
 

 
DESIGN SUPPORT TOOLS AND METHODS 653 

INTERNATIONAL DESIGN CONFERENCE – DESIGN 2022 
https://doi.org/10.1017/pds.2022.67 

Uncertainty Analysis of a Calculation Model for Electric Bearing 
Impedance

P. Welzbacher , S. Puchtler, A. Geipl and E. Kirchner 

Technical University of Darmstadt, Germany 

 peter.welzbacher@tu-darmstadt.de 

 

Abstract 

The integration of Sensing Machine Elements (SME) is a promising approach to obtain reliable data about 

relevant process and state variables of technical systems. However, the quality and reliability of the provided 

data strongly depends on the corresponding calculation model of the SME and the therein included 

uncertainty. Consequently, in this contribution, the calculation model of a sensory utilized rolling bearing, as 

exemplary SME, is systematically analyzed using existing methods and tools to identify uncertainty that 

critically affects the quality and reliability of the data provided. 

Keywords: uncertainty, systematic approach, design methodology, sensing machine elements, 
sensory utilised rolling bearing 

1. Introduction and Motivation 
As a result of the progressing digitalization in the context of Industry 4.0 and the implementation of 

cyber-physical systems, a substantial need regarding information about technical systems and 

processes arises, e.g. in order to increase their efficiency or sustainability (cf. Matt and Rauch, 2020). 

However, the acquisition of this information in terms of data about characteristic state and process 

variables is often challenging and can typically be realized in multiple ways (cf. Martin et al., 2018). 

In this context, Sensing Machine Elements (SME) represent a promising approach to obtain 

information about relevant state or process variables within technical systems. SME build upon the 

primary mechanical functions of conventional machine elements and enhance them with sensory 

functions (cf. Vorwerk-Handing et al., 2020a). Moreover, since machine elements, such as rolling 

bearings, are an essential part of almost every technical system, SME offer a great potential regarding 

the retrofit of sensory functions into technical systems that were not developed against today's 

background. Shifting the point of measurement to a position in - or at least close to - the process zone 

using SME reduces uncertainty arising within the transmission path of the quantity to be measured - 

so-called measurand - from its point of origin to the point of measurement (cf. Hausmann et al., 2021). 

However, the quality and thus the reliability of the data provided by SME, such as the sensory utilized 

rolling bearing by Schirra et al. (2018), heavily depend on their corresponding calculation model. In 

this context, the calculation model is the inverted measuring function, according to JCGM 200:2012, 

that quantitatively describes the relation between the input of the SME - the measurand - and the 

corresponding output - the emitted (electric) signal - based on the laws of the utilized effects and 

principles (cf. Bureau international des poids et mesures, 2012). Since these models are oftentimes 

quite complex and include multiple inputs - intended as well as unintended in case of disturbance 

factors -, special attention must be paid to their evaluation in terms of uncertainty. 

Consequently, to ensure the quality and reliability of data provided by SME, it is reasonable to analyze 

their underlying calculation model with regard to the associated uncertainty. For this purpose, there 
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are already some frameworks that are theoretically applicable, such as the Uncertainty Mode and 

Effects Analysis (UMEA) by Engelhardt et al. (2009) or the thereon based approach by Vorwerk-

Handing et al. (2020b). However, oftentimes it remains unclear how the different methods and tools 

included therein can be applied effectively to the calculation model of a SME depending on the 

prevailing level of information and knowledge about the individual uncertainty factors. Especially 

when the level of information and knowledge about different factors causing uncertainty is not 

uniform, a mere qualitative or quantitative analysis is oftentimes not expedient. 

The aim of this contribution is therefore to investigate if an existing framework and the therein 

included methods and tools can be utilized or adapted to systematically analyze uncertainty in the 

calculation models of SME. As an exemplary SME, the sensory utilized rolling bearing by Schirra et 

al. (2018) is considered, which is the subject of current research at the authors' institute. The results of 

the analysis enable a reduction of the overall uncertainty within the calculation model of the sensory 

utilized rolling bearing and thus an increase in the quality and reliability of the data provided. 

2. Fundamentals 
This section describes the fundamentals for the subsequent uncertainty analysis of the sensory utilized 

rolling bearing's calculation model. First, the term "uncertainty" is defined in order to achieve a 

uniform understanding. Subsequently, different approaches for its classification are outlined that are 

utilized in the further course of this contribution. Finally, the fundamentals of the sensory utilized 

rolling bearing and its calculation model are introduced and described. 

2.1. Uncertainty - Definition and Classification Approaches 

According to ISO Guide 73:2009, uncertainty is "the state, even partial, of deficiency of information 

related to, understanding or knowledge of, an event, its consequence, or likelihood." (International 

Organization for Standardization, 2009). In general, uncertainty causes a deviation of objectives from 

the expected - in a positive and/or negative way - and thus leads to a risk, which is critical if it results 

in a failure and ultimately a hazard (cf. International Organization for Standardization, 2009; 

Deutsches Institut für Normung e. V., 2015). 

Uncertainty is characterized by various aspects and can therefore be distinguished using different 

approaches. Already existing classification approaches focus on the nature of uncertainty, its degree or 

its point of appearance in the systems model - so-called manifestation. It must be noted that these 

classification approaches are not mutually exclusive, but compatible and also complementary, cf. 

Figure 1 (cf. e.g. Walker et al., 2003; Engelhardt et al., 2010). 

 
Figure 1. Classification of uncertainty (cf. Walker et al., 2003; Kreye et al., 2011) 

The nature of uncertainty refers to its reducibility by an increase of information. In this context, 

uncertainty is distinguished into epistemic uncertainty and aleatory uncertainty. Epistemic uncertainty 

is caused by a lack of information and thus can be reduced by gaining more information, e.g. by 

experiments or more precise measurement methods. In contrast, aleatory uncertainty is caused by an 

inherent variability, e.g. due to the stochastic nature of an empirical quantity. Hence, aleatory 

uncertainty cannot be reduced by an increase of information, whereas epistemic uncertainty can be 

reduced. (cf. Oberkampf et al., 2002; Walker et al., 2003; Grebici et al., 2008) 

M
a
n
if
e
s
ta

ti
o
n

Level

Context

Model 

structure
OutcomeInput

Context

uncertainty

Data

uncertainty

Model

uncertainty

Phenomenological

uncertainty

https://doi.org/10.1017/pds.2022.67 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2022.67


 
DESIGN SUPPORT TOOLS AND METHODS 655 

In contrast, the level of uncertainty refers to the amount of information available and/or reliable 

regarding an uncertainty. In this context, the spectrum ranges from "total ignorance" or "nescience" - 

no information available - up to "determinism" - complete information available. In reality, 

determinism is oftentimes an unachievable ideal. (cf. Walker et al., 2003; Weck et al., 2007) 

The manifestation of uncertainty refers to the location in a system model in which uncertainty occurs, cf. 

Figure 1. A distinction is made between context uncertainty, data uncertainty, model uncertainty and 

phenomenological uncertainty. In general, the context of a system describes the circumstances and 

conditions surrounding the system. This includes, e.g., the use context of the system but also the 

political, market and cultural context. Context uncertainty describes the potential influence of the 

system's context on the system itself, e.g., in terms of disturbance factors. In contrast, data uncertainty is 

uncertainty that is connected to the input of the system, its model, respectively. This not only includes 

the actual input of the system or its model in the form of data, but also, e.g., design parameters that are 

utilized within the system's model. Model uncertainty, however, is located in the system's model and 

describes inaccuracies - made consciously or unconsciously - in the modelling process, e.g. 

simplifications, that may result in a deviation between the behavior of the model and the real system. 

Finally, phenomenological uncertainty is present if some relevant information is unknown at the point of 

formulation, modelling, respectively. It can be described as unpredictability of the future due to 

unknown events or influences. Per definition, it is not possible to describe or model this manifestation 

completely, since there may always be an influence occurring from an unexpected event. However, it is 

possible to reduce this manifestation by applying a systematic approach, e.g., in the modelling process. 

(cf. Kreye et al., 2011; Walker et al., 2003; Weck et al., 2007; Welzbacher et al., 2021) 

2.2. Sensory Utilized Rolling Bearing 

Measuring process forces in rotating machines is usually attended by various difficulties. The 

integration of sensors in the flux of force may require a redesign of the technical system as well as 

additional installation space. Other sensor concepts are easier to integrate but rely on a longer 

transmission path of the measurand and therefore comprise higher uncertainty as discussed earlier. A 

novel approach in this context is the utilization of a ball bearing as a load sensor (cf. Schirra et al., 

2018). This requires no major change of the system's design and allows a measurement directly in the 

flux of force. 

2.2.1. Fundamentals 

A ball bearing, as shown in Figure 2a), consists of two rings separated by rolling elements. These allow 

a rotational degree of freedom in the relative movement of the rings. The cage ensures uniform spacing 

between the rolling elements. Rolling elements bear the load and thus a Hertzian contact ellipse 

develops, cf. Figure 2b). In the fluid friction regime, a lubrication film develops which separates the 

rolling element from the race by the central film thickness ℎC. Since commonly used lubricants are of 

high specific resistance, only minor direct current (DC) passage will occur. That is, only as long as the 

breakdown voltage is not surpassed and therefore no electric discharge emerges. The lubrication film is 

thin compared to the Hertzian area and therefore allows an approximation of the resulting contact 

capacitance, which becomes the characteristic quantity for alternating currents in the kHz regime and 

beyond: 

𝐶Hertz = 𝜀 ∙
𝐴Hertz

ℎC
. (1) 

A rise in load results in an increasing Hertzian area and a decreasing film thickness, consequently, an 

increasing capacitance. Beside the Hertzian area, the remaining area within the groove, as well as 

unloaded contacts, contribute partial capacitances (cf. Schirra et al., 2021). Thus, no contact is 

negligible in the capacitor network derived from Prashad (1988) to calculate the total capacitance, cf. 

Figure 2a). Like the single contact, the total capacitance of a bearing is dependent on the load the 

bearing carries and hence a valid principle for sensory utilization. Since the correlation of load and 

capacitance is nonlinear, models that describe this correlation have to be developed, which is a non-

trivial challenge due to the multitude of parameters, domains and dependencies. 
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Figure 2. Schematic of a deep groove ball bearing and its corresponding network of contact 

capacitances (a) and loaded ball-raceway contact with deformed Hertzian area 𝑨𝐇𝐞𝐫𝐭𝐳 and 

central lubrication film thickness 𝒉𝐂 (b) (cf. Schirra et al., 2018) 

2.2.2. Calculation Model of the Sensory Utilized Rolling Bearing 

In the subsequent section, four exemplary inputs of the calculation model of the sensory utilized 

rolling bearing are introduced that are utilized in the further course of this contribution to illustrate the 

application of the uncertainty analysis. In the following, the quantities' phenomenological influences 

on the resulting total bearing capacitance are discussed to give a comprehensible picture of the 

subsequent considerations. 

Number of Rolling Elements (𝒁) 

The number of rolling elements depends on the bearing type and size. In, e.g., deep-groove ball 

bearings the number of rolling elements is limited due to the assembling process whereas in 

cylindrical roller bearings it depends on the cage type. In extreme, full complement bearings carry the 

highest possible number of rolling elements. 

In general, more rolling elements imply more contacts, cf. Figure 2a), and with that more capacitances 

in parallel resulting in a capacitance increase. On the other hand, the load distribution is changed so 

that each individual rolling element carries less load. This in return causes a thicker lubrication film, a 

smaller Hertzian area and hence a smaller contact capacitance. Therefore, the influence of the number 

of rolling elements on the total capacitance is non-trivial. 

Coefficient of Thermal Expansion of the Bearing Rings (𝜶𝑻) 

The phenomenon of thermal expansion of steel is well studied and comparably easy and precise to 

measure. In rolling bearing applications, thermal influences are usually of major relevance, e.g., 

caused by friction heat or nearby process heat. If the bearing rings have a different thermal expansion 

coefficient than the rolling elements, the bearing clearance becomes dependent on the temperature. 

Additionally, the fitting of the inner ring and the shaft, or the outer ring and the housing, respectively, 

is temperature dependent for different materials and thus influences the bearing's clearance. In return, 

the clearance has an influence on the internal load distribution and the number of load carrying rolling 

elements. The effect as stated above applies and the effect on the bearing capacitance is not distinct. 

Temperature Difference Between Inner and Outer Ring (𝚫𝑻) 

Bearings produce heat due to power dissipation by friction. In applications where a bearing is 

supporting a shaft within a housing, the heat transfer to the housing is promoted by the bigger surface 

of the outer ring and the typically lower temperature of the housing. Thus, in stationary conditions, the 

temperature at the outer ring is lower than on the inner ring. This causes the clearance to decrease due 

to the higher thermal expansion of the inner ring. As stated above, this causes a change in load 

distribution and consequently in the bearing's capacitance. 

Temperature-Viscosity Coefficient (𝜶𝜼,𝑻) 

Elastohydrodynamic lubrication theory is used to characterize the behavior of point and line contacts 

in rolling element bearings. Corresponding equations for the lubrication film thickness are commonly 
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expressed isothermally. Murch and Wilson (1975) derived a correction factor that takes viscous 

heating in the inlet zone into account. This heating reduces the lubricant's viscosity and causes a 

reduction in film thickness. The effect increases with the surface speed of the contact partners. A 

reduced lubrication film causes a rise in contact capacity, cf. Equation (1). 

3. Uncertainty Analysis of the Calculation Model 
The methodical approach described in the following for the analysis of uncertainty in the calculation 

model of the sensory utilized rolling bearing is based on the fundamental approach described by 

Vorwerk-Handing et al. (2020b) and ultimately the Uncertainty Mode and Effects Analysis (UMEA) 

by Engelhardt et al. (2009). The basic structure of the approach is illustrated in Figure 3. 

 
Figure 3. Structure of the uncertainty analysis (cf. Vorwerk-Handing et al., 2020b, based on 

Engelhardt et al., 2009) 

In order to be able to assess which uncertainty needs to be addressed regarding a reduction or 

elimination to ensure the quality and reliability of the data provided, the uncertainty occurring within 

its calculation model must be identified in the first step. In this context, the classification approach for 

uncertainty according to its manifestation, cf. Section 2.1, is utilized to ensure the systematics of the 

identification process. Subsequently, each identified uncertainty is analyzed in the context of an 

evaluation to determine its respective criticality. Based on this information, a decision can finally be 

made whether an uncertainty needs to be reduced or eliminated in order to ensure the quality and 

reliability of the data provided by the SME or not. 

3.1. Identification of Uncertainty 

In order to identify uncertainty in the calculation model of the sensory utilized rolling bearing, its 

context must be analyzed in the first place since, e.g., acting disturbance factors may influence 

quantities or parameters included in its model and cause model and/or data uncertainty. It must be 

noted that the analysis of the system's context is limited to the (technical) circumstances and 

surrounding of the bearing that directly affect the system's functionality, i.e. disturbance factors. 

Since the political, market and cultural context do not impact the system's (technical) functionality 

but only its success as a product, they are neglected in this analysis. After the identification of 

context uncertainty in terms of acting disturbance factors, the uncertainty connected to the inputs of 

the bearing's calculation model and the model itself can be analyzed effectively. By applying a 

systematic approach in the whole identification process, phenomenological uncertainty is generally 

reduced (cf. Vorwerk-Handing et al., 2020b). Due to that circumstance, this manifestation of 

uncertainty is not considered separately here. 

Context Uncertainty 

For the identification of context uncertainty, the control list for disturbance factors proposed by 

Welzbacher et al. (2021) is used to ensure that no relevant disturbance factors are neglected 

unconsciously. The control list is structured based on the physical (sub-) domains of the respective 

disturbance factors, whereby each disturbance factor is characterized - and thus quantifiable - by its 

domain-specific pair of generalized energy variables according to multipole based model theory (cf. 

Welzbacher et al., 2021). By quantifying each occurring disturbance factor via its generalized energy 

variables, the level of uncertainty associated to each disturbance factor becomes obvious. For further 

information about the utilized disturbance factor control list please refer to Welzbacher et al. (2021). 

An extract of the filled-in control list for the sensory utilized rolling bearing is shown in Table 1. 
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Table 1. Extract of the filled-in control list (taken from Welzbacher et al., 2021) 

 

Data Uncertainty 

In order to identify data uncertainty, each input of the calculation model is analyzed separately 

regarding a temporal variability, e.g. due to wear, its dependence on acting disturbance factors but 

also if it is subject to measuring uncertainty. Based on this information it is possible to determine 

the current level of uncertainty of each input according to Walker et al. (2003). Therefore, research 

in literature, e.g. in the extended catalogue of physical effects by Mathias (2016) or the physical 

effect catalogue proposed by Vorwerk-Handing (2021), was conducted regarding the individual 

inputs and their respective dependencies. In addition, the values assigned to the individual inputs of 

the calculation model of the sensory utilized rolling bearing were audited. The results for the 

exemplary considered inputs of the sensory utilized rolling bearing's calculation model from Section 

2.2.2 are shown in Table 2. 

Table 2. Extract of the identified data uncertainty 
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Model Uncertainty 

On the one hand, model uncertainty is identified by checking the physical effects and principles 

utilized in the calculation model for therein made inadmissible simplifications and assumptions. 

Therefore, research in literature regarding the used physical relations was conducted. On the other 

hand, the physical effect catalogue proposed by Vorwerk-Handing (2021), which is based on 

multipole based model theory, was utilized to systematically identify effects between the 

pre-identified disturbance factors and quantities or inputs of the model that are not yet considered. In 

this context, the domain-specific flow and effort variables of each occurring disturbance factor are 

considered as inputs of physical effects that have quantities and inputs of the calculation model as 

outputs. For further information and a detailed description of the identification process, please refer to 

Vorwerk-Handing (2021). In the framework of the identification process, no inadmissible 

simplifications or assumptions in the calculation model of the sensory utilized rolling bearing as well 

as relevant physical effects that were not yet included were identified. 

3.2. Evaluation of Identified Uncertainty 

Since context uncertainty and disturbance factors in general do not directly affect the calculation model of 

the sensory utilized rolling bearing but cause data and model uncertainty, only data and model uncertainty 

are evaluated in the following (cf. Vorwerk-Handing et al., 2020b). The objective of the evaluation is to 

determine the criticality of each identified uncertainty in terms of its effect on the quality and reliability of 

the data provided by the SME. For the evaluation of identified uncertainty, the concept of the modified 

Failure Mode and Effects Analysis (FMEA) proposed by Vorwerk-Handing et al. (2020b) is taken up and 

adapted in order to be applicable for the evaluation of uncertainty in a calculation model. Vorwerk-

Handing et al. (2020b) focused on uncertainty occurring within the conceptual integration of sensory 

functions into technical systems and used the following criteria for their evaluation: 

Severity: Level of uncertainty connected to each quantity or input of the system's model. 

Significance: Relative contribution of an individual uncertainty to the overall uncertainty, 

so-called uncertainty budget. 

Controllability: Assessment of the ability to control a specific uncertainty by means of robust 

design measures while taking the effort for their realization into account. 

However, the criteria defined by Vorwerk-Handing et al. (2020b) are only conditionally transferable 

to the evaluation of uncertainty in the calculation model of the sensory utilized rolling bearing. On the 

one hand, this is due to the higher complexity of the calculation model of the sensory utilized rolling 

bearing compared to the measuring concepts considered by Vorwerk-Handing et al. (2020b). This 

entails that the calculation of the uncertainty budget in the context of the evaluation of the significance 

is no longer possible by simple means of error propagation. On the other hand, the assessment of the 

controllability requires that potentially suitable measures for the reduction or elimination of each 

uncertainty are forethought, which entails a significant additional expenditure, e.g. in terms of time 

and costs. Hence, new criteria were defined as substitutes for the latter two evaluation criteria from 

Vorwerk-Handing et al. (2020b), whereby the criterion "Severity" was adopted: 

Deviation: Maximum relative deviation of the value of a quantity - in case of model 

uncertainty - or an input - in case of data uncertainty - resulting from the considered 

uncertainty. 

Impact: Sensitivity of the calculation model in terms of a deviation of the model's output 

caused by an individual uncertainty. 

The deviation of an uncertainty affected quantity or input is determined via the quotient of the sum of 

all individual contributions resulting in a deviation of the considered quantity or input, e.g. due to 

several dependencies from acting disturbance factors, and its originally assumed value. In contrast, the 

impact of an uncertainty is determined by the relative deviation of the calculation model's output 

whereby a deviation of the considered uncertainty affected quantity or input by  .5 % from its initial 

value is assumed. In error analysis, partial derivatives are typically utilized to determine the 

propagation of an error, an uncertainty, respectively, and thus its respective impact. For example, the 
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relative change of the contact capacitance  𝐶Hertz/𝐶Hertz due to a relative change in the lubrication 

film thickness ΔℎC ℎ𝐶⁄  can be determined via the partial derivate of their relation to 

Δ𝐶Hertz 𝐶Hertz⁄ = −ΔℎC ℎC⁄  . (2) 

However, partially differentiating with respect to each quantity and input is not only elaborate, but 

also impossible for models that utilize neural networks or contain iterative or numeric parts, like the 

one at hand. Especially in these cases, the application of a sensitivity analysis is reasonable in order to 

be able to determine the propagation of an uncertainty and thus its impact on the output. Using a 

sensitivity analysis for the above mentioned example yields to the following relation 

Δ𝐶Hertz 𝐶Hertz⁄ = −
1

ℎC ΔℎC⁄ +1
 . (3) 

Comparing Equation 2 and 3, it becomes obvious that both results converge for small relative 

deviations and thus deliver comparable results. A deviation of the central film thickness of  .5 % 

causes the contact capacity to deviate − .5 % according to Equation 2 whereas the sensitivity analysis 

returns a relative deviation of − .498 % according to Equation 3. Hence, a sensitivity analysis is 

utilized in the context of this evaluation to determine the impact of an uncertainty, as it is applicable 

independently of the calculation methods used in the considered model.  

To ensure the consistency of the evaluation, rigid schemes were developed for each criterion, similar to 

Vorwerk-Handing et al. (2020b). The evaluation scheme for severity is based on the level of 

uncertainty and adopted from Vorwerk-Handing et al. (2020b), whereby a higher valuation indicates 

the presence of a higher level of uncertainty. In contrast, the evaluation schemes for the deviation and 

impact of an uncertainty are based on a logarithmic scale in order to achieve a non-linear distribution of 

the valuations, which range from 1 - low/little deviation or impact - up to 5 - high deviation or impact. 

The results of the evaluation of the identified data uncertainty from Table 2 are shown in Table 3. 

Table 3. Results of the evaluation of the data uncertainty from Table 2 
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of its valuations in the categories deviation and impact exceeds the value 5, as indicated in Table 3. 
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criticality. Potentially suitable measures to reduce its severity and deviation are to directly measure the 

temperature difference and feed it into the calculation model or to extend the model in order to 

consider the bearing friction and the resulting heat transfer into the shaft and the housing. 

4. Conclusion and Outlook 
In this contribution, the fundamental approach by Vorwerk-Handing et al. (2020b) was utilized to 

systematically identify and manage uncertainty in the calculation model of a sensory utilized rolling 

bearing that critically affects the quality and reliability of the data provided. However, the methods 

and tools included in the approach - especially the modified FMEA - had to be adapted to be fully and 

effectively applicable to the calculation model. 

In the first step, uncertainty in the calculation model was identified based on its manifestation in the 

system's model. For the identification of context uncertainty in terms of occurring disturbance factors, 

as potential cause of data and model uncertainty, the control list by Welzbacher et al. (2021) was 

utilized. In this context, each occurring disturbance factor was quantified according to its respective 

pair of generalized energy variables. Although the sensory utilized rolling bearing is still in a 

prototypical stage and operated on a test rig, the quantification of occurring disturbance factors proved 

to be challenging. E.g., in terms of an occurring heat transfer, it could not be clearly determined 

whether the heat transfer was by conduction or convection. Consequently, the disturbance factors in 

the control list by Welzbacher et al. (2021) must be reviewed critically and combined reasonably to be 

applicable in a meaningful way. In order to identify occurring data uncertainty, each input of the 

calculation model was analyzed regarding a temporal variability, existing dependencies from acting 

disturbance factors and associated measuring uncertainty. In this context, especially the analysis of 

inputs with regard to existing dependencies on occurring disturbance factors proved to be challenging, 

as there is not yet a complete collection of information in this regard. Hence, the development of such 

a database, encompassing inputs and their dependencies on disturbance factors in general, is 

reasonable to reduce the effort in literature research and planned in the future. 

After the identification of uncertainty, an evaluation is conducted to determine its criticality regarding 

the quality and reliability of the data provided by the sensory utilized rolling bearing. The identified 

uncertainty is evaluated regarding its severity, the resulting deviation of the uncertainty affected quantity 

or input and the corresponding sensitivity of the calculation model. Based on the results of the 

evaluation, a reasoned decision can be made whether an uncertainty requires further measures to be 

reduced or eliminated or not. Therefore, threshold values were defined. However, the results of the 

evaluation and the thereon based decision must be questioned critically. In particular, if several inputs 

affected by uncertainty are evaluated as non-critical, they can still add up to a relevant contribution to the 

overall uncertainty. To solve this problem, the usage of dynamic instead of rigid threshold values is 

conceivable, e.g. based on the relative share of an uncertainty in the overall given valuations. Following 

up, it is planned to develop a framework for the systematic derivation of suitable measures to eliminate 

or reduce uncertainty from its respective valuations. In this context, the nature of an uncertainty - cf. 

Section 2.1 - must also be considered to ensure the effectivity of the measures to be developed. 

Finally, the methodical approach described and the included methods and tools for the analysis of 

uncertainty are fully transferable to future extensions of the calculation model of the sensory utilized 

rolling bearing, like e.g. other types of rolling elements. This is because the fundamental structure of 

the calculation model remains identical. However, the extent of transferability of the approach to 

calculation models of other SME still needs to be further investigated and is planned for the near future. 
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