)λ(n−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Here λ(1) < λ(2) < · · · < λ(n−1) < λ(n) = λ denotes any linear ordering of the dominant weights
{µ ∈ P+ | µ � λ} refining the natural order (2.4), the normalization is determined by

Eλ =
∏

µ∈P+,µ≺λ

(ελ − εµ),

and the matrix elements dλ(j)λ(k) (n � j > k � 1) read

dλ(j)λ(k) = bλ(j)λ(k) − ελaλ(j)λ(k) .

Proof. Expansion of the determinant with respect to the first column produces a linear combination
of monomials in the highest weight space AW

λ . The coefficient of the leading monomial mλ is given
by (−1)n−1 times the product of the elements on the super-diagonal, which are non-zero by the
regularity condition on D. Division by Eλ thus gives rise to a monic polynomial. It remains to show
that this polynomial is an eigenfunction of D with eigenvalue ελ. To this end one observes that the
action of (D − ελ) on the determinant affects only its first column. Indeed, we get, upon invoking
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the expansions (3.1) and (3.2), that

(
D − ελ

)
pλ =

1
Eλ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. . .
∑j−1

k=1 dλ(j)λ(k)sλ(k) + (ελ(j) − ελ)sλ(j) . . .

. . . dλ(j)λ(1) . . .
...

. . . dλ(j)λ(j−1) . . .

. . . ελ(j) − ελ . . .

. . . 0 . . .
...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(where, for typographical reasons, we have taken the transpose of our matrix). The latter deter-
minant has a first row of the form sλ(1)row2 + sλ(2)row3 + · · · + sλ(n−1)rown, and thus vanishes
identically.

As a corollary of the determinantal formula for pλ, one arrives at a linear recurrence relation
encoding an efficient algorithm for the computation of the coefficients cλµ entering the monomial
expansion (3.3).

Corollary 3.2 (Linear recurrence relation). The monomial expansion of pλ is of the form

pλ =
n∑

�=1

cλλ(�)mλ(�) ,

with cλλ(n) = cλλ = 1 and

cλλ(�−1) =
1

ελ − ελ(�−1)

n∑
k=�

cλλ(k)dλ(k)λ(�−1)

(1 < � � n).

Proof. Immediate from Theorem 3.1 and the recurrence relation for the evaluation of Hessenberg
determinants [Wil88] (see also [LLM00]).

Moreover, by solving the recurrence relation we arrive at the following explicit expression for
the coefficients cλµ of the monomial expansion (3.3).

Corollary 3.3 (Explicit monomial expansion). The coefficients of the monomial expansion pλ =∑n
�=1 cλλ(�)mλ(�) are given explicitly by

cλλ(�) =
∑

�=jr<jr−1<···<j1<j0=n
r=1,...,n−�

dλ(j0)λ(j1)dλ(j1)λ(j2) · · · dλ(jr−1)λ(jr)

(ελ − ελ(j1)) · · · (ελ − ελ(jr))
,

with the convention that empty sums are equal to 1 (so cλλ(n) = cλλ = 1).

4. Heckman–Opdam polynomials

In this section we apply the formalism of § 3 to arrive at a determinantal construction of the
Heckman–Opdam polynomials for arbitrary (not necessarily reduced) root systems.
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4.1 The hypergeometric differential operator

To a vector x ∈ E we associate the directional derivation ∂x in A, whose action on the exponential
basis is given by

∂xeλ = 〈λ, x〉eλ (λ ∈ P). (4.1)

Definition [HS94, Opd95]. Let x1, . . . , xN be an orthonormal basis of E and let gα, α ∈ R be
complex parameters such that gw(α) = gα for all w ∈ W . The second-order partial differential
operator

D =
N∑

j=1

∂2
xj

+
∑

α∈R+

gα

(
1 + e−α

1 − e−α

)
∂α (4.2)

is called the hypergeometric differential operator associated to the root system R.

Clearly the definition of D (4.2) does not depend on the particular choice for the orthonor-
mal basis x1, . . . , xN . It is known that the hypergeometric differential operator maps the space of
invariants AW into itself and, furthermore, that it is triangular [HS94, Opd95]. We will now com-
pute the action of D (4.2) on the basis of monomial symmetric functions. To this end some notation
is needed. We denote the stabilizer subgroup of λ ∈ P by Wλ = {w ∈ W | w(λ) = λ} and the
weighted half-sum of the positive roots by ρg = 1

2

∑
α∈R+ gαα. The mapping rα : E → E represents

the orthogonal reflection in the hyperplane through the origin perpendicular to α ∈ R (which acts
on a vector x ∈ E as rα(x) = x − 〈x, α∨〉α), and [p] encodes the function that extracts the integral
part of a non-negative real number p through truncation.

Lemma 4.1 (Action of the hypergeometric differential operator). The action of D (4.2) on mλ,
λ ∈ P+, is given by

Dmλ = (〈λ + ρg, λ + ρg〉 − 〈ρg, ρg〉)mλ

+
1

|Wλ|
∑

α∈R+

(
gα〈λ, α〉

[〈λ,α∨〉/2]∑
�=1

|Wλ−�α| |W α(λ − �α)|mλ−�α

)
,

where W α ⊂ W denotes the subgroup of order 2 generated by rα (so |W α(λ − �α)| is equal to 1 if
� = 〈λ, α∨〉/2 and equal to 2 otherwise).

Proof. The computation of the expansion of Dmλ in the monomial basis hinges on the fundamental
identity(

1 + e−α

1 − e−α

)
∂α(eλ + erα(λ)) = 〈λ, α〉eλ(1 + e−α)

(
1 − e−〈λ,α∨〉α

1 − e−α

)

= 〈λ, α〉(eλ + eλ−〈λ,α∨〉α) + 2〈λ, α〉
〈λ,α∨〉−1∑

�=1

eλ−�α

= 〈λ, α〉(eλ + erα(λ)) + 〈λ, α〉
[〈λ,α∨〉/2]∑

�=1

|W α(λ − �α)|(eλ−�α + erα(λ−�α)).

(4.3)

Indeed, the following sequence of elementary manipulations reduces the computation of the action
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of the first-order component of D (4.2) on mλ to an application of identity (4.3):∑
α∈R+

gα

(
1 + e−α

1 − e−α

)
∂αmλ =

1
|Wλ|

∑
α∈R+

gα

(
1 + e−α

1 − e−α

)
∂α

∑
w∈W

ew(λ)

=
1

|Wλ|
∑
w∈W

w

( ∑
α∈R+

gα

(
1 + e−α

1 − e−α

)
∂αeλ

)

=
1

2|Wλ|
∑
w∈W

w

( ∑
α∈R+

gα

(
1 + e−α

1 − e−α

)
∂α(eλ + erα(λ))

)

Eq. (4.3)
=

1
|Wλ|

∑
w∈W
α∈R+

w

(
gα〈λ, α〉eλ + gα〈λ, α〉

[〈λ,α∨〉/2]∑
�=1

|W α(λ − �α)|eλ−�α

)

=
∑

α∈R+

gα〈λ, α〉
(

mλ +
1

|Wλ|
[〈λ,α∨〉/2]∑

�=1

|Wλ−�α| |W α(λ − �α)|mλ−�α

)
.

Combined with the action of the second-order component of D (4.2) on mλ given by
∑N

j=1 ∂2
xj

mλ =
〈λ, λ〉mλ, this produces the formula of the lemma.

It is a standard property of root systems that for any λ ∈ P+ the integral convex hull Pλ = {µ ∈
P | W (µ) � λ} is saturated, i.e., if µ ∈ Pλ then µ−�α ∈ Pλ for every integer � between 0 and 〈µ, α∨〉
(extremal values included) [Hum72]. Hence, it follows from Lemma 4.1 that the hypergeometric
differential operator is triangular. To compute for µ dominant the coefficient of mµ in Dmλ, it
suffices to collect all terms in the lemma for which λ − �α ∈ W (µ). Notice in this connection that
for a given α ∈ R+ the α-string λ − α, λ − 2α, . . . , λ − [〈λ, α∨〉/2]α may hit the Weyl orbit of µ at
most once. Indeed, it is clear from expanding both sides of the equality ‖λ− �′α‖2 = ‖λ− �α‖2 that
λ − �′α ∈ W (λ − �α), with 1 � �′, � � [〈λ, α∨〉/2], implies �′ = �.

We thus end up with the following explicit triangular matrix representation of the hypergeometric
differential operator with respect to the monomial basis.

Proposition 4.2 (Triangular expansion). Let λ ∈ P+. We have that

Dmλ = ελmλ +
∑

µ∈P+,µ≺λ

bλµmµ,

with

ελ = 〈λ + ρg, λ + ρg〉 − 〈ρg, ρg〉,

bλµ =
|Wµ|
|Wλ|

∑
α∈[λ,µ]

gα〈λ, α〉nλµ(α).

Here [λ, µ] denotes the subset of roots α ∈ R+ for which λ − �α ∈ W (µ) for some (unique) � ∈
{1, 2, . . . , [〈λ, α∨〉/2]}, and

nλµ(α) =

{
1 if ‖µ‖ = ‖Pα(λ)‖,
2 if ‖µ‖ 
= ‖Pα(λ)‖,

where Pα = (Id+rα)/2 is the orthogonal projection onto the hyperplane perpendicular to α through
the origin. (So for λ − �α ∈ W (µ) we have that nλµ(α) = 1 if � = 〈λ, α∨〉/2 and nλµ(α) = 2
otherwise.)

For non-negative parameter values the regularity of the hypergeometric differential operator is
immediate from the following proposition.
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Proposition 4.3 (Monotonicity). For non-negative parameters gα, the eigenvalues ελ = 〈λ + ρg,
λ + ρg〉 − 〈ρg, ρg〉 are strictly monotonous in λ ∈ P+, i.e.

∀λ, µ ∈ P+ : µ ≺ λ =⇒ εµ < ελ.

Proof. Assume λ, µ dominant with µ ≺ λ, and let ν = λ − µ (so ν ∈ Q+). Then

ελ − εµ = 〈ν, ν〉 + 2〈µ + ρg, ν〉,
which is positive in view of the fact that 〈ν, ν〉 > 0 and 〈µ + ρg, ν〉 � 0 (since both µ and ρg lie in
the closure of the dominant Weyl chamber).

4.2 Determinantal construction
It is known that the eigenbasis diagonalizing the hypergeometric differential operator D (4.2) in AW

is given by the Heckman–Opdam polynomials [HS94, Opd95]. Moreover, since D is regular (Propo-
sition 4.3), and its triangular action on the monomial basis is known explicitly (Proposition 4.2),
we can in fact construct this eigenbasis in closed form by means of the determinantal construction
in § 3 (with sλ = mλ, so aλµ = 1 if µ = λ and aλµ = 0 otherwise). This gives rise to the following
explicit representation of the Heckman–Opdam polynomials.

Theorem 4.4 (Determinantal construction). For λ ∈ P+, let

pλ = mλ +
∑

µ∈P+,µ≺λ

cλµmµ

denote the (monic) Heckman–Opdam polynomial with parameters gα � 0. Then, upon setting for
µ, ν ∈ P+

εµ = 〈µ + ρg, µ + ρg〉 − 〈ρg, ρg〉,
dµν =

|Wν |
|Wµ|

∑
α∈[µ,ν]

gα〈µ, α〉nµν(α),

with [µ, ν] ⊂ R+ and nµν(α) in accordance with the definition in Proposition 4.2, we have that:

i) the polynomial pλ is represented explicitly by the determinantal formula in Theorem 3.1;

ii) the coefficients cλµ of its monomial expansion are generated by the linear recurrence in Corol-
lary 3.2;

iii) the expansion coefficients cλµ are given in closed form by the formula in Corollary 3.3.

Given a concrete root system R, Theorem 4.4 turns into an efficient algorithm for the computa-
tion of the associated Heckman–Opdam polynomials. We will illustrate this below for the classical
root systems.

Remark (i). The orders of the stabilizers in Theorem 4.4 can be computed by means of Macdonald’s
formula (see e.g. [Mac01, § 12])

|Wλ| =
∏

α∈R+

〈λ,α∨〉=0

〈ρ, α∨〉 + 1 + 1
2δα

2

〈ρ, α∨〉 + 1
2δα

2

, (4.4)

where ρ = 1
2

∑
α∈R+ α, and δα = 1 if α ∈ R and zero otherwise.

Remark (ii). It is clear from the proof of Proposition 4.3 that the hypergeometric differential operator
D (4.2) is in fact regular for generic (complex) parameters gα such that 〈ν, ν〉+2〈µ+ρg, ν〉 
= 0 for all
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ν ∈ Q+ and µ ∈ P+. Hence, the determinantal construction of the Heckman–Opdam polynomials in
Theorem 4.4, as the eigenbasis for the hypergeometric differential operator, extends meromorphically
to gα in the complex plane.

Remark (iii). It is known that the coefficients of the Heckman–Opdam polynomials can in principle
be computed by means of (cumbersome) Freudenthal type recurrence relations [HS94]. From this
perspective, the determinantal construction of Theorem 4.4 thus provides the explicit solution to
this Freudenthal type recurrence. The recurrence in part ii of Theorem 4.4 (which arises as a
particular case of the general recurrence scheme in Corollary 3.2 upon choosing for our triangular
operator the hypergeometric differential operator) reads concretely

(ελ − ελ(�−1))cλλ(�−1) =
n∑

k=�

|Wλ(�−1) |
|Wλ(k) |

∑
α∈[λ(k),λ(�−1)]

gα〈λ(k), α〉nλ(k)λ(�−1)(α)cλλ(k) .

It may in fact be seen as a suitable symmetric reduction of the Freudenthal type recurrence relations,
enabling their explicit solution in closed form via Corollary 3.3. When gα = 1, ∀α ∈ R, our recurrence
is closely related to the optimized Freudenthal recurrence scheme for the computation of weight
multiplicities of characters of simple Lie groups due to Moody and Patera [MP82].

4.3 Tables for the classical root systems
For a concrete root system R, the expressions for the matrix elements in the determinantal formula
can be compactified considerably. To illustrate this state of affairs, we will now provide tables of these
matrix elements for the Heckman–Opdam polynomials associated with the classical root systems.
In each case, we will only list the minimum amount of information needed for constructing the
matrix, viz., (i) the cone of the dominant weights and its partial order, (ii) the eigenvalues building
the super-diagonal of the matrix, and (iii) the values of the lower triangular matrix elements.
For further data on the root systems of interest we refer to the tables in Bourbaki [Bou68].

It will be convenient to parameterize the dominant weights of the classical root systems in terms
of N -tuples

λ = (λ1, λ2, . . . , λN ) (4.5a)

of weakly decreasing (half-)integers (so λ1 � λ2 � · · · � λN ). Often we think of these N -tuples also
as multi-sets of the form

λ = {λ1, λ2, . . . , λN}, (4.5b)

where the parts λj are listed from largest to smallest. For λ = (λ1, . . . , λN ) (= {λ1, . . . , λN}),
we define λε = (λ1, . . . , λN−1, ε|λN |) (= {λ1, . . . , λN−1, ε|λN |}), with ε ∈ {1,−1}. We need the
following two operations on our weakly decreasing N -tuples:

λ \ µ = {λ1, λ2, . . . , λN} \ {µ1, µ2, . . . , µN}, (4.6a)
λ � µ = (λ+ \ µ+, (µ+ \ λ+)ε), (4.6b)

where ε = sign(λN ) × sign(µN ). The first operation takes the difference of λ and µ as multi-sets,
i.e., taking into account the multiplicities of the parts. (By convention, we will list the parts of
this difference again from large to small.) The second operation encodes, up to a possible sign, the
symmetric difference of λ+ and µ+. For example: (5, 3, 21

2 , 1, 1)� (4, 3, 3, 1,−1) = ({5, 21
2}, {4,−3}).

Finally, for future reference we furthermore introduce the operations

|λ| = λ1 + λ2 + · · · + λN , (4.7a)
ηλ(m) = |{j = 1, . . . , N | λj = m ∨ λj = −m}|, (4.7b)

λ̄ = (λ1, λ2, . . . , λN−1,−λN ), (4.7c)
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producing, respectively, the sum of the parts, the number of parts with specified absolute value |m|,
and the conjugate N -tuple with the sign of the last part flipped.

4.3.1 The case R = AN−1. For the type A root system the Heckman–Opdam polynomials
reduce (in essence) to Jack polynomials [Sta89, Mac95]. The determinantal construction in Theo-
rem 4.4 reproduces in this particular case the determinantal construction of the Jack polynomials
found by Lapointe, Lascoux and Morse [LLM00].

In dealing with the type A root system, it is more convenient to work with partitions rather
than with the weights themselves. Let ΛN be the set of partitions with at most N parts, i.e., the
set of weakly decreasing N -tuples with components given by non-negative integers. For λ, µ ∈ ΛN

the dominance order on these partitions is defined as

λ � µ ⇐⇒ |λ| = |µ| and
k∑

j=1

(λj − µj) � 0 for k = 1, . . . , N − 1. (4.8)

We write λ̂ for the orthogonal projection of λ ∈ ΛN onto the hyperplane E ⊂ R
N perpendicular to

the vector (1, 1, . . . , 1):

λ̂ = (λ1, . . . , λN ) − |λ|
N

(1, . . . , 1). (4.9)

The cone of dominant weights associated to the root system AN−1 is now given by the projection of
ΛN onto the hyperplane E, i.e. P+

A = {λ̂ | λ ∈ ΛN}, equipped with a partial order induced by the
dominance ordering of the partitions in Equation (4.8). Specifically, for given λ ∈ ΛN all dominant
weights smaller than or equal to λ̂ ∈ P+

A are given by

P+

λ̂,A
= {µ̂ | µ ∈ ΛN ∧ µ � λ}. (4.10)

The projection λ → λ̂ (4.9) has a non-trivial kernel of the form (1, 1, . . . , 1)N. The set in Equation
(4.10), however, is clearly independent of the particular choice for the partition λ projecting onto
the dominant weight λ̂.

The Weyl group acts transitively on the root system AN−1, as all roots have the same length.
Thus, the value of the root multiplicity parameter gα does not depend on α, viz. gα = g for all
α ∈ R. Given a partition λ ∈ ΛN , let us define for µ � λ

εA
µ =

N∑
j=1

µj(µj + g(N + 1 − 2j)), (4.11a)

and for ν ≺ µ � λ

dA
µν =

{
2g(m1 − m2)Nν(n1, n2) if µ � ν = ({m1,m2}, {n1, n2}) with m1 − n1 = n2 − m2 > 0,
0 otherwise,

(4.11b)
where

Nν(n1, n2) =




ην(n1)ην(n2) if |n1| 
= |n2|,(
ην(n1)

2

)
if |n1| = |n2|,

(4.12)

and ην(n) denotes the multiplicity counter defined in Equation (4.7b). The super-diagonal εA
µ̂ − εA

λ̂

(µ̂ � λ̂) and the lower triangular block dA
µ̂ν̂ (ν̂ ≺ µ̂ � λ̂) of the Hessenberg matrix in Theorem 4.4

become for the AN−1-type Heckman–Opdam polynomial pA
λ̂
:

εA
µ̂ − εA

λ̂
= εA

µ − εA
λ and dA

µ̂ν̂ = dA
µν , (4.13)
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respectively. (Notice in this connection that the expressions εA
µ − εA

λ and dA
µν on the right-hand side

are invariant with respect to the additive action of (1, 1, . . . , 1)N on ΛN .)

4.3.2 The case DN . The cone of dominant weights P+
D consists of the N -tuples λ = (λ1, . . . , λN )

with parts λj that are all integers or all half-integers subject to the ordering

λ1 � λ2 � · · · � λN−1 � |λN |. (4.14)

The partial order on PD
+ is defined as

λ � µ ⇐⇒




k∑
j=1

(λj − µj) ∈ N for k = 1, . . . , N − 2,

N−1∑
j=1

(λj − µj) + ε(λN − µN ) ∈ 2N for ε = ±1.

(4.15)

The Weyl group again acts transitively on the root system DN , so we have gα = g, ∀α ∈ R.
The super-diagonal εD

µ −εD
λ (µ � λ) and the lower triangular block dD

µν (ν ≺ µ � λ) of the Hessenberg
matrix in Theorem 4.4 become for the DN -type Heckman–Opdam polynomial pD

λ of the form

εD
µ =

N∑
j=1

µj(µj + 2g(N − j)) (4.16a)

and

dD
µν =




(dA
m1,m2;n1,n2

+ dA
m1,m2;n1,n2

+ dA
m1,m2;n1,n2

+ dA
m1,m2;n1,n2

)Nν(n1, n2)

if µ � ν = ({m1,m2}, {n1, n2}) with nµ(0) 
= 0 and m2 
= 0,

(dA
m1,m2;n1,n2

+ dA
m1,m2;n1,n2

)Nν(n1, n2)

if µ � ν = ({m1,m2}, {n1, n2}) with nµ(0) = 0 or m2 = 0,

dA
m,∆+;∆+,n

Nν(∆+, n) + dA
m,∆−;∆−,n

Nν(∆−, n)

if µ � ν = ({m}, {n}) with nµ(0) 
= 0,

dA
m,∆+;∆+,n

Nν(∆+, n)

if µ � ν = ({m}, {n}) with nµ(0) = 0,

0 otherwise.

(4.16b)

Here dA
m1,m2;n1,n2

refers to the A1-type matrix elements (cf. Equation (4.11b)), namely,

dA
m1,m2;n1,n2

=

{
2g(m1 − m2) if m1 − n1 = n2 − m2 > 0,
0 otherwise,

(4.17)

and Nν(n1, n2) is the same as above (cf. Equation (4.12)). Furthermore, m stands for −m and
∆± = (m ± n)/2.

Remark. In the first line of dD
µν , at most two terms can be non-zero if n2 = 0, and at most one term

otherwise. Similarly, in the second line, at most one term can be non-zero.

4.3.3 The case BN . The cone of dominant weights P+
B consists of the N -tuples λ = (λ1, . . . , λN )

with parts λj that are all integers or all half-integers subject to the ordering

λ1 � λ2 � · · · � λN−1 � λN � 0. (4.18)
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The partial order on P+
B is defined as

λ � µ ⇐⇒
k∑

j=1

(λj − µj) ∈ N for k = 1, . . . , N. (4.19)

The BN -type root system has two root lengths, so the action of the Weyl group splits up in two
orbits. We will denote the root multiplicity parameters for the long and short roots by g and gs,
respectively. The super-diagonal εB

µ − εB
λ (µ � λ) and the lower triangular block dB

µν (ν ≺ µ � λ) of
the Hessenberg matrix in Theorem 4.4 become for the BN -type Heckman–Opdam polynomial pB

λ

of the form

εB
µ =

N∑
j=1

µj(µj + 2g(N − j) + gs) (4.20a)

and

dB
µν =




dD
µν + dshort

µν if µ = µ̄,

dD
µν + dD

µ̄ν + dshort
µν if µ 
= µ̄,

(4.20b)

with dD
µν taken from Equation (4.16b) and

dshort
µν =

{
2gsmην(n) if µ � ν = ({m}, {n}) with m − n > 0,
0 otherwise.

(4.21)

4.3.4 The cases CN and BCN . The cone of dominant weights P+
BC consists of the partitions

λ = (λ1, . . . , λN ) in ΛN (cf. the AN−1-type above). The partial order on P+
BC is the same as in the

BN -case (cf. Equation (4.19))

λ � µ ⇐⇒
k∑

j=1

(λj − µj) � 0 for k = 1, . . . , N. (4.22)

The BCN -type root system has three root lengths, so the action of the Weyl group splits up
into three orbits. We will denote the root multiplicity parameters for the long and short roots by gl

and gs, respectively. The parameter for the remaining (i.e. middle) roots is g. The super-diagonal
εBC
µ − εBC

λ (µ � λ) and the lower triangular block dBC
µν (ν ≺ µ � λ) of the Hessenberg matrix in

Theorem 4.4 become for the BCN -type Heckman–Opdam polynomial pBC
λ of the form

εBC
µ =

N∑
j=1

µj(µj + 2g(N − j) + gs + 2gl) (4.23a)

and

dBC
µν =




dD
µν + dshort

µν + dlong
µν if µ = µ̄,

dD
µν + dD

µ̄ν + dshort
µν + dlong

µν if µ 
= µ̄,
(4.23b)

where dD
µν and dshort

µν are taken from Equations (4.16b) and (4.21), respectively, and

dlong
µν =

{
4glmην(n) if µ � ν = ({m}, {n}) with m − n ∈ 2N,

0 otherwise.
(4.24)

Remark (i). The CN case is obtained from the BCN case by setting gs = 0. In this situation one
generally can reduce the size of the Hessenberg matrix, as the partial order on the weights for the
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CN root system, viz.

λ � µ ⇐⇒




k∑
j=1

(λj − µj) ∈ N for k = 1, . . . , N − 1,

N∑
j=1

(λj − µj) ∈ 2N,

(4.25)

is less refined than the partial order in Equation (4.19) corresponding to the BCN root system.
More specifically, if the monomial on the lth row is not comparable to the leading monomial in the
CN ordering (4.25), then we may eliminate (for gs = 0) the lth row together with the (l + 1)th
column from the Hessenberg matrix. (To keep the normalization monic, we should of course also
delete the corresponding factors from the normalization constant Eλ.)

Example. For R = B3 and λ = (2, 1, 0) the determinantal formula reads

p2,1,0 = ((2 + 4g)(1 + 2g + gs)(3 + 4g + gs)(4 + 6g + 2gs)(5 + 10g + 3gs))−1

×

∣∣∣∣∣∣∣∣∣∣∣∣

m0,0,0 −5 − 10g − 3gs 0 0 0 0
m1,0,0 6gs −4 − 6g − 2gs 0 0 0
m1,1,0 24g 4gs −3 − 4g − gs 0 0
m2,0,0 12gs 4gs 4g −1 − 2g − gs 0
m1,1,1 0 8g 2gs 0 −2 − 4g
m2,1,0 0 24g + 8gs 8gs 4gs 12g

∣∣∣∣∣∣∣∣∣∣∣∣
.

This polynomial may also be interpreted as a special case of the BC3-type Heckman–Opdam
polynomial p2,1,0 with gl = 0. We observe in this connection that for gs = 0, the 1st, the 3rd
and the 4th row, together with the 2nd, the 4th and the 5th column, may be eliminated from
the Hessenberg matrix (cf. Remark (i) above). Indeed, the weights (0, 0, 0), (1, 1, 0) and (2, 0, 0)
are not comparable to the highest weight (2, 1, 0) with respect to the CN -type partial order in
Equation (4.25). (To keep our normalization monic, we must also delete the 2nd, the 3rd and the
5th factor from the normalization constant.)

5. Macdonald Polynomials: the case tα = t

In this section we apply the formalism of § 3 to arrive at a determinantal construction of the
Macdonald polynomials. Throughout this section it will be assumed that the root system R is
reduced and that the dual root system R∨ has a minuscule weight (thus including the types AN , BN ,
CN , DN , E6 and E7 while excluding the types BCn, E8, F4 and G2). The Macdonald polynomials
depend on complex parameters q and tα, α ∈ R such that tw(α) = tα for all w ∈ W . In this section
we will restrict to the case that tα = t, ∀α ∈ R and, unless explicitly stated otherwise, we will
consider the (q, t) parameters as indeterminates rather than real (or complex) numbers.

5.1 The Macdonald operator
For x ∈ E, we define the q-translation in A via its action on the exponential basis:

Tx,qe
λ = q〈λ,x〉eλ (λ ∈ P). (5.1)

Definition [Mac98, Mac01]. Let π be a minuscule weight for R∨, i.e., the vector π ∈ E is such
that 〈π, α〉 ∈ {0, 1} for all α ∈ R+. The q-difference operator

Dπ =
1

|Wπ|
∑
w∈W

( ∏
α∈R+

1 − t〈π,α〉ew(α)

1 − ew(α)

)
Tw(π),q (5.2)

is called the Macdonald operator associated to the minuscule weight π.
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(The above definition of the Macdonald operator Dπ is not precisely the same as the one
employed by Macdonald [Mac98, Mac01]; both definitions do coincide upon restriction to the space
of invariant polynomials AW though.)

In order to compute the action of Dπ on the monomial basis we will make use of the Weyl
characters χλ, λ ∈ P:

χλ = δ−1
∑

w∈W

det(w)ew(λ+ρ), (5.3a)

where ρ and δ denote the half sum of the positive roots and the Weyl denominator respectively

ρ =
1
2

∑
α∈R+

α, (5.3b)

δ =
∏

α∈R+

(eα/2 − e−α/2) =
∑
w∈W

det(w)ew(ρ). (5.3c)

(Clearly the determinant det(w) is equal to (−1)�(w), where �(w) represents the length of the (short-
est) decomposition of w into a product of simple reflections.) It is well known that for λ ∈ P+ one
has that

χλ =
∑

µ∈P+,µ�λ

Kλµmµ, Kλλ = 1, (5.4)

with coefficients Kλµ ∈ N. (In fact, the coefficients Kλµ, which are also known as Kostka numbers,
count the multiplicity of the weight µ in the irreducible representation of the Lie algebra corre-
sponding to the root system R with highest weight λ.) An efficient way to compute the coefficients
Kλµ is through the application of Theorem 4.4 with gα = 1, ∀α ∈ R. However, for our purposes
such a calculation is not necessary as we need the inverse of this basis transformation rather than
Equation (5.4) itself (cf. Corollary 5.3 below).

It is evident from the expansion in Equation (5.4) that the Weyl characters {χλ}λ∈P+ form a
basis of AW . The following lemma provides a formula for the action of the Macdonald operator Dπ

on the monomials mλ in terms of Weyl characters. For the root system R = AN the formula in
question is due to Macdonald [Mac95, Mac98].

Lemma 5.1 (Action of the Macdonald operator). Let λ ∈ P+. Then one has that

Dπmλ = t〈π,ρ〉 ∑
ν∈W (λ)

( ∑
τ∈W (π)

t〈τ,ρ〉q〈τ,ν〉
)

χν .

Proof. Our starting point is the Weyl denominator formula in the form

e−ρ
∏

α∈R+

(eα − 1) =
∑
w∈W

det(w)ew(ρ).

By acting on both sides with the t-translator Tπ,t we obtain

t−〈π,ρ〉e−ρ
∏

α∈R+

(t〈π,α〉eα − 1) =
∑
w∈W

det(w)t〈π,w(ρ)〉ew(ρ).

Division of the latter identity by the former gives rise to the following expansion for the coefficients
of the Macdonald operator

∏
α∈R+

1 − t〈π,α〉eα

1 − eα
= δ−1t〈π,ρ〉 ∑

w∈W

det(w)t〈π,w(ρ)〉ew(ρ).

Substitution of this expansion in the definition of Dπ (taking into account the anti-symmetry of the
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Weyl denominator w(δ) = det(w)δ), and acting on the exponential eν yields

Dπeν = δ−1 t〈π,ρ〉

|Wπ|
∑

w1,w2∈W

det(w1w2)t〈π,w2(ρ)〉q〈w1(π),ν〉eν+w1w2(ρ)

= δ−1 t〈π,ρ〉

|Wπ|
∑

w1,w2∈W

det(w1w2)t〈w1(π),w1w2(ρ)〉q〈w1(π),ν〉eν+w1w2(ρ)

w1w2→w= δ−1t〈π,ρ〉 ∑
w∈W,τ∈W (π)

det(w)t〈τ,w(ρ)〉q〈τ,ν〉eν+w(ρ).

Summation over ν in the orbit W (λ) then entails

Dπmλ = δ−1t〈π,ρ〉 ∑
w∈W

τ∈W (π),ν∈W (λ)

det(w)t〈τ,w(ρ)〉q〈τ,ν〉eν+w(ρ)

= δ−1t〈π,ρ〉 ∑
w∈W

τ∈W (π),ν∈W (λ)

det(w)t〈τ,w(ρ)〉q〈τ,w(ν)〉ew(ν+ρ)

= t〈π,ρ〉 ∑
τ∈W (π)
ν∈W (λ)

t〈τ,ρ〉q〈τ,ν〉χν ,

which completes the proof.

For λ ∈ P, let wλ be the unique shortest Weyl group element such that wλ(λ) ∈ P+. Then it
follows from the definition of the Weyl characters that for ν ∈ P

χν =

{
det(wν+ρ)χ(wν+ρ(ν+ρ)−ρ) if |Wν+ρ| = 1,
0 if |Wν+ρ| > 1.

(5.5)

(Notice in this connection that, in view of Equation (4.4), the stabilizer of a weight is non-trivial if
and only if there exists a root α ∈ R+ perpendicular to it, i.e., if and only if there exists a reflection
rα, α ∈ R+ stabilizing the weight in question.) Hence, to find for λ, µ ∈ P+ the multiplicity of χµ in
Dπmλ, we have to collect all terms in the formula of Lemma 5.1 corresponding to weights ν ∈ W (λ)
such that wν+ρ(ν + ρ) − ρ = µ, or equivalently, ν = w−1

ν+ρ(µ + ρ) − ρ. Clearly the action of Dπ is
triangular [Mac98, Mac01], since

µ = wν+ρ(ν + ρ) − ρ = wν+ρ(ν) − (ρ − wν+ρ(ρ)) � wν+ρ(ν) � wν(ν) = λ

(where in the two last steps we used the fact that any dominant weight λ is maximal in its Weyl
orbit, i.e. w(λ) � λ for all w ∈ W [Hum72]). We thus arrive at the following explicit triangular
expansion of Dπmλ in terms of χµ.

Proposition 5.2 (Triangular expansion). Let λ ∈ P+. We have that

Dπmλ = ελχλ +
∑

µ∈P+,µ≺λ

bλµχµ,

with

ελ = t〈π,ρ〉 ∑
τ∈W (π)

t〈τ,ρ〉q〈τ,λ〉,

bλµ =
∑

ν∈W (λ)∩(W (µ+ρ)−ρ)

det(wρ+ν)εν .
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For t = 1 the Macdonald operator Dπ trivializes to
∑

τ∈W (π) Tτ,q, which acts diagonally on
mλ through multiplication by the eigenvalue

∑
τ∈W (π) q〈τ,λ〉. The formula of Lemma 5.1 reduces in

this case (and upon division by the eigenvalue) to the following well-known relation between the
symmetric monomials and the Weyl characters:

mλ =
∑

µ∈W (λ)

χµ. (5.6)

In the same way, one recovers from Proposition 5.2 the inverse of the expansion in Equation (5.4).

Corollary 5.3 (Inverse Kostka numbers). Let λ ∈ P+. The expansion of the symmetric monomial
mλ in terms of Weyl characters is given by

mλ = χλ +
∑

µ∈P+,µ≺λ

aλµχµ,

with

aλµ =
∑

ν∈W (λ)∩(W (µ+ρ)−ρ)

det(wρ+ν).

The following proposition guarantees that the Macdonald operator Dπ is regular.

Proposition 5.4 (Regularity). The Macdonald operator Dπ is regular in the sense that

∀λ, µ ∈ P+ : µ ≺ λ =⇒ εµ(q, t) 
= ελ(q, t)

(as (analytic) functions of the indeterminates q and t).

Proof. After setting t = qg and q = exp(z), we get

t−〈π,ρ〉ελ =
∑

τ∈W (π)

exp(z〈τ, λ + gρ〉)

= |W (π)| + z
∑

τ∈W (π)

〈τ, λ + gρ〉 +
z2

2

∑
τ∈W (π)

〈τ, λ + gρ〉2 + O(z3)

= |W (π)| + cπz2〈λ + gρ, λ + gρ〉 + O(z3),

with cπ > 0. (In the last step we employed the fact that the W -invariant linear form
∑

τ∈W (π)〈τ, x〉
vanishes and that the W -invariant positive quadratic form

∑
τ∈W (π)〈τ, x〉2 must be proportional

to 〈x, x〉, because the representation of the Weyl group on E is irreducible and unitary). When g
is positive, one has that 〈µ + gρ, µ + gρ〉 < 〈λ + gρ, λ + gρ〉 for all dominant weights µ, λ with
µ ≺ λ in view of Proposition 4.3. It thus follows that for comparable dominant weights µ 
= λ
the corresponding eigenvalues εµ(q, t) and ελ(q, t) cannot be equal as (analytic) functions of the
indeterminates q and t.

5.2 Determinantal construction
A key result in Macdonald’s seminal work [Mac01] states that the Macdonald polynomials form the
eigenbasis diagonalizing Dπ (5.2) in AW . We will now apply the determinantal formalism of § 3
to construct this eigenbasis. To this end we pick for the second basis {sλ}λ∈P+ the basis of Weyl
characters {χλ}λ∈P+ . Specifically, by plugging in the eigenvalues ελ and off-diagonal matrix ele-
ments bλµ from Proposition 5.2, together with the inverse Kostka numbers aλµ from Corollary 5.3,
the formulas of Theorem 3.1 and the Corollaries 3.2 and 3.3 give rise to the desired eigenbasis
of the corresponding Macdonald operator Dπ. We thus end up with the following determinantal
construction of the Macdonald polynomials.
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Theorem 5.5 (Determinantal construction). For λ ∈ P+, let

pλ = mλ +
∑

µ∈P+,µ≺λ

cλµmµ

denote the (monic) Macdonald polynomial with tα = t, ∀α ∈ R. Then, upon setting for µ, ν ∈ P+

εµ = t〈π,ρ〉 ∑
τ∈W (π)

t〈τ,ρ〉q〈τ,µ〉,

dµν =
∑

κ∈W (µ)∩(W (ν+ρ)−ρ)

det(wρ+κ)(εκ − ελ)

(so dµµ = εµ − ελ), we have that:

i) the polynomial pλ is represented explicitly by the determinantal formula in Theorem 3.1;

ii) the coefficients cλµ of its monomial expansion are generated by the linear recurrence in Corol-
lary 3.2;

iii) the expansion coefficients cλµ are given in closed form by the formula in Corollary 3.3.

Remark (i). It is well known that for t = qg and q → 1 the Macdonald polynomial pλ tends to the
corresponding Heckman–Opdam polynomial (with gα = g, ∀α ∈ R) [Mac01]. To perform this limit
at the level of the above determinantal construction, it suffices to determine the asymptotics of the
eigenvalues εµ for q → 1. The asymptotics in question is given by (cf. the proof of Proposition 5.4)

εµt−〈π,ρ〉 = |W (π)| + cπ〈µ + gρ, µ + gρ〉(q − 1)2 + O((q − 1)3), (5.7)

where cπ is a positive constant that does not depend on µ and g. Since the formulas of the determi-
nantal construction for the Macdonald polynomials are invariant with respect to an affine rescaling
of the spectrum of the form εµ → aεµ + b (with a 
= 0), we only pick up the second-order term
of the asymptotics in Equation (5.7) when sending q to 1. The upshot is that by replacing εµ by
〈µ + gρ, µ + gρ〉 in Theorem 5.5, we wind up with an alternative determinantal formula for the
Heckman–Opdam polynomials (with gα = g, ∀α ∈ R, and with R such that R∨ has a minuscule
weight).

Remark (ii). The recurrence relation in part ii of Theorem 5.5 reads concretely

(ελ − ελ(�−1))cλλ(�−1) =
n∑

k=�

∑
κ∈W (λ(k))∩(W (λ(�−1)+ρ)−ρ)

det(wρ+κ)(εκ − ελ)cλλ(k) .

This relation should be regarded as a symmetrized Freudenthal type recurrence for the coefficients
in the monomial expansion of the Macdonald polynomials. For εµ = 〈µ+gρ, µ+gρ〉, this recurrence
degenerates to a recurrence for the coefficients of the Heckman–Opdam polynomials with gα = g,
∀α ∈ R (cf. Remark (i) above). The recurrence in question is different from the previous recurrence
for the Heckman–Opdam polynomials originating from the hypergeometric differential operator
(cf. Remark (iii) at the end of § 4.2). In particular, for g = 1 this gives rise to an alternative system
of symmetrized Freudenthal type recurrence relations for the weight multiplicities of characters of
simple Lie groups.

Remark (iii). For some root systems the minuscule weight π is not unique (viz. for R equal to AN ,
DN or E6). In such a situation, each possible choice for π induces a computationally non-equivalent
determinantal construction of the corresponding Macdonald polynomials.
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Example. For R = D3 and λ = (2, 1, 0) the determinantal formula reads

p2,1,0 = ((εD
2,1,0 − εD

1,1,1)(ε
D
2,1,0 − εD

1,1,−1)(ε
D
2,1,0 − εD

1,0,0))
−1

×

∣∣∣∣∣∣∣∣∣∣∣∣

m1,0,0 εD
2,1,0 − εD

1,0,0 0 0

m1,1,−1 −εD
2,1,0 + εD

1,−1,1 εD
2,1,0 − εD

1,1,−1 0

m1,1,1 −εD
2,1,0 + εD

1,−1,−1 0 εD
2,1,0 − εD

1,1,1

m2,1,0 −εD
1,−2,0 + εD−1,2,0 −2εD

2,1,0 + εD
1,0,−2 + εD

0,2,−1 −2εD
2,1,0 + εD

1,0,2 + εD
0,2,1

∣∣∣∣∣∣∣∣∣∣∣∣
,

with εD
m1,m2,m3

= (t4qm1 + q−m1) + (t3qm2 + tq−m2) + (t2qm3 + t2q−m3) or with εD
m1,m2,m3

=
q−(m1+m2+m3)/2(t2qm1 + 1)(tqm2 + 1)(qm3 + 1) (depending on the choice for the minuscule weight).

6. Macdonald polynomials: the case of general tα

In this section we will briefly indicate how to generalize the results of the previous section to the
case of Macdonald polynomials with general parameters tα such that tw(α) = tα for all w ∈ W .
We will keep the restriction that our root system R is reduced and that the dual root system R∨

has a minuscule weight π.
For general W -invariant tα-parameters the Macdonald operator becomes [Mac01]

Dπ =
1

|Wπ|
∑
w∈W

( ∏
α∈R+

1 − t
〈π,α〉
α ew(α)

1 − ew(α)

)
Tw(π),q. (6.1)

It is convenient to reparameterize the tα as

tα = qgα

(with gw(α) = gα, ∀w ∈ W ). The action of Dπ on the monomial basis can be written as [Mac01,
Section 5]

Dπmλ = q〈π,ρg〉 ∑
X⊂R+

(−1)|X| ∑
ν∈W (λ)

q〈π,ν+ρg(Xc)−ρg(X)〉χν−2ρ(X), (6.2)

where Xc = R+ \ X, and

ρ(X) =
1
2

∑
α∈X

α, ρg(X) =
1
2

∑
α∈X

gαα

(so ρ = ρ(R+) and ρg = ρg(R+)). Bringing the action in Equation (6.2) to triangular form gives

Dπmλ = ελχλ +
∑

µ∈P+,µ≺λ

bλµχµ, (6.3)

with

ελ = q〈π,ρg〉 ∑
τ∈W (π)

q〈τ,λ+ρg〉,

bλµ =
∑

ν∈W (λ)∩(W (µ+ρ)+ρ(X)−ρ(Xc))
X⊂R+

(−1)|X| det(wν+ρ(Xc)−ρ(X))q
〈π,ν+ρg(Xc)−ρg(X)〉.

We thus wind up with the following determinantal construction of the Macdonald polynomials
for general W -invariant parameters.
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Theorem 6.1 (Determinantal construction). For λ ∈ P+, let

pλ = mλ +
∑

µ∈P+,µ≺λ

cλµmµ

denote the (monic) Macdonald polynomial with tα = qgα . Then, upon setting for µ, ν ∈ P+

εµ = q〈π,ρg〉 ∑
τ∈W (π)

q〈τ,µ+ρg〉,

dµν = bµν − ελaµν ,

with

aµν =
∑

κ∈W (µ)∩(W (ν+ρ)−ρ)

det(wρ+κ),

bµν =
∑

κ∈W (µ)∩(W (ν+ρ)+ρ(X)−ρ(Xc))
X⊂R+

(−1)|X| det(wκ+ρ(Xc)−ρ(X))q
〈π,κ+ρg(Xc)−ρg(X)〉

(so dµµ = εµ − ελ), we have that:

i) the polynomial pλ is represented explicitly by the determinantal formula in Theorem 3.1;

ii) the coefficients cλµ of its monomial expansion are generated by the linear recurrence in Corol-
lary 3.2;

iii) the expansion coefficients cλµ are given in closed form by the formula in Corollary 3.3.

Remark (i). From a computational standpoint the formulas of Theorem 6.1 are much less effec-
tive than the determinantal constructions for the (q, t) Macdonald polynomials (Theorem 5.5) and
(especially) for the Heckman–Opdam polynomials (Theorem 4.4). This is because the action of the
general Macdonald operator on the monomial basis (cf. Equation (6.2)) is much more complex than
in these two previous cases. This renders Theorem 6.1 presumably only of limited practical value.

Remark (ii). The most general class of Macdonald polynomials admits a richer parameter structure
connected with admissible pairs of root systems (R,S) [Mac01]. (From this perspective the polyno-
mials studied here are of the type (R,R).) Since Macdonald in fact gives the action of the Macdonald
operator on the monomial basis for general admissible pairs, it is not difficult to generalize The-
orem 6.1 also to this context (at the expense of having to introduce a more elaborate notational
apparatus).
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