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LEFT IDEALS AND O-PRIMITIVITY IN MATRIX NEAR-RINGS

by J. H. MEYER
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Maximal left ideals in matrix rings were studied by Stone [10]. Similar results are not necessarily valid in the
general near-ring case and one of the objectives of this paper is to study these differences. Furthermore,
although much is known about 2-primitivity in general matrix near-rings (Van der Walt [11]), quite the
opposite is true for 0-primitivity and the other objective of this paper is to present some results on 0-
primitivity in matrix near-rings in certain restricted cases.

1980 Mathematics subject classification (1985 Revision): 16A76.

0. Introduction

Matrix near-rings were introduced in 1984 by Meldrum and Van der Walt [5]. Since
then several papers ([8, 12, 11, 13, 6, 2, 3]) and theses ([7,1]) were devoted to matrix
near-rings and as this field of study is still very immature, many more publications are
expected to follow.

The purpose of this paper is to study 0-primitivity in matrix near-rings. A good
survey on 2-primitivity in matrix near-rings over any zero-symmetric near-ring has been
done by Van der Walt [11]. Some results on 0-primitivity are also contained in Abbasi,
Meldrum and Meyer [2], but only for a very special class of near-rings, namely the
weakly distributive d.g. near-rings. Because of some complexities, we could only manage
to obtain certain results in restricted cases such as finite near-rings, or near-rings having
the DCCR. It seems that a considerable amount of work still needs to be done to
obtain similar results in the general zero-symmetric case.

The first section merely introduces some of the basic definitions, results and
techniques in matrix near-rings which will be used in this paper. For more details the
interested reader should consult [5], [7] and [1]. Section 2 deals with maximal left
ideals in matrix near-rings and the connections they have (or do not have) with
maximal left ideals in the base near-ring. A counter-example is given to show that the
near-ring case does not always necessarily follow the same pattern as in the ring case.

The final section is devoted, for the greater part, to finite zero-symmetric near-rings
and 0-primitivity. It becomes clear from this section that in order to have a reasonable
understanding of modules over matrix near-rings, it is useful if one knows whether or
not such modules can be embedded into a direct sum of finitely many copies of the
additive group of the base near-ring.
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174 J. H. MEYER

1. Definitions and preliminaries

Throughout this paper R will denote a zero-symmetric right near-ring. Unless
otherwise specified, R will also be assumed to contain an identity element. For any
natural number n, R" denotes the direct sum of n copies of the (not necessarily abelian)
group (R, +). From now on, n will always denote an arbitrary but fixed natural
number. We write the elements of R" in the form (,rl,r2,...,rny where r,e/? for all
i=l ,2, . . . ,n. In particular, 0: = <0,0,...,0> where the symbol := means "is defined by".
The functions 7t,:/?"-»i? and i,:i?—»•/?" will denote the ith co-ordinate projection and
injection functions respectively.

Definition 1.1. The near-ring of n x n-matrices over R, denoted by Mn(R), is defined
to be the subnear-ring of M(R"), generated by the set of functions {fr

ij:R
n->R"\reR,

l<^i,j<Ln} where fr
ij(rl,r2,...,rn): = (sus2,...,sny with s, = rr; and sk=0 if fc#i. The

elements of Mn(/?) will be referred to as n x n-matrices over R.

It follows that fM]n(.R) is a zero-symmetric right near-ring with identity / = / } i + / 2 2 +
•••+/£„. If R happens to be a ring, then Mln(^) is isomorphic to the usual full matrix
ring over R. Sometimes, because of typographical problems, we write fr

u as \r;i,j~\.
It happens frequently that we need to know a specific way in which a matrix is

compiled in terms of the functions /£,. We therefore introduce the following concept.

Definition 1.2. Let S denote the free semigroup over the alphabet of symbols
{fijlreR, l^ij^n} u {(,),+}. The set En(R) of matrix expressions is the subset of S,
recursively defined by the following rules:

(a) frij€\En(R) for all r<=R and lShj^n;
(b) if X, Ye En(R), then X+Ye En(R);
(c) if X, Y e En(R), then (X) (Y) e En(R);
(d) nothing else is in En(R).

Clearly, each element of En(R) represents a matrix in Mn(/?). On the other hand, each
matrix has infinitely many expressions representing it. For example, the expressions X
and X+f1t, for any XeEn(R), represent the same matrix. Also, when we write down an
expression, we usually discard any redundant parentheses without disturbing unambi-
guity. For example, the expression ( / i i ) ( / i i + / i 2 ) would be written (mostly) as
/ r u ( / u + / i 2 ) - If *eEn(R), m(X) will denote the matrix in Mn(R) represented by X.

Definition 1.3. Let XeEn(R) and UeMn(R). The length, l(X), of X is defined to be
the number of /-, in it. The weight, w(U), of U is defined to be the length of an
expression Y of minimal length such that m(Y) = U.

One way to relate (two-sided) ideals in Mn(K) to those in R, is by means of
Noetherian quotients: If A is an ideal of R then we define A* to be the ideal
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(An:R") = {UeMn(R)\UaeAn for all <teR"}, where A" is the set {(al,a2,...,an)eRn\
cijeA,i= 1,2,...,«}. As a matter of fact, if L is a left ideal of R, then (Ln:R") is also a
two-sided ideal of Mn(R) and is equal to A*, where A is the largest two-sided ideal
contained in L. We prove this in the following lemma.

Lemma 1.4. / / L is a left ideal of R and A is the largest two-sided ideal of R
contained in L, then L* = A*.

Proof. Since A^L, /4*sL*. Now suppose U$A*. Then n^a^A for some i, l ^ i ^ n ,
and OLeR". Therefore, (7c,[/a)r^L for some reR. But (n1(/a)r = 7r,l/(ar), where ar means
multiply each co-ordinate of a by r on the right. (See Meyer [7, Lemma 2.1.]) Hence,

•
Note that there are other (non-equivalent) ways of relating ideals in Mn(R) with those

of R, resulting in a vital difference between ring matrices and near-ring matrices, namely
that there is in general not a bijection between the set of ideals of R and the set of
ideals of Mn(R)—even if A is a finite weakly distributive d.g. near-ring with identity.
More details are contained in [12], [7] and [3].

Given an /^-module G, one can ask the question: If G" is the direct sum of n copies of
G, how can we define an Mn(.R)-module structure on G"? We need the following
definition.

Definition 1.5. Let G be an R-module. Then G is said to be locally monogenic if for
any finite subset H of G there exists g e G such that H £ Rg.

This idea was introduced by Van der Walt [11] and he used the term connected.
Clearly, if G is finite, then G is locally monogenic if and only if G is monogenic.

Now, if G is a locally monogenic i?-module, then we define the action of Mn(R) on G"
as follows: Let UeMn(R) and <£ l tg 2 , . . . , | B>eG". Then, by Definition 1.5, there are
geG and rur2,...,rneR such that gl=rig,i=l,2,...,n. Let U{gi,g2,...,gny.=
(U(rur2,...,rny)g, where <sl,s2,...,sn}g: = (slg,s2g,...,sng) for any <s1)s2,...,sn>eKn.
It is shown in Van der Walt [11] that this action is well-defined and it makes G" an
Mn(K)-module.

Also note that R" can be viewed as an MB(J?)-module in a natural way, since Mn(R) is
a subnear-ring of M(Rn). If L is a left ideal of R, then the action of R on R/L, namely
r(s + L): = rs + L for all r,seR, can be used to define (R/L)" as an Mn(K)-module as follows:
Let UeMn(R) and <r1 + L,r2 + L,.. . ,rn + L>e(/?/L)'1 and suppose l/<r1,r2,...,rB> =
(tltt2,...,tny. Then l/<r, + L,r2 + L,. . . ,rn + L>: = <t1 + L,t2 + L,...,tn + L}. An easy
induction argument on the weight of matrices in Mn(K) shows that this action is
well-defined and turns (R/L)n into an Mn(i?)-module. Furthermore, L" is an Mn(/?)-ideal
of R" and we can therefore also consider R"/L" as an MB(R)-module in the usual way.
The following lemma states that there is virtually no difference between the
Mn(R)-modules (R/L)n and R"/Ln.
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Lemma 1.6. (Meyer [7]). / / L is a left ideal of R then the Mn(R)-modules R"/Ln and
(R/L)n are Mn(R)-isomorphic.

We now state some results which will be useful later on:

Theorem 1.7. (Van der Walt [11]). / / A is a two-sided ideal of R, then Mn(R/A)S
Mn(R)/A* as near-rings.

Lemma 1.8. (Van der Walt [11]). Let G be an R-module and ve{0,2}. / / R is
v-primitive on G, then Mn(R) is v-primitive on G".

Lemma 1.9. (Van der Walt [11]). Let ve{0,2}. / / A is a v-primitive ideal of R, then
A* is a v-primitive ideal of M„(/?).

Lemma 1.10. (Van der Walt [11]). Suppose T is a type 2 Mn(R)-module and let
s/: = AnnM(R)r. Then there is an ideal A of R such that si= A*.

Lemma 1.11. (Meyer [7]). An ideal si of Mn(R) is 2-primitive if and only if si' = A*
for some 2-primitive ideal A of R.

Lemma 1.12. (Van der Walt [11]). / / the Mn(R)-module T is monogenic, then TsG"
as additive groups for an appropriate R-module G.

The i?-module G of Lemma 1.12 is defined as f\ir = {f\1y\yer} where r{f\1y): =
f U f ' u Y ) f o r a l l r e R a n d f ^ f ^

2. Maximal left ideals

Whilst studying O-primitivity in matrix near-rings, it would be very handy to have
some nice relationships between maximal left ideals of R and those of Mn(R). Stone [10]
characterises all maximal left ideals in matrix rings as follows:

Theorem 2.1. (Stone [10]). / / L is a maximal left ideal of a ring R and aeR"\Ln, then
(L":a.): = {UeMn(R)\U(xeL''} is a maximal left ideal of M^R)- Moreover, every maximal
left ideal of Mn(R) is of this form.

Unfortunately, in the near-ring case the situation is not the same. We will show that
under certain conditions, (L":a) is indeed a maximal left ideal of M „(/?), where R is a
zero-symmetric near-ring with identity (Theorem 2.4), but not under the general
conditions of Theorem 2.1 (Example 2.5). Also, we will prove that for some "well-
behaved" near-rings R, the maximal left ideals of Mn(/?) are indeed of the form (L":a) as
described in Theorem 2.1 (Theorem 2.11). Before we can prove these theorems, we need
the following lemmas.
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Lemma 2.2. Let A = {sits2,...,sn} be a finite subset of R and let S be the R-subgroup
of R generated by A. Furthermore, let T be the subset of R recursively defined by the
following rules:

(a) Si e Tfor all i =1,2,..., n;
(b) if tut2eT, then tl-t2eT;
(c) if teT andreR, then rteT;
(d) nothing else is in T.

ThenS=T.

Proof. First of all, that T is an R-subgroup of R, follows directly from (b) and (c).
Since A^ T (by (a)), we must have S^T.

Before showing that T^S, let us introduce some more terminology. Each teT is
always constructed (in many ways) by a finite number of applications of the rules (a)-
(c), starting always with rule (a). A unique number cA(t) which is in effect the minimum
number of applications of the rules (a)-(c) needed to construct t, will be assigned to t in
the following way:

We call a sequence t1,t2,...,tm of elements of T a generating sequence of length mfor
t with respect to A if t^eA, tm = t and for each k = 2,3,...,m, one of the following
applies:

(i) he A;
(ii) tk = ti-tj, l^i,j<k;
(iii) tk = rth l^i<k and reR.

The complexity of t with respect to A, denoted by cA(t), is the length of a generating
sequence of minimal length for t with respect to A. Note that cA(t) = 1 if and only if
t e A. We can now finish the proof of Lemma 2.2.

Let teT. We will show that teS by using induction on cA(t). If cA(t)=l, then
teA^S. Suppose cA(t) = m>\ and that all t'eT with cA(t')<m are contained in S. We
have two possibilities:

1. t = tt — t2 where tut2eT and cA(t^, cA(t2)<m. Since tut2eS, we must have
t = ti-t2eS.

2. t = rtu where ti£T,reR and cA(tx)<m. Since t1eS, we have t = rtieS.

By induction all elements of T are contained in S and the proof of the lemma is
accomplished. D

Lemma 2.3. Suppose S is an R-subgroup of R generated (as an R-subgroup) by the
elements sus2,...,sn in R. Let a: = <s1)s2,...,sn>6i?". Then

https://doi.org/10.1017/S0013091500005460 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500005460


178 J. H. MEYER

where Mm(R)a: = {Ua\UeMn(R)} and Sm: = {<xl,x2,...,xm>eRm\x,eSJ = l,2,...,n}.

Proof. To show that M,(i?)aES", we use induction on the weight of matrices in
Mn{R). Let UeMn(R) and suppose w(C/)=l, i.e. 1/=/^- for some reR and l^ij^n.
Then UP = ii(rnjP)eS11, for all fieS". In particular UoceS". Now suppose w(U) = m>l
and F^eS" for all fieS" and for all VeMn(R) with w(F)<m. There are two cases to
consider:

1. u=V1 + V2 with V1,V2eMn(R) and w(K,), w(F2)<m. It follows that UP=VJ +

2. l / = F i F 2 with KL V2eMn(R) and w(F1),w(K2)<m. In this case up = (V1V2)P =
V1(V2P)=Vly for some yeS" so that K^

In both cases it follows that UtxeS", since aeS". From induction it follows now that
Mn(R)oc<=Sn.

In order to prove that S"cMn(R)oc, we will show that i17i1(S") = <5,{0},{0},...,{0}>s
Mn(R)a. The same method can then be used to show that 1,71,(5") £ Mn(/?)a for all
i=l,2,...,n. Since Mn(R)a. is an Mn(/?)-subgroup of the Mln(R)-module R", it follows
that ZUiiMSn) = S"<=Mn(R)a.

Since S is the R-subgroup of R generated by A = {sus2,...,sn}, we can apply Lemma
2.2 and so each element of S has a complexity with respect to A. Now let seS such that
<u(s) = l- Then seA, i.e. s = sy for some j , l fSjgn. But then i1(s) = <s,0,0,...,0> =
/Jj-aeMln^a. Now suppose seS with cyl(s) = m > l and that il(t)eMn(R)a for all teS
with 0^(0 < m. Consider the following possibilities:

1. s = t1—12 with ti,t2eS and c^tj), cA(t2)<m. But then ii(s) = 'i(fi) —
h(t2)€ Mn(R)oc - Mn(R)« £ Mn(R)x.

2. s = rt where reR,teS and cA(t)<m. In this case ii(s)=/nIiWe/ii

The principle of induction assures us that i1(S) = i1nl(S")cMn(R)a. and by the argu-
ments above, our proof is complete. •

Theorem 2.4. Suppose L is a maximal left ideal of R and a = <s1,s2,...,5n>ei?"\L1' is
such that the set {s1)s2,...,sn} generates R as an R-subgroup of R (for example, if at
least one s, = l). Then (L":a) is a maximal left ideal of Mn(R), where (L":a): =
{UeMn(R)\U«eLn}.

Proof. Consider the Mn(K)-homomorphisms <p:Mn{R)^R" and il/:Rn-*Rn/L"^
(R/L)", where <f>(U): = U(x. for all UeMn(R) and \j> is the canonical Mn(/?)-epimorphism.
The isomorphism follows from Lemma 1.6. Furthermore, Mn(R)aL = Rn as follows from
Lemma 2.3, which means that </> is an epimorphism. But then \j/ o(/>:Mn(R)-*Rn/Ln is an
epimorphism. We deduce that Mn(R)/(Ln:<x) = Mn(R)/KeT{il/o(p)^Im(\p°<l>) = R"/L''. But
since R/L is simple as ^-module, (R/L)" is simple as an Mn(i?)-module. (See Meyer [7,
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Corollary 2.10.]) This means that Mn(R)/(Ln:a)^Rn/Ln^(R/L)n is simple as
Mn(K)-module and we deduce that (L":a) is maximal in Mn(K). D

We will now provide an example to show that when aei?"\L", but the co-ordinates of
a do not generate R as K-subgroup of R, then Theorem 2.4 is in general not valid.

Example 2.5. Let G: = {0,1,2,...,7} denote the cyclic group of order 8. The non-
trivial proper subgroups of G are denoted by Hl: = {0,2,4,6} and H2: = {0,4}. Define R
as follows:

R: = {f eMQ(G)|/(H,)£Hhi= 1,2, and if x,yeHt with x-yeH2,

then f(x)-f(y)eH2}.

It is routine verification to check that R is a zero-symmetric, abelian near-ring with
identity. Moreover, JR is finite with |/?| = 216 = 65536.

Now consider the following subsets of R:

K: = {feR\f(l)eH2},

Obviously, { 0 } c L c X c M c / i , where " c " means proper inclusion. We also observe
the following facts:

I. L is a maximal left ideal of R.
Proof. Being the annihilator of an element in G, L is certainly a left ideal of R.
Since K1 = G, we have that R/AnnR[l) = R/L^G as K-modules. The only
possible non-trivial proper /^-ideals of G are i/j and H2. But r(2+l)—r(l) =
r(3)-r(l) = l if r(3)=l and r(x) = 0if x#3 . Since 26/*! and l ^ , / / t is not an
i?-ideal of G. In a similar way it follows that H2 neither is an i?-ideal of G,
implying that G is a simple R-module. But then R/Lis a simple /^-module and
so L is a maximal left ideal of R. •

II. Both K and M are R-subgroups of R (and not R-ideals).

Proof. Straightforward. •
III. K is an R-ideal of M.

Proof. Since (K, +) is a normal subgroup of (R, +), it is a normal subgroup of
(M, +) as well. Let keK,meM and reR. Then

m)-rm](l) = r(h2 + hi)-r(hl) where Ji,e/Jh i = 1,2

eH2, since huhl+h2eHl and (h1 + h2) — h1eH2. •
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IV. We have the following proper inclusions of R-modules:

L/L<=K/LczM/L.

Proof. This is merely a matter of equivalence class arithmetic. •

V. The R-module M/L is not simple.

Proof. From III and IV it follows readily that K/L is a non-trivial proper
K-ideal of M/L. •

VI. The R-subgroup M of R is generated (as an R-subgroup) by the two elements mt

andm2,where ^ ^ ^

, \ x otherwise,
x otherwise [

Proof. Since mum2eM, the /?-subgroup generated by m, and m2 is certainly
contained in M. Conversely, if meM, choose rur2eR as follows:

fm( l ) -m(2 ) i fx = 2 f m(2) i fx = 2
rt(x): = <, m(l) + m(2) ifx = 6 r2(x): = J m(6)-m(4) ifx = 6

wi(x) otherwise 0 otherwise.

Then r1ml+r2m2 = m, as can be easily verified and so M is contained in the
R-subgroup generated by mt and m2. •

VII. For any n^2 we have that Mn(R)a=M", where a: = <ffii,m2,0,0,...,0>eR'1 with
wij and m2 as in VI.

Proof. This result follows directly from VI and Lemma 2.3. •

VIII. For the a of VII it follows that aeit"\L" and (L":a) is not a maximal left ideal of
Mm{R).

Proof. Consider the mappings (j>:Mn(R)->R" and ^:R"->/?7L'1s(i?/L)'1 of
Mn(/?)-modules as in the proof of Theorem 2.4. It follows that

Im OA o 4) = {[/a + L" | U e Mn(R)}

= M"/Ln by VII.

Furthermore , Mn(K)/(L":a) = Mn(/?)/Ker(^o(/>)sM7Ln. But M/L is not simple
as an /^-module (from V) and so (M/L)n = M"/Ln is not simple as an
Mn(R)-module which implies that (L":a) is not maximal in Mn(/?). •

It must be emphasised that although K is not a left ideal of R, (K":a) is indeed a
maximal left ideal of Mn(i?), properly containing (L":a). It can be shown that (K":a) is
of the form (T":0) where T is a maximal left ideal of R and fieR"\Tn-.Take T as
{ / e / ? | / (2 ) , / (6 )e f f 2 } ) and /? = < l ) l , 0 , 0 , . . . , 0 > e i r

If T is a faithful type 0 M)n(K)-module, then F is Mn(K)-isomorphic to Mn(R)/£e for
some maximal left ideal i f of Ml „(./?). It follows from faithfulness that the largest
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two-sided ideal in JSP is {0} and hence, if i f = (L":a) for some maximal left ideal L of R
and aeRn\L", then L* = {0}, because L* = {L":Rn)^{Ln:ix) = SC and Z* is two-sided.
Consequently, if we can find an R with Mn(i?) 0-primitive and such that no maximal left
ideal L of R has the property L* = {0}, then at least one maximal left ideal of Mn(R)
cannot be written in the form (L":a) where aeRn\LP. It is not known whether such an R
exists. In Theorem 2.11, however, it will be shown that when R is a weakly distributive
d.g. near-ring, then every maximal left ideal of Mn(K) can be expressed in this form.

Recall that a d.g. near-ring R is weakly distributive if its distributor series {D'(R)}
terminates in {0}, where

D°{R): = R, and

,a,be£'(£)}>* if i^

Here Gp(X)R denotes the normal subgroup of (R, + ) generated by X s R . The
interested reader should consult Meldrum [4] for a comprehensive study on this subject.
We also quote the following lemmas from [4]:

Lemma 2.6. (Meldrum [4, Theorem 9.45]). Let R be a d.g. near-ring with R2 = R.
Then D"(R) = Sn(R) for all n^O where 5n{R) denotes the nth term of the derived series of
the group (R, +).

Lemma 2.7. (Meldrum [4, Corollary 9.46]). If R is a d.g. near-ring with R2 = R, then
R is weakly distributive if and only if (R, +) is soluble.

Lemma 2.8. (Meldrum [4, Corollary 9.34]). / / R is a d.g. near-ring then S^R) is an
ideal of R for all i^O.

Lemma 2.9. (Meldrum [4, Corollary 9.49]). / / R is a d.g. near-ring with (R,+)
soluble, then dl(R) is multiplicatively nilpotent.

It was shown in Abbasi, Meldrum and Meyer [2] that if R is a weakly distributive
d.g. near-ring, then so is Mn(R). By Lemmas 2.7, 2.8 and 2.9 it follows that ^x(Mn(R)) is
a multiplicatively nilpotent ideal of Mn(K). Consequently, 51(Mn(R)) is contained in
^/2(Mn(/?)) from which it follows that 51(Mn(/?))£^f for any maximal left ideal & of
Mn(R), since Sr1/2(Mn(R)) = n {& \<£ is a maximal left ideal of Mn(K)}. This leads us to
the following lemma:

Lemma 2.10. Suppose R is a weakly distributive d.g. near-ring and let £f be a maximal
left ideal of Mn(R). Then there exists an oceR" such that the set of co-ordinates of a.
generates R as an R-subgroup and such that (£COI:OL): = {UeMn(R)\Uixe^ix}czMn(R),
where \

Proof. Since Mn(R) is d.g., each matrix can be represented by an expression
involving only f'j and plus-signs (Abbasi [1, Theorem 4.1]). In fact, since Mn(/?) is also
weakly distributive, any U e Mn(R) can be expressed as
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ft +/n22 + • • • + / r +1/ ' , where l/'e$1(M1,(*))c:J2\

Now suppose the lemma is not true. Then (if<x:a) = Mn(R) for all ixeR" of which the
co-ordinates form a generating set for R as /{-subgroup; in particular, for all a. with
7i,a = 1 for some i, l^i^n. Consequently, S£v. = Rn for all such a. To simplify matters, we
shall stick to the case n = 2. A similar (but much more clumsy) procedure applies for the
case n>2.

For every yeR there is a matrix Uye<£ such that C/y<l,y> = <l,0>. Since / { ^ e i ?
and /}1(/y<l,}'> = <l,0>, we shall only consider first row matrices in if, i.e. matrices of
the form jf\1L,Le£C. Similarly, for every xeR, there is a (first row) matrix Vxe£f such
that Vx(x, 1> = <1,O>. Now suppose

Uy = [r i ; 1,1] + [s,; 1,2] + [r2; 1,1] + [s2; 1,2] + • • • + [rm; 1,1] + [sm; 1,2].

Then

Uy = [r1 +r2 + • • • +rm; 1,1] + [st +s 2 + • • • +sm; 1,2] + [/; for some U'ye<£.

Let ciy): = rl+r2 + ---+rm and 6(y): = sx +s 2 + - •• +sm. Then, since l / / l , y> = <l,0>, it
follows that a(y) + b(y)y + d(y) = l for some d(y)e5l{R). Consequently, for any
there aie b(y)eR and d(y)ed1(R) such that

But [-d(y); 1, l ]eif (Abbasi [1, Corollary 4.18]) and thus we have that

II-b(y)y;l, 11 +My); 1,2] e if.

By a similar argument, for any xeR, there is an a(x)e/? such that

[a(x); 1,1] + [1 -a(x)x; 1,2] e if.

Since if is a left ideal we deduce that for any x,y,z,weR, [z(l — b(y)y); 1,1] +
[zfe(3/); 1,2] e i f and [wa(x); 1,1] + [w(l -a(x)x); 1,2] eif, and so

[z(l - 6(3;));) + wfl(x); 1,1] + [zb( y) + w( 1 - a(x)x); 1,2] e if.

Let y=0, x= -b(0), w= -b(0) and z = 1 + b(0)a{ - b(0)). Then we have (with 6(0) written
as b and using the fact that x(—y) — xyeS1(R) for all x,yeR)
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and since the expression in a and b is an element of Di{R) = 51(R), we conclude that

It follows mutatis mutandis that / 2 2 s i f and therefore / h + / 2 2 > the identity matrix, is
an element of if, which is a contradiction. •

Theorem 2.11. / / R is a weakly distributive d.g. near-ring and S£ is a maximal left
ideal ofMn(R), then there exists a maximal left ideal L of R such that i?' = (Ln:<x) for some
aeRn\L".

Proof. From the previous lemma it follows that there is an aeR" (of which the
co-ordinates generate R as an i?-subgroup and can therefore not be in L" for any proper
left ideal L of R) such that (i?a:a)<=Mn(R). But since if c(j£?a:a) and S£ is maximal,
we must have if = (i?a:a). Also, if a is an Mn(R)-ideal of the Mn(K)-module Rn and is
thus of the form K" for some left ideal K of R (Van der Walt [11, Lemma 3.7]). But K
is contained in a maximal left ideal L which means that if = (K": a) £(L": a) cMln(K) so
that i?=(Ln: a). •

Corollary 2.12. / / the d.g. near-ring R is weakly distributive, then

Proof.

is a maximal left ideal of Mn(R)}

= n {{L":aL)\L is an element of a subset of the set of all maximal
left ideals of R and aLe Rn\L"}, by Theorem 2.11

2 n {(L":<x)|L is a maximal left ideal of R and aeK"\L"}

2 n {(Ln:R")|L is a maximal left ideal of R}

=((n {L\L is a maximal left ideal of R})":R") by Pilz [9, 1.44]

Since (^/2(K))* is two-sided, (^/2(K))*<=^(M,,(K)). Furthermore,
from Meyer [7, Theorem 2.34(a)], and since (^(i?))* = (^I/2(^))* (by Lemma 1.4), the
result follows. •
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3. O-Primitivity

In this section we will concentrate on those R-modules embeddable into RR. We shall
see that when R has DCCR, i.e. R has the descending chain condition on /^-subgroups,
then much can be said about simple faithful R-subgroups of R. If R is finite we can even
go further and prove a strong relationship between R and M „(/?), as far as O-primitivity
is concerned. Of course, the next step would be to study this relationship in arbitrary
zero-symmetric near-rings.

Lemma 3.1. Suppose K is an R-subgroup of R. Then

(a) The R-module K is faithful if and only if the Mn{R)-modute K" is faithful.
(b) The R-module K is simple if and only if the Mn(R)-module K" is simple.

Proof, (a) Suppose MMK" is faithful. Let 0#reK. Then / r
u is non-zero in Mn{R)

which means that there is an aeK" such that / r
n a # 0 . This implies that n^asK and

r(7ti<x)#0. Consequently, RK is faithful.
On the other hand, let RK be faithful. Suppose UeMn(R) is non-zero. Then

l/<r1)r2,...,rn> = <t1,I2,...,tn> with rhtteR and at least one th say tu is non-zero.
Since RK is faithful, there is a keK such that ^fc/0. But then V(jik,r2k,...,rnky =
(tlk,t2k,...,tnk}^0, while <j1k,r2k,...,rnkyeK". In other words, Mw(R)/C" is faithful.

(b) Suppose RK is not simple. Then there exists an R-ideal H of K such that
{0}cHcK and so (Hn, +) is a proper non-trivial normal subgroup of (K", +).
Moreover, H" is an MB(R)-ideal of K", as follows: Let aeH", fieK" and fr

i}eMn(R).
Then frij{a + P)—frijP = y, where 71,76 H and 71^=0 if kjti. So yeH". Now let
w(L/) = m>l , and suppose V(u + 0) - Vp e H" for all <xeHn, fieK" and matrices V with
w( V) < m. There are two cases to consider:

1. U=V1 + V2, with w(V{), w(V2)<m. But then U(a + P)-UP = (V1 + V2)(« + )?)-

VJ + y'e H", for some y, y' e H".
2. U = V1V2, with wiVJ, w(V2)<m. In this case, U(a + P)-UP=V1V2{<x + P)-

(<x + P)-V2p+V2p-]-V1V2PeH", since V2

From induction it follows that M^K" is not simple.
Conversely, suppose M^R)K" is not simple. Then there is a non-trivial Mn(R)-ideal

/ c K " But 3tf is of the form H" for some R-ideal H of K, where {OjcHcK (take
H = {nla\aeJ^}.) As a consequence, RK is not simple. •

Theorem 3.2. Suppose R has DCCR and does not necessarily contain an identity. Let
K be a non-zero R-subgroup of R. If the R-module K is simple and faithful, then it is
monogenic.

Proof. Since K is faithful, K^Ann^kf) for some /cje/C. Moreover, because
KnAnn^fcj) is an R-ideal of K, we must have X n A n n ^ ^ f O } , Now consider the
map (p:K->K where (f>{k): = kk1 for all keK. This map is injective, for if kk1 = k'k1

where fc^fe', then O^k-k' e KnAnnR(kl) = {0}, a contradiction. That <p(k + k) = <j>(k) +
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<f>(k') and <p(rk) = r(p(k), for all k,k'eK and reR, follows trivially. We deduce that K and
Kk1 = lm((p) are R-isomorphic.

If KktczK, we can repeat the process with K replaced by Kkt and obtain an
R-module /C^/cjSKfci which is i?-isomorphic to Kkx (and hence to K). And so we can
continue to repeat this process until the containment is not proper any more (because of
the DCCR) and we end up with a chain of J?-subgroups:

K =>Kkx = > K k 2 k Y = > • • • = > K / c , f c , _ i . . . k l = K k i + l k i . . . k v

This implies that ki+lki...k1 = k'ki+1ki...k1 for some k'eK, whence /?fcI + 1fci...fe1 =
Rk'ki+1ki...klcKki+lki...k1^Rki+1ki...kl and it follows that Kfc,-+1kI-...fc1 is mono-
genic over i? by fci+1fc,-...fc1. Since all the subgroups in the chain are R-isomorphic, RK
is also monogenic. •

Corollary 3.3. / / R has DCCR and contains a simple faithful R-subgroup, then R is
O-primitive.

Note that Theorem 3.2 is no longer valid if RK is not faithful: Let, for example,
G: = Z2@Z2@Z2 and let ff1: = {(0,0,0),(0,l,0)}, H2: = {(0,0,0),(l,0,0)}, H3: =
{(0,0,0)(l, 1,0)} and H:=Jj?=1H,. Then define R as follows:

K: = {/eMo(G)|/(H,)Eff,foralli = l,2,3}.

R is a finite near-ring with identity. If we now take

K = {feR\f(0,0,1)eH and /(a)=(0,0,0) for all a#(0,0,1)},

then it is easy to verify that RK is simple, not faithful and also not monogenic.

Theorem 3.4. Suppose R is finite. Then Mn(R) is 0-primitive if and only if R is
O-primitive.

Proof. If R is O-primitive then Ma(R) is 0-primitive by Lemma 1.8. Now suppose
M(R)r is a faithful type 0 module with generator y. Then r£MB(R)/J&f as Mn(R)-modules
where i?: = AnnM(R)(y) is a maximal left ideal of Mn(R). Since M-(R)Mn(i?)/if is faithful,
if cannot contain any two-sided ideals other than {0}. Also, since Mn(K) is finite, it
contains minimal left ideals as well as minimal two-sided ideals. Suppose all minimal left
ideals of Mn(R) are contained in £C. According to Pilz [9, 3.54], every minimal
two-sided ideal is a direct sum of minimal left ideals. This would mean that if contains
all the minimal two-sided ideals, which is impossible.

Consequently, there is at least one minimal left ideal, say £%, of Mn(i?) such that
&£&. Hence, ^y#{0}. From Pilz [9, 3.10], it follows that 36^T as Mn(i?)-modules.

Furthermore, since ^#{0} , there is a non-zero aeR" such that &a. is a non-zero
yn(R)-subgroup of R". This implies that 38ix is of the form K" for some non-zero
R-subgroup K of R. (Take K = {n1Ba\Be@}.) The map @^Kn which sends B&& to Ba.
for all B e 3S assures us of an isomorphism
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K" s »HS» n AnnM,,,(a)) =

of Mn(R)-modules. Consequently, F s K " as Mn(i?)-modules whence M^K" is simple and
faithful! We therefore must have RK simple and faithful, by Lemma 3.1. Corollary 3.3
now implies that R is O-primitive. •

Corollary 3.5. / / R is a finite O-primitive near-ring, then there exist a maximal left
ideal & and a minimal left ideal && of Mn(R) such that

Proof. Following the same terminology as in the proof of Theorem 3.4, SD n Z£ = {0}
by the minimality of @ and we therefore must have that Mn(R) = y@38, by the
maximality of 3!. •

The following corollary clears up—at least to a certain extent—open problem 5 posed
in Meyer [7, p. 105]. For any k, lg/cgw, SCk is defined to be the left ideal of Mn(R)
generated by the matrix f\k. We also define

•M k. = Jz i + J z j "I" * * ' "t" -Z-Jt - 1 ")" -2> fc + ! + " ' + Jz „.

In Meyer [6] it is shown that if F is a near-field, then, with R replaced by F in the
foregoing, J(k is a maximal left ideal of M)n(F). Moreover, it is shown that

(l)). (t)

Corollary 3.6. / / F is a finite near-field and with the notation as explained above, there
is a minimal left ideal 0D of Mn(F) such that 08 n J(k= {0} and hence that

Proof. The module M^F)F" is faithful and of type 0 and we may choose y: = i*(l) as
generator. But, according to (t), ^ k is the annihilator of y in the near-ring Mn(F).
Following the proofs of Theorem 3.4 and Corollary 3.5 above, our result is
immediate. •

It remains, however, to be seen whether ^Q£Ck in the corollary above, as was
suggested by the open problem discussed in the foregoing.

Another question which remains open is whether Lemma 1.10 remains valid if F is a
type 0 Mn(/?)-module. Examples suggest very strongly (at least in the finite case) that
this is indeed the case. This would in turn, force Lemma 1.11 to be true in the 0-
primitive case and by using Theorem 1.7 one should be able to prove a strong link
between 2T0(R) and %(Mn(R)) which we formalise as follows:
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Conjecture 3.7. / / R is finite, then
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