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Abstract

Let 0 be a continuous nonzero homomorphism of the convolution algebra L1'OC(IR+) and also the unique
extension of this homomorphism to A/|OC(1R+). We show that the map <f> is continuous in the weak* and
strong operator topologies on M^, considered as the dual space of CC(R+) and as the multiplier algebra
of L\x. Analogous results are proved for homomorphisms from L' [0, a) to L' [0, b). For each convolution
algebra Lx(w\), <ji restricts to a continuous homomorphism from some L'(a>i) to some L'(a>2), and, for
each sufficiently large L1 (coj), <p restricts to a continuous homomorphism from some L' (&>i) to Lx (,a>i).
We also determine which continuous homomorphisms between weighted convolution algebras extend to
homomorphisms of L\x. We also prove results on convergent nets, continuous semigroups, and bounded
sets in Mloc that we need in our study of homomorphisms.

2000 Mathematics subject classification: primary 43A22, 46J40, 46J45, 43A20,43A10.

1. Introduction

In this paper, we study the continuous homomorphisms of the convolution algebra

L,1^ — Ll
ioc(R

+), the algebra of (almost everywhere equivalence classes of) locally

integrable functions on the half line K+ = [0, oo). We also study the related con-

volution algebras L'[0, a), where 0 < a < oo, and often use properties of these

algebras to study L,1^. We are particularly interested in extending homomorphisms

between weighted convolution algebras to homomorphisms of L^, and restricting ho-

momorphisms of Ll
loc to continuous homomorphisms between weighted convolution

algebras. Since the structure of L,1 .̂ is much simpler than that of many of its weighted
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convolution subalgebras, the hope is to learn more about homomorphisms between
weighted convolution algebras by considering them as restrictions of homomorphisms
of Llx. Some results along these lines are in the final section of this paper.

In [10], Ghahramani and McClure study automorphisms and derivations of Ll
loc and

solve the extension and restriction problems. In particular, Ghahramani and McClure
[10] show that every isomorphism between weighted convolution algebras and every
derivation of a weighted convolution algebra can be extended to an isomorphism
or derivation of Ll

ioc. Surprisingly, not every homomorphism between weighted
convolution algebras is a restriction of a homomorphism of Ll

ioc, but we are able to
determine precisely the class of homomorphisms that can be extended to L'^ (see
Theorem 7.1).

LlK becomes a Frechet space under the collection of seminorms

(1.1) Il/L= [ \f(t)\dt,
Jo

for 0 < a < oo. It is convenient to think of the functions in L' [0, a) being defined on
all of R+ = [0, oo), but equal to 0 off [0, a). With this convention, Z,'[0, a) becomes
a Banach space under the norm ||/ | |a of formula (1.1). L]^ becomes a Frechet algebra
and L'[0, a) becomes a Banach algebra under the usual convolution multiplication.
For x in / = [0, oo) or [0, a), this multiplication is given by

-I(1.2) / * « ( * ) = / f(x-t)g(t)dt, far x el.
Jo

When we consider functions on [0, a) extended to be 0 on [a, oo), then / * g(x) is
given by formula (1.2) only for x in [0, a), but is equal to 0 off [0, a). Thus L'[0, a)
is a continuously embedded subspace of L]^, but it is not a subalgebra.

We let Ra be the restriction map from [0, oo) to [0, a). That is, Raf(x) — f(x)
for x in [0, a) and is 0 for x > a. Thus Ra is a continuous algebra homomorphism
from Ll

loc onto L'[0, a) with kernel

L\ = {/ € Ll
]oc : support/ c [a, oo)}.

Then L'[0, a) is isomorphic and homeomorphic to L\x/L\. Often the easiest way to
prove results, particularly basic results, for L,1^ is to first prove the analogous results
for the spaces L'[0, a) and then 'lift' the results to Ll

]oc.
The positive Borel function a>(x) on [0, oo) is a weight if both co(x) and l/co(x)

are bounded on all intervals [0, a). Then Ll(co) is the subspace of Llx composed of
all / with the norm

/•OO

11/11 = Il/L= / \f(t)\co(t)dt
Jo
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finite. Under this norm each Ll(co) is a Banach space continuously embedded in the
Frechet space L^. We say that the weight co(x) is an algebra weight when co{x) is
submultiplicative (that is, co{x+y) < co{x)to(y)), right continuous, and has co(0) = 1.
In this case L\co) is a subalgebra of L j ^ . . In fact, whenever L'(<w) is a subalgebra of
L,1^, one can replace co(x) with an algebra weight co(x) for which L' (<y) is just L' (<w)
under an equivalent norm [13, Theorem 2.1]. One of our underlying goals is to use
Ll

l(X to study Ll(co), and to use L'[0, a) to study Ll
loc.

Good formulas characterizing important operators like derivations, homomor-
phisms, isomorphisms, and multipliers of the convolution algebras Ll

loc, Ll[0, a),
and Lx(co) all involve measures (see, for instance, [5,10,13,19]). Thus we need to
consider the corresponding measure algebras A/ioc = Mloc(R+), M[0, a), and M(co).
The Frechet space Mloc consists of all locally finite complex Radon 'measures'; that
is, linear combinations of sigma-finite positive Radon measures, on R+ under the
collection of seminorms ||/z||fl = | /A|([0, a)). Then M[0, a) is the Banach space of
finite complex Borel measures on [0, a) or, equivalently, the Borel measures fi on
the compact space [0, a] for which ix{a} = 0. As with functions, we often consider
the measures in M[0, a) as being defined on all of K+ with \fi\[a, oo) = 0. Sim-
ilarly M(co) is the Banach space of locally finite measures ix for which the norm

llMll = llML = /R +a>(0<*M(0 is finite.
We define the convolution for measures in M\x and M[0, a) in the usual way (see

the next section), so that Mice is a Frechet algebra and M[0, a) is a Banach algebra.
If co is an algebra weight, then M(co) is a Banach algebra continuously imbedded in
Mi,*.. We usually identify the function f(t) with the measure f(t) dt, so that L^,
L'[0, a), and Ll(co) are all closed ideals in the corresponding measure algebras. We
define the restriction maps in the obvious way, by \Rafi\[a, oo) = 0, and we let Ma be
the kernel of Ra. As with functions, Ra induces a (topological algebra) isomorphism
from Mioc/Mfl onto M[0, a).

It is extremely useful to characterize the above measure algebras as dual spaces
of appropriate spaces of continuous functions so that we have weak*-topologies on
these spaces. If we identify C0[0, a) with the Banach space of continuous functions
/ on [0, a] with f(a) — 0, then it follows from the Riesz representation theorem
that M[0, a) is (isometrically isomorphic to) the dual space of C0[0, a). If co(x) is
an algebra weight, then M(co) is the dual space of C0(l/co), the Banach space of
continuous functions h on K+ for which h{x)/co{x) vanishes at oo and the norm
||A|| = sup{|AC*)l/<w(*) : x > 0} is finite [13, Theorem 2.2]. We also consider Mloc

as the dual space of the space C0(K+) of continuous functions with compact support
in K+ = [0, oo).

The main results in this paper can be grouped into three parts. Sections 2-4
give results on the structure of the algebras L]^ and L'[0, a), together with Mloc

and M[0, a), that are needed for our study of homomorphisms and their extensions
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and restrictions. Sections 5 and 6 study the homomorphisms of these algebras,
and Sections 7 studies extensions of homomorphisms from weighted convolution
algebras to Ll

loc and the far more difficult problem of restricting homomorphisms of
Lx

loc to weighted convolution algebras. Section 8 discusses applications to weighted
convolution algebras and lists open problems suggested by our results.

2. Convergence and other basic properties

In this section, we recall the basic definitions for the algebras L'[0, a) and L,1^
and their corresponding measure algebras. We prove analogues of the convergence
results true for L\co) and M(o>), when co is an algebra weight. We consider Afioc as
the dual space of CC(K+) under the duality

-L(fi,h)= / h(t)dn(t).
JK.+

The same formula works for M[0, a) and C0[0, a) if we follow the convention of
extending functions and measures to be identically equal to 0 on [a, oo). For us, the
most useful characterization of convolution in Mloc is given in [2, Equation (4.7.3)]
and [10, page 55], where

(2.1) (n*v,h)= f I h(x + y)dfi(x)dv(y) for all h in CC(R+).

This reduces to the familiar formula / */x(x) = L , f(x — t)d/x(t) when we identify
/ in Ll

ioc with the measure f(t) dt. On M[0, a) we can either replace R+ with [0, a)
in (2.1) or consider the measures extended to vanish off [0, a) and define convolution
as the restriction of the measure defined by formula (2.1) to the interval [0, a). An
easy application of Fubini's theorem, as in [13, page 595], shows that convolution by
\x on Mloc is the adjoint of the operator (j,*h(x) = /R+ h(x +1) dn(t) on CC(K+). The
analogous result holds for M[0, a). So we have (compare [13, Lemma 3.1]):

LEMMA 2.1. Convolution by a fixed measure in M^ or M[0, a) is a weak*-
continuous linear map.

It follows from the duality between M[0, a) andC0[0, a), just as for locally compact
groups, that M[0, a) is the multiplier algebra of L' [0, a) (see [19, Remark 10]). From
this it follows easily [10, Theorem 2.14] that Afioc is the multiplier algebra of L,1 .̂
If co is an algebra weight, then M{co) is the dual space of C0(l/o») and the multiplier
algebra of L\co) (see [13, Theorem 2.2]). This is why we need the normalizations
in our definitions of algebra weight. For a measure /M in Mloc, we use the standard
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notation a(fi) = inf (support [i), with inf(O) = oo. The key result about a(fi) is the
Titschmarsh Convolution Theorem [2, Theorem 4.7.22] a(fi * v) = a(/u,) + a(v),
for n and v in M^ (or A/[0, a)). This implies, in particular, that M ^ is an integral
domain, and that /x in M[0, a) is a divisor of zero if and only if a(/x) > 0.

When / is a linear subspace of L'^R"1") or Mioc(K
+) and 0 < b < oo, we let

Jb = {(i € J : a(/x) > I)} = {/i e 7 : support /x c [b, oo)}.

Notice that 7O = J and 7^ = {0}. We abbreviate L1'oc(K+)i and Ml0C(K+)t by Z,£ and
Mft, respectively. We use the same notation for subspaces of L'[0, a) and M[0, a) ,
but in this case Jb = {0} for b > a. The spaces L£ and L'[0, a), and the spaces
O((o)b when o> is an algebra weight, are closed ideals in the algebras L,1^, Ll[0, a),
and V (co), respectively. They are called the standard ideals. It is a classical result [2,
Theorem 4.7.58 (i)] that all closed ideals in L'[0, a) are standard. From this, one can
conclude [10, Proposition 2.5 (a)] that all closed ideals in L^ are also standard. The
situation in V (co) is not yet understood for all algebra weights co(x).

We let <5, in Mioc be the point mass at t > 0. Thus So is the identity, and convolution
by 8, is right translation by t. In M[0, a) we use 8, to stand for the restriction Ra8,
of the measure 8, to [0, a). Thus 5, = 0 for t > a, and for all /, convolution by 8,
translates by r, and then truncates to [0, a) .

We are now ready to discuss weak* and metric convergence of bounded sequences
and nets in A/[0, a) and Mioc. Recall that a subset of M^ is bounded if it is bounded
in all the seminorms \\n\\a = |yu,|[O, a), given by (1.1). The result for M[0, a) is the
following.

THEOREM 2.2. Suppose that [Xn] is a bounded net in A/[0, a) and that A belongs
to M[0, a). Suppose also that there is a v in A/[0, a) with a(v) = Ofor which kn * v
converges weak* to k* v (which would hold in particular ifk,, = kn * So converged
weak* to k). Then we have:

(a) kn * ix converges weak* to k* nfor all ft in M[0, a);
(b) kn* f converges in norm to k * f for all f in Ll[0, a).

REMARK. We do not normally have norm convergence if fi is not a function. For
instance, 8, = 8, * 80 converges weak* to 80 as t -*• 0+, but \\S, — <50|| = 2 for all
0 < t < a.

PROOF. The proof of (a) is similar to the proof of the analogous result for L1 (co) (see
[13, Lemma 3.2]). First, it is enough to show that [kn] converges weak* to k. Then
the weak*-continuity of multiplication by ju, given by Lemma 2.1, shows that kn * n
converges weak* to k */z. Since every bounded net in M[0, a) has a weak*-convergent
subnet, we only need to show that if [k'n] is a subnet of {kn} with weak*-limit k', then
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X' = X. It follows from the weak*-continuity of multiplication, that X'n * v converges
to X' * v, so that X * v = X' * v. Since a (v) ^ 0, v is not a divisor of zero, so we have
X = X' as required.

Now fix a function / in Ll[0, a). Since we already know that Xn * / converges
weak* to X * / , it is enough to show that convolution by / is a compact operator
from M[0, a) to L'[0, a) . It is a standard result that convolution by / is a compact
operator on L'[0, a) (see for instance, [17, Theorem 2.5, pages 40 and 66]). From
this, one shows that convolution by / is also a compact operator M[0, a), exactly as
in [7, Lemma 3.1].

The analogous result for Mioc follows easily from the above theorem. We do not
even need to assume u(v) = 0. •

THEOREM 2.3. Suppose that [Xn] is a bounded net in MiOQ. If there is a measure
v ^ Ofor which Xn * v converges to X*v weak* in M ^ , then we have

(a) Xn * n converges weak* to X* fifor all /x in M)oc;
(b) Xn * f converges to X* f in the Frechet topology ofLl

locfor all f in L1
loc-

PROOF. Suppose a(v) = b and let v = 8, * T, SO that a(T) = 0. Since convolution
with 8, is a linear homeomorphism from Mloc onto M, in the weak* topology (and in
the Frechet topology), we have Xn * x converges weak* to X * x. Thus there is no loss
of generality in assuming a(v) = 0.

It follows directly from the definitions that a net in Mioc is bounded in Mioc, or
converges in the weak* topology or the Frechet topology on Mioc if and only if its
restrictions to all [0, b) are bounded, converge weak*, or converge in norm in M[0, b).
Thus, the result follows from Theorem 2.2. D

In M[0, a), unlike M)oc, the requirement that a(v) = 0 is necessary. For instance,
if {Xn} is any net in M[0, a) with a(Xn) + a(v) > a, then all Xn * v = 0.

3. Semigroups

It has long been clear (see for instance [6, 13]) that the properties of homomorphisms
between convolution algebras on IR+ depend heavily on the properties of related
convolution semigroups. In this section we prove the required results about continuity
and support of convolution semigroups in M ^ and M[0, a).

Suppose that {AI,},>0 is a semigroup under convolution in Mioc. We identify /z,
with the semigroup of operators / i-»- /x, * / on L,1^. Thus we say that {/*,} is
(strongly) continuous (on L ^ ) if /x, * / is continuous in the metric topology on
L ^ for t in K+ = [0, oo) and all / in L,1^. The standard Banach space result [18,
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Theorem 10.5.5] that a semigroup of operators is (strongly) continuous, provided that
it is strongly continuous at t = 0, extends readily to semigroups on L,1^.

Similarly, we consider semigroups {/x,},>0 in M[0, a) as acting by convolution on
L'[0, a). The main difference is that in M[0, a) we can have some /x,0 = 0. In the
presence of any kind of continuity this implies that there is a b > 0 for which \x, — 0
if and only if t > b. In this case we say that \x, is a nilpotent semigroup of order b.
For instance, the semigroup {<5,} is nilpotent of order a in M[0, a).

We now give the basic continuity results, first for Mloc and then for M[0, a).

THEOREM 3.1. Suppose that [/x,} is a convolution semigroup in Mioc and is bounded
for t in some interval about 0. If there is a v ^ 0 in M]oc for which /x, * v is right
continuous in the weak*-topology at some t in [0, oo), then we have:

(a) /x, is a continuous semigroup on Ll
loc;

(b) ix, is a weak*-continuous semigroup on Mioc.

PROOF. Suppose that n, * v is right continuous in the weak*- topology at t = b > 0.
Then

weak*- lim ii, * (ixb * v) = weak*- lim (/x,+b *v) = ixb*v.
r->0+ ;->0+

It then follows from Theorem 2.3 (b) that /x, * f is right continuous at t = 0 in the
metric topology on Ll

loc. This means that (convolution by) fx, is a strongly continuous
semigroup on Ll

loc. By Theorem 2.3 (a) we have that, for all k in Mioc, it, * k is a
weak*-continuous function of / on [0, oo). This completes the proof. •

The statement that /x, is weak*-continuous on Mioc means that fi, * k is weak*-
continuous for all k in M]oc. By Theorem 2.3, this is equivalent to fx, itself being
weak*-continuous for t in [0, oo). On the other hand, /x, is rarely a strongly continuous
semigroup on all of Mioc, since this implies that /x, = /x, * So is continuous in the
Frechet space topology on M)oc. From now on we will say {/u,} is a continuous
semigroup if it satisfies the conditions in Theorem 3.1.

We now give the analogous continuity result for semigroups in M[0, a). The proof
is the same except that, since we use Theorem 2.2 instead of Theorem 2.3, we need to
add the restrictions that ot{v) = 0 and that fx, * v is weak*-continuous at 0.

THEOREM 3.2. Suppose that /x, is a convolution semigroup in M[0, a) and is
bounded near 0. If there is a v in M[0, a) with a(v) = Ofor which (x, * v is weak*-
continuous at 0, then /x, acts as a strongly continuous semigroup on L'[0, a) and as
a weak*-continuous semigroup on M[0, a).

The results for the support of semigroups in Mi^ are the same as for M(co). One
can use the proofs of [13, Theorem 4.3] or [14, Lemma 3.1], both of which are adapted
from proofs in [6]. The basic result for M[oc is the following.
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THEOREM 3.3. Suppose that fx, is a strongly continuous convolution semigroup
on L^. Then there is a real number A > Ofor which a(iu,t) = At for all t > 0.

When a(/x,) = At, we say that A is the character of the semigroup {/i,}. For
semigroups {/x,} in M[0, a), the statement a(/x,) > a means \xt — 0. So if \\xt\ has
strictly positive character A, then [i, is a nilpotent semigroup of order a/ A. Below is
a precise statement of the analogous result in M[0, a).

THEOREM 3.4. Suppose that {//,} is a continuous semigroup in M[0, a). Then there
is a real number A > Ofor which <x(fi,) = At when At < a, and jxt = Ofor At > a.

4. Boundedness

The most substantial results on homomorphisms of Ll
loc involve restrictions of

homomorphisms from L,1^ to weighted convolution algebras and extensions of homo-
morphisms between weighted convolution algebras to Ll

ioc. We also need to consider
the relation between nets and semigroups in Mioc and in algebras M(a>). The most im-
portant results for nets and semigroups involve bounded nets, and semigroups which
are bounded near 0. Also, a continuous linear map is bounded. Because of this, we
can base many of our results comparing L,1^ and weighted convolution algebras on a
comparison of bounded sets. The basic result for bounded sets is the following.

THEOREM 4.1. A subset B of Mioc is bounded in Mloc if and only if there is an
algebra weight cofor which B is a bounded subset of M(co).

We actually prove stronger results in each direction. When we start with subsets
of M(a>), we do not require a> to be an algebra weight. When we construct M (co),
we can insure that eo(x) is not only an algebra weight, but also has additional useful
properties. The next result gives the easier direction, which starts with M(co).

THEOREM 4.2. If B is a bounded subset of M(co)for some weight o)(x), then B is
a bounded subset ofMioc.

PROOF. Our definition of weights requires co(x) to be bounded away from 0 on
each [0, a). Fix a, and let a>(x) > k on [0, a). Then we have

= / to(t)d\n\(t)>
'[0,o)

Thus any set bounded in the norm of M(co) is also bounded in each of the seminorms
that define the topology of Mi,*. •
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Suppose that a > 0. We say that the weight co(x) is a-semiconvex if co(x) is
continuous on [0, oo) and co(x + a)/co(x) is (weakly) decreasing on [0, oo). When
a = 1, we say that co(x) is semiconvex. The weight co(x) is said to be convex if it
is a-semiconvex for every a > 0 [2, page 520]. The reason for the terminology is
that if co(x) = e~n{x), then it can be shown that co(x) is a-semiconvex for all a > 0 if
and only if r)(x) is a convex function. The basic facts we need about a-semiconvex
weights are collected in the following lemma.

LEMMA 4.3. Suppose that co(x) is an a-semiconvex weight and let

v v o)(x + y)
K = Ka= sup •

x,y<a co(x)co(y)

Then we have:

(a) co(x + y) < Kco(x)co(y) for all x and y in K+;
(b) (limx^00co(x)l/x)a = linr^ooco(x +a)/co(x);
(c) The weights co(x + b) are all a-semiconvex for b > 0;
(d) Ifco(x) is (weakly) decreasing, then min(l, Kco(x)) is an algebra weight equiv-

alent to co(x).

PROOF. If a < x < y, it follows from our hypotheses that

co(x) ~ co(x — a)

Part (a) now follows easily from (4.1) (for the details see the proof of Theorem 2.2 in
[11, pages 535-536]).

Let a), (x) = Kco(x). Both limits in (b) are unchanged if co(x) is replaced by cox (x).
It follows from part (a) that cox(x) is submultiplicative. Therefore lim^oo&jOc)'^
exists, so that both limits in (b) exist. A simple argument shows the equality of the
two limits (for instance, see [1, Lemma 1.2 (i), page 81]). Part (c) is straightforward.

Suppose now that co(x) is decreasing. Since Kco(x) is submultiplicative, we have
Kco(0) > 1. Since K(co(x)) is continuous, decreasing, and submultiplicative, so is
min(l, Kco(x)) (compare [1, page 81]) and hence is an algebra weight equivalent to
co(x). This completes the proof. •

For an a-semiconvex weight, Lemma 4.3 (a) shows that M(co) and Ll(co) are
algebras, and the norm satisfies \\fi * v\\m < ^ | | / i | |JM|m. Lemma 4.3 (c) then shows
that each L' (co (x+b)) = {/ e L,1^ : Sb * f € Ll (co)} is also an algebra, and similarly
for M(co(x + b)).

We say that a weight co(x) is a radical weight if lim;t_).ooft;(;t)
1/'* = 0. For

a-semiconvex weights, Lemma 4.3 (b) says that co(x) is radical if and only if
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lim^oo co(x + a)/co(x) = 0. Weights with some Hm^ooOiCx +a)/co(x) — 0 are
called regulated weights (see, for example, [ 1] or [2, page 520]). These are the weights
for which best results are known for homomorphisms, semigroups, and convergence
in M(co) and L\co) [7,9,14]. Replacing co{x) with an equivalent weight does not
change whether or not Hindoo co{x + a)/a>(x) = 0.

We are now ready for the other half of Theorem 4.1.

THEOREM 4.4. Suppose that B is a bounded subset of Afloc. Then there is a
decreasing semiconvex algebra weight cofor which B is a bounded subset of M{co).
Moreover we can require that cobe a radical weight.

The analogous result for a-semiconvex weights for any fixed a is true with essen-
tially the same proof. The construction we give is adapted from our construction in
[11, Theorem 6.5].

PROOF. We construct a decreasing semiconvex weight co(x) for which co(x) = 1
for 0 < x < 1. For such a weight

co(x + y)
K = S U P t \ , \ = S U P <»(x + y ) = l .

This weight co(x) is an algebra weight by Lemma 4.3 (a).
We first construct a weight a>0(x), which is not necessarily an algebra weight, for

which B is a bounded subset of M(o)0). For each nonnegative integer n, choose a
positive number Pn, with Pi > 2, and with \fi\[n,n + 1) < Pn for all fi in B. Such a
number exists since |/x|[n, « + l) < |/x|[0, n+1) = | |^| |n+i. Letco0(x) be a continuous
weakly decreasing function on [0, oo) with a)0(x) = 1 on [0, 1] and co0(n) < 2~"Pn

for each positive integer n (for instance, a>0{x) could be piecewise linear). Then, for
each positive integer n and each measure ii in B, we have

< too(n)\n\[n, n + 1) < —

Hence, for each /x in B we have

To finish the proof we construct a continuous, decreasing, semiconvex weight co (x)
satisfying a> (x) < o)0(^)forallA: anda>(;c) = 1 for x in [0, 1]. The connection between
o)(x) and co0(x) is given by the function k(x) = min [co0(t)/co0(t — 1) : 1 < t < x]
defined for* > 1. It is clear that k(x) is a positive, decreasing function with A.(l) = 1.
Also, X(x) is continuous on [1, oo) since coo(x)/(Do(x — 1) is continuous on the same
interval [1, oo).
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We now define co(x) = 1 on [0, 1] and a>(x) — k{x)o){x — 1) for x > 1. This is an
inductive definition giving the value of o)(x) on an interval [a + 1, a + 2) in terms of
its value on [a, a + 1). Also co(x) is well-defined at x = 1 since k(l)co(l — 1) = 1.
Since both k(x) and co(x — 1) are positive, continuous, and decreasing on [1, oo),
so is o)(x). Since co(x) = I o n [0, 1], we have co(x) is positive, decreasing, and
continuous on all [0, oo).

We also have co(x) < co0(x), since whenever co(x — 1) < a)0(x — 1), we have

co(x) = X(x)co(x - 1) < —-^ — co(x - 1) < —-^ — co0(x - 1) = co0(x).
coo(x - 1) o)0(x - 1)

Since a)(x) < co0(x) for all x, every measure has a smaller norm in M(eo) than in
M(cu0). Thus B is bounded in M(&>) as well as in M(co0). Finally a>(x + l)/co(x) =
k(x + 1) for x in [0, oo) and is therefore a decreasing function.

If the weight a>(x) is not a radical weight, then we replace co(x) with co(x)e~x .
This completes the proof of Theorem 4.4, and hence of Theorem 4.1 as well. •

We now apply the boundedness results in this section to nets and semigroups. The
applications to homomorphisms are given in Sections 7 and 8.

THEOREM 4.5. Suppose that co is an algebra weight and that {Xn} is a bounded net
in M(co). Then [kn] is a bounded net in Mioc. Moreover {kn} converges weak* to k in
M(co) if and only if it converges to k weak* in M^.

PROOF. The boundedness of [kn] in M\x follows from Theorem 4.2. By definition,
{kn} converges to k weak* in M(co) when

(4.2) (kn,h)-+(k,h)

for all h in Co(\/a>). For weak* convergence in Mioc, we need (4.2) to hold for all h
in CC(R+). Since CC(R+) is a dense subspace of C0(l/a>) and {kn} is a bounded net
in M(co), the two kinds of weak convergence to k are equivalent (compare the proof
of [8, Equation (2.2)]). •

THEOREM 4.6. Suppose that {kn} is a bounded net in Ml0c, which converges weak*
in A/ioc to k. Then there is a semiconvex algebra weight cofor which {kn} is a bounded
net that converges weak* to k in M(co).

PROOF. This follows immediately from Theorems 4.4 and 4.5. •

Theorems 3.1 (a) and 4.5 imply that if {/z,} is a semigroup in M(a>) for some algebra
weight and is bounded for t in some interval about 0, then {/x,} is a weak*-continuous
semigroup in M(co) if and only if it is strongly continuous on Lx

loc. We can, in fact,
choose co so that {/x,} is strongly continuous.
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THEOREM 4.7. Suppose that [fj,,} is a weak*-continuous semigroup in M\x. Then
there is a decreasing semiconvex algebra weight co for which {n,} is a strongly
continuous semigroup in M(a>). Moreover, we can require that co be a radical weight.

PROOF. Since {n,} is weak*-continuous in Mloc, we have that {n,},<\ is a bounded
subset of Mioc. It then follows from Theorem 4.4 that there is a radical decreasing
semiconvex algebra weight co for which {fi,},<\ is a bounded subset of M(co).

Since fi, = {ii,/n)n for all f > 0 and all positive integers n, it follows that all fi,
belong to the algebra M(a>) and that {/n,} is bounded for t in any bounded subset
of [0, oo). The weak*-continuity of ju,, in M(co) now follows from Theorem 4.5.
As we pointed out after the proof of Lemma 4.3, co is a regulated weight. Hence,
every weak*-continuous semigroup in M{co) is actually strongly continuous (see [14,
Theorem 2.8] or the proof of [9, Theorem 3.4]). D

5. Homomorphisms of Ll[Q, a)

In this section we study properties of homomorphisms from L'[0, a) to L'[0, b).
In the next section we prove, partly by using results from the present section, anal-
ogous results for homomorphisms of Ll

ioc. One of our techniques is to extend the
homomorphisms to the corresponding measure algebras, so we also need to look at
properties of homomorphisms between these measure algebras. If c = b/a, then
4>{fix)) — (l/c)f(x/c) is a n isometric isomorphism from L'[0, a) onto L'[0, b).
We could thus simply study the endomorphisms of Ll[0, 1), but the more general
formulation is useful when considering Ll

im..
The following useful lemma will eventually, in Theorem 5.4, be replaced with a

more general result.

LEMMA 5.1. Suppose that tp is a continuous homomorphism from L'[0, a) {or
M[0, a)) into L'[0, b) (or M[0, b)). If<j> does not vanish on L'[0, a), then a(fi) = 0
if and only */a(</>(/x)) = 0.

PROOF. It follows from the Titschmarsh Convolution Theorem [2, Theorem 4.7.22]
that for any measure A., we have a(X") = not{k). Thus if a(fj.) > 0 for some [i in
M[0, a), then fi is nilpotent in the algebra M[0, a). Hence, </>(M) is nilpotent in
M[0, b), so that a(0(/x)) > 0 as required.

For the other case, we first consider the situation where 0 is a nonzero continuous
homomorphism from L1 [0, a) to L1 [0, b) or M[0, b). We suppose that a ( / ) = 0, but
«(</*(/)) 7̂  0 and we arrive at a contradiction. If a (</>(/)) > 0, then </>(/) is nilpotent,
so there is a positive integer n for which </>(/") = (0 ( / ) ) " = 0. Now ker(</>) must
be a standard ideal L'[0, a)c for some 0 < c, by [10, Proposition 2.5 (a)]. However,
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ker(0) contains / " with a(f) = n, a(f) = 0. Hence c = 0, that is, <p is identically
zero, contradicting our hypotheses.

Now suppose that <p maps M[0, a) to M[0, b) and let a{fi) = 0. Choose some / in
L'[0, a) with a(f) = 0. By replacing <p with its restriction to L'[0, a), we know that
<*($(/)) = 0. Now ix* f is a function in L' [0, a) with a (n*f) = a(/x)+a(f) = 0.
Hence 0 = a(</>(M * / ) ) = a(<j>(/j,)) + a(</>(/)) = a(</>(/z)). This completes the
proof. •

We are now ready to extend our homomorphisms to the corresponding space of
measures.

THEOREM 5.2. Suppose that <p is a nonzero continuous homomorphism from
Ll[0, a) to L'[0, b) or A/[0, b). Then <p has a unique extension to a homomorphism
4> '• M[0, a) —*• M[0, b). Moreover we have:

(a) <p 's continuous with | |0 | | = ||</>||;
(b) If(p is an isomorphism, so is <j>, and we have (j>~1 = (4>)~[.

PROOF. The proof we gave in [13, Theorem 3.4] for the analogous result for
weighted convolution algebras works in this case with one small modification. Since
M[0, b) is not an integral domain, it is not enough to have <f>(h) ^0 to 'cancel' <j>(h)
from formulae as we did in [13]. Instead, we choose h in Ll[0, a) with a{h) = 0.
It then follows from Lemma 2.1 that a((p(h)) — 0. The Titschmarsh Convolution
Theorem then tells us that <f>(h) is not a divisor of zero in M[0, b). The proof given in
[13] can then be carried out with this h instead. •

Because of the uniqueness of the extension of <f> from L'[0, a) to M[0, a), we will
henceforth designate the extension by the same symbol (p. Thus if <f> : Ll[0, a) -*•
L'[0, b) is a continuous nonzero homomorphism and fi is a measure in M[0, a), we
write 0(M) instead of 0(/z).

The following convergence theorem is very useful. When we speak of the strong
operator topology on M[0, b), we identify the measure n in M[0, b) with the bounded
operator / i-» /x * / on L'[0, b).

THEOREM 5.3. Suppose that <f> is a continuous nonzero homomorphism from
L'[0, a) to L'[0, b) or A/[0, b). If {kn} is a bounded net in M[0, a) with weak*-
limit k, then (0(A.n)) converges to </>(X) in both the strong operator topology and the
weak*-topology on A/[0, b).

PROOF. We know from Theorem 2.2, that {kn} converges to k in the strong operator
topology on M[0, a). Choose some h in M[0, a) with a(h) = 0. It then follows
that <j){kn) * <p(h) — <p(kn * h) converges to (p(k) * (j>(h) in the norm of A/[0, b).
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Since a((p(h)) = 0, by Lemma 5.1, another application of Theorem 2.2 tells us that
(j){Xn) converges to 4>(k) in the strong operator topology and the weak*-topology on
M[0, b). This completes the proof. •

The analogue of the above result for weighted convolution algebras only works for
special weights, since the analogue [7, Theorem 2.3] of Theorem 2.2 only holds for
special weights.

Suppose that <p is a continuous nonzero homomorphism from L'[0, a) to L'[0, b)
or M[0, b). Then fi, = <p(8t) is a semigroup in MfO, b), and is a (strongly) continuous
semigroup by Theorems 3.2 and 5.3. Thus, by Theorem 3.4, there is an A > 0, which
we call the character of (i,, for which a(/j.,) = At. As always in MfO, b), a(X) > b
means X = 0. When the semigroup 0(<5,) = fi, has character A, we also say that the
homomorphism <p has character A. The following theorem is the basic result on the
character of homomorphisms.

THEOREM 5.4. Suppose that <f> is a continuous nonzero homomorphism from
Ll[0, a) to Ll[0, b) or MfO, b). If4> has character A, then we have:

(a) A > b/a;
(b) If ix belongs to MfO, a), then a(0(/x)) = Aa(fi);
(c) 4>{ix) = 0 if and only if a(ix) > b/A, so that ker(</>) = L'[0, a)b/A and <j> is

one-one if and only if A = b/a.

PROOF. Since Sa is 0 in M[0, a), we have /zfl = 0(<SJ is 0 in M[0, b). Thus
Aa = a(ixa) > b, or A > b/a.

When /i = 0 in MfO, a), part (b) follows from our definitions. So suppose that /z is
a nonzero measure in M[0, a) and let a((x) = c < a. Let v be a measure in MfO, a)
with /̂  = 8C * v. This means that, on [0, a — c), v is the left translate of /x by a
distance c. Thus a(v) = 0, and hence, by Lemma 5.1, a((p(v)) — 0. Thus we have

a ( 0 O ) ) = a(<p(Sc) * 0(v)) = a(/*c) + a(0(v)) = Ac = Aa(/i).

This proves part (b).
Part (c) is an immediate consequence of part (b), since </>(M) = 0 if and only if

fc. •

Part (c) of the theorem essentially says that 0 is a one-one homomorphism from
L'[0, b/A) that has been extended in a trivial way to L1 [0, a), by mapping measures
and functions on [b/A, a) to 0 in M[0, fr).

For weighted convolution algebras, a class of homomorphisms, called standard
homomorphisms in [9], have a number of very 'nice' properties. Only for special
weights are all homomorphisms known to be standard, but the natural translations of
the properties in [9] do hold for L'fO, a).
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THEOREM 5.5. Let <f> be a nonzero continuous homomorphism from L'[0, a) to
L'[0, b) {and also let (p designate the extension of this map to M[0, a)). Then the
following hold:

(a) / / L ' [0, a) * f is dense in L' [0, a), then L ' [0, Z>) * 0 ( / ) is dense in L' [0, b);
(b) 0(5,) = fi, is a strongly continuous semigroup on L'[0, b);
(c) The extension <p : M[0, a) —> M[0, b) is continuous in the norm, weak*, and

strong operator topologies and is continuous from the weak* topology on M[0, a) to
the strong operator topology on M[0, b);
(d) The map T : C0[0, b) -> C0[0, a) given by Th(x) = {h, <p(S,)) is a bounded

linear transformation whose adjoint is <j> : A/[0, a) —> A/[0, b);
(e) For all h in L' [0, b), there exists an f in Ll [0, a) and a g in L1 [0, b) for which

h = <p(f)*g.

PROOF. We start with the results that we know already. Since a ( / ) = 0 if and
only if L'[0, a) * f is dense in L'[0, a) (see, for instance, [2, Theorem 4.7.58 (i)]),
part (a) is essentially a restatement of part of Lemma 5.1. As we pointed out, {/A,} is
a strongly continuous semigroup by Theorems 3.2 and 5.3. The norm continuity of
<p : M[0, a) -> M[0, b) is given in the original extension theorem, Theorem 5.2.

Suppose that 5 is a function from the dual space £ of a Banach space to the
Hausdorff space X. It follows from the Krein-Smulian Theorem [4, Theorem V.5.7]
that 5 is weak*-continuous if it transforms bounded weak*-convergent nets in E to
convergent nets in X (compare [16, Lemma 4.1]). The continuity of 4> from the weak*
topology on M[0, a) to both the weak* and strong-operator topologies on M[0, b)
now follows from Theorem 5.3. We postpone the proof of strong operator topology
continuity until we have proven part (e).

Since <p : M[0, a) -> M[0, b) is weak* continuous, there is some bounded linear
operator T : C0[0, b) -> C0[0, a) for which <p = T*. To prove (d), we just need to
show that T is given by the formula in (d). For every x in [0, a) we have that

Th(x) = (Th, Sx) = (h, T*SX) = (h, <j>(8x)),

so (d) is proved.
We now prove (e). Let {en}^=l be a bounded approximate identity in L'[0, a); for

instance, en could be n times the characteristic function of [0, 1/rc). Let /„ = 4>(en). It
follows from Theorem 5.3 that {/„} is a bounded approximate identity in L1 [0, b). We
now make L' [0, b) into a Banach module over L' [0, a) by defining the multiplication
f • g = <p(f) * h. Under this multiplication {en} is a bounded approximate identity
for the module L'[0, b). Part (e) now follows directly from the module form of the
Cohen Factorization Theorem (see [2, Theorem 2.9.24] or [3, Theorem 16.1]).

We complete the proof of the theorem by showing that 0 : A/[0, a) -> M[0, b) is
continuous in the strong operator topologies. Suppose that [kn] is a net in M[0, a)
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that converges to X in the strong operator topology. Let h belong to L' [0, b) and write
h — <j>(f) * g, as permitted by (e). Then

* g = 4>(X) *h. n

6. Homomorphisms of L ^

In this section we prove results for homomorphisms of L,1^ that are analogous to
the results given in the previous section for L'[0, a).

Recall that, for c > 0, the restriction map Rc : Ll
loc ->• L'[0, c) induces an

algebraic and topological isomorphism from Ll
ioc/L'c onto L'[0, c). We frequently

identify L'[0, c) with the quotient algebra. In this case Rc becomes the quotient map
and the restriction Rcf is the coset of / in L^/L].. The analogous facts hold for MIoc.

Let T : Ll
loc —> Ll

joc. The usual characterization of continuity of linear maps
between locally convex spaces tells us (compare [10, page 54]) that T is continuous if
and only if for all b > 0 there is an a > 0 and a number K = K {a, b) > 0 for which

(6.D lir/iu < K\\f\\a.

Whenever (6.1) holds we have

(6.2) T(Ll
a) c L\.

If (6.2) holds for a linear transformation T, then T induces a linear map Ta b :
Ll\0,a) -+ Ll[0,b) given by

(6.3) Ta,b(Raf) = RbTf.

Moreover, T is continuous (or is an algebra homomorphism) if and only if all Ta<b,
given by (6.2) and (6.3), are continuous (or are homomorphisms). Analogous results
hold for linear maps from L,1^ (or M^) to L'^ (or M\x).

The following result shows how the integral domain property of L,1^ and M\K can
often give 'better' results than are true for Ll[0, a) and M[0, a).

THEOREM 6.1. Suppose that <p is a continuous homomorphism from L,1^ (or M^)
to L,1^ (or Afloc). If4> does not vanish on Ll

loc, then <p is one-one.

PROOF. First suppose that the domain of <f> is Ll
loc. If 4> were not one-one, then

its kernel would have to be [10, Proposition 2.5 (a)] one of the standard ideals L\
for a > 0. Then </> would induce a one-one homomorphism from L\(K/L\ into Mioc.
However, this is impossible, since L^/Ll has nilpotent elements and M ^ is an
integral domain.
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Now suppose that </>: Mioc -*• M^ and let n be a nonzero measure in A/loc. Choose
a function / ^ 0 in L,1^. We have already shown that 0(/z * f) — <I>(IA) *4>(f) ^ 0.
Hence <p (fi) ^ 0 as required. •

We now use Theorem 6.1 to prove the following analogue of Lemma 5.1 for L'^.
and Mloc.

LEMMA 6.2. Suppose that <p is a continuous homomorphism from L ^ (or M ^ ) to
îoc ( o r ^ioc)- Suppose also that <p does not vanish on L'^.. Then for all /z we have

thata(fi) — 0 if and only ifa(4>(ii)) = 0.

PROOF. For the case where a(/z) = 0 we first consider </> : L'^ -> Mioc. The case
where the domain of </> is Mioc then follows exactly as in the proof of Lemma 5.1.
We suppose that there is an / in Ll

ioc with a(f) = 0, but with a(<p(f)) > 0. Let
b — a(<p(f)). Then (p~[(M2b) is a closed ideal of Ll

lo(. that does not contain / .
Since all ideals of L ^ are standard [10, Proposition 2.5 (a)], there is an a > 0
for which L\ = (^"'(M^). It follows from the Titschmarsh Convolution Theorem
that a(</>(/2)) = 2a(<j)(f)) = 2b and hence f2 e L\. This requires that ot(f2) =
2 a ( / ) > a > 0, which contradicts our assumption that a(f) — 0.

When ot(ix) > 0, it follows from (6.2), which holds for any continuous linear map,
that a (<p (M)) > 0. This completes the proof of the theorem. •

We now prove that we can extend homomorphisms from Z,'^ to Mloc. This extension
theorem plays the same crucial role that it played for L' [0, a) in Section 5 and for
weighted convolution algebras in [13] and subsequent papers.

THEOREM 6.3. Suppose that <p is a continuous nonzero homomorphism from L^
to L,^ or Mloc. Then <j> has a unique extension to a homomorphism <j> : Mloc —> Mloc.
Moreover this extension is continuous.

We prove Theorem 6.3 in two stages, starting with the following lemma.

LEMMA 6.4. Suppose that <p : L^ —> M[0, b) is a continuous nonzero homomor-
phism. Then (j> has a unique extension to a homomorphism (j> : M\x —>• M[0, b).
Moreover, this unique extension is continuous.

PROOF. Since Z,'^ is a domain, <p cannot be one-one; its kernel is a nonzero
ideal Va. Then <p induces a continuous monomorphism <j>ab from L'[0, a) ss L^/L^
into M[0, b). By Theorem 5.2, we can extend <j>ab to a continuous homomorphism
4>ab : M[0, a) -> M[0, b). We now define 4> = ^b- Ra.

For uniqueness choose/z in L^ witha(A) = 0. Thena(</>(/0) = ot(<pab(Rah)) — 0.
Hence 4>(h) is not a divisor of zero in M[0, b). Thus 4>(/x) is uniquely defined by the
formula 0(/z) *<j>(h) = <p(ix *h). •
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PROOF OF THEOREM 6.3. Uniqueness follows as in Lemma 6.4, with the simplifi-
cation that 0 ( / J ) is never a divisor of zero for h ^ 0.

For each b > 0, Lemma 6.4 shows that Rb<p '• L^ —> M[0, b) has a unique
extension to a continuous homomorphism 4>b : Mioc -> M[0, b). By the uniqueness,
these restrictions are compatible in the sense that if a < b, then 0a(/z) is the restriction
of 0(,(/x) to [0, a) . Thus we can define 0 : Mioc —>• M\x by specifying that Rb4>{^i) =
4>t,(/j.) for all fo > 0. Since all Rb4> are homomorphisms, so is 0. Similarly, the
continuity of 0 follows from the continuity of all Rb<p = <pb. This completes the proof
of the theorem. D

Just as in the proof of [13, Theorem 3.4], we can show that if | |r/ | | f c < /Hl/lla for
all / in Ll

loc, then \\Tix\\b < K\\/x\\a, with the same K, for all /x in Mloc.
Because of the uniqueness of the extension 0" : M!oc -> MiocOf0, we will henceforth

use 0 to designate both the original map on L]^. and its extension to M\x. The next
theorem follows from Theorem 2.3 in the same way that Theorem 5.3 followed from
Theorem 2.2.

THEOREM 6.5. Suppose that 0 is a continuous nonzero homomorphismfrom L1^ to
Ll

loc or Mioc. If IK] is a bounded net in Mioc with weak* limit X, then<p(Xn) converges
to 4>(X) in both the weak* and strong- operator topologies on M[oc.

When 0 is a continuous nonzero homomorphism from L^ to Z,,1^ or Mioc, we say
that 0 has character A when the semigroup 0(5,) has character A. The following is
the basic result about characters of homomorphisms from L ^ .

THEOREM 6.6. Suppose that 0 is a continuous nonzero homomorphismfrom Ll
loc

to Z,,1^ or Mioc, and let 0 have character A. Then we have:

(a) The character A is strictly positive;
(b) a(0(/Li)) = Aa(/x)for all /x in Mioc.

PROOF. Choose a > 0. By (6.2) we know that there is a b > 0 with 0(Ma) c Mb.
In particular, a(4>(Sa)) = Aa > b. This proves (a).

Suppose /x belongs to Mioc and let a = a(/x). We can write /x = Sa * v, where v is
a measure with a(v) = 0. Hence, by Lemma 6.2,

= ct(<p(Sa)) + a(0(v)) = Aa + 0 = Aa(fi).

This completes the proof of the theorem. •

We are now ready to prove the 'standardness' properties analogous to those in
Theorem 5.5.
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THEOREM 6.7. Suppose that (j> : Ll
loc —>• L ^ is a continuous nonzero homomor-

phism. Then the following properties hold:

(a) IfL^*/ is dense in Ll
loc, so is L^ *</>(/);

(b) 4>(St) = /x, is a strongly continuous semigroup on Ll
Xoc\

(c) The extension map (j> : M\x —> Mloc is continuous in the weak* and strong
operator topologies;
(d) For all h in L,^, there are functions f and g in Ll

loc for which h — (f> ( / ) * g.

PROOF. The proofs of (a) and (b) are the same as for Theorem 5.5 (a) and (b).
The proof of (d) is the same as the proof of Theorem 5.5 (e), except that we use the
Frechet module version of the Cohen Factorization Theorem [3, Theorem 26.2]. The
strong-operator-topology continuity of <f> now follows from the factorization in (d),
just as in Theorem 5.5 (c). To complete the proof, we just need to show that <p is
weak* continuous.

Since CC(K+), the predual of Mioc, is essentially the union of all C0[0, b), it is clear
that all the restriction maps Rb : Mioc —>• A/[0, b) are weak* continuous. It also follows
that <p '• Â ioc -> Mioc is weak* continuous if and only if all Rb<j) : M ^ ->• M[0, b)
are continuous. Let <j> have character A > 0, and fix b > 0. Then it follows
from Theorem 6.6 (b) that if we let a = b/A, then we have <j>{Ma) c Mb. Let
4>ab '• M[0, a) ->• M[0, b) be the induced homomorphism given by (pabRa = Rb<t>,
as in (6.3). Then <pab is weak* continuous, by Theorem 5.5 (c). Hence <pabRa is
also weak* continuous. Thus all Rb<j> are weak* continuous, forcing </> to be weak*
continuous. This completes the proof. •

With a bit more effort we can prove analogues of the remainder of Theorem 5.5.
Thus 4> is the adjoint of the map T : CC(K+) -> CC(K+) given by Th{x) = (h, </>(Sx)),
and cp is continuous from the weak* topology on Afloc to the strong operator topology.

7. Extensions and restrictions of homomorphisms

In this section we show that all continuous homomorphisms of L ^ restrict to
continuous homomorphisms between weighted convolution algebras. We determine
precisely which homomorphisms between weighted convolution algebras extend to
homomorphisms of L^. In the restriction theorems (Theorems 7.4 and 7.7) we show
that we can choose the domain or choose the range of the restriction in an essentially
arbitrary manner.

These restriction and extension theorems let us prove results about homomorphisms
of Llx from results about homomorphisms between weighted convolution algebras,
and vice versa.
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THEOREM 7.1. Suppose that Lx{a>x) and Ll(a)2) are subalgebras of Lx
]oc and that

<f> : Lx(a>\) —*• Ll(a>2) is a continuous nonzero hotnomorphism of Llx.

(a) If (j) has a positive character, then it has a unique extension to a continuous
homomorphism of L,1 .̂.
(b) If the character ofcj> is 0, then no linear extension of<$> to Lx

joc can be continuous.

PROOF. Since &>i and a>2 are weights and Lx(co{) and Lx(co2) are subalgebras of
Lx

joc, we can replace cj\ and co2 by 'essentially equivalent' weights without changing
the algebras or their norm topologies [13, Theorem 2.1]. Therefore, without loss of
generality, we can assume for simplicity that a>, and o>2 are algebra weights.

Since L'(cwi) and Lx{u>2) are dense subalgebras of Lx
loc, the map <p can be continu-

ously extended if and only if <p : Lx{o)\) -> Lx(a>2) is continuous in the relative Lx
joc

topologies on Lx{a>\) and Lx(co2)- Moreover, when the continuous extension exists,
it is necessarily unique. The theorem will thus be a consequence of the following
lemma.

LEMMA 7.2. Suppose that 0 : Lx{a>\) —> Lx(co2) is a continuous nonzero homo-
morphism of character A > 0.

(a) If A > 0, then <f> is continuous in the (relative) L,'oc topologies on Lx(u)\) and
Lx(co2).
(b) IfA= 0, then <f> is discontinuous in the Lx

XoQ relative topologies.

PROOF. We first consider the case where <j> has character 0. For all a > 0, there
is an / in Lx{co{) with a(f) > a and a(4>(f)) = 0 [13, Theorem 4.11]. Thus
<p(Lx((Oi)a) cannot be a subset of any Lx(co2)b. Hence <j> cannot satisfy the condition
for L^-topology continuity given in (6.1) and (6.2).

Now we assume that the character A is strictly positive. Then for all / in Lx{cox)
we have, by [15, Theorem 5.8] and [13, Theorem 4.9 (a)], that <*(</>(/)) = Aa(f).
Hence, given b > 0, we can find an a > 0 for which

(7.1) 0(L V i ) J c L V2)fc-

In fact, (7.1) holds if and only if b > a A. As with Lx
loc, the restriction map Ra :

Lx{o)\) —>• L'[0, a) induces a homeomorphic algebra isomorphism (though normally
not an isometry) from Lx(a)\)/Lx{co{)a onto L'[0, a). We therefore identify L'[0, a)
with the quotient space and Ra with the quotient. Of course the analogous results hold
for Rb : Lx((o2) -> Lx(a)2)h. Thus, just as for formula (6.3), 0 induces a bounded
linear transformation <pab : Lx[0, a) ->• L'[0, b) satisfying 4>abRaf = Rb<$>f for all /
in LX((D\). Hence for all / in L'(a>i) we have

110/11* = \\Rb<Pf\\ = UabRafW < UabWWRbfW = Uab
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Therefore 0 satisfies the condition for L^-topology continuity given by (6.1). This
completes the proof of the lemma and of Theorem 7.1. •

In the above proof the fact that 0 is a homomorphism of positive character is
only used to prove (7.1) and hence works for any bounded linear map satisfying this
formula. Essentially the same proof works for 0 : Ll{a>\) —> M(co2), except that here
we need to assume that co2 is an algebra weight. This is because replacing co2 with an
essentially equivalent weight preserves Ll(co2), but can change M(co2). The precise
result is as follows.

THEOREM 7.3. Suppose that V(a>\) is a subalgebra of Lx
l(K, that co2 is an algebra

weight, and that 0 : Lx(co\) —>• M(co2) is a continuous nonzero homomorphism.
Then cj> is continuous in the relative Lx

Xoc topologies, and hence has an extension to a
continuous homomorphism from L,'oc to Mioc, if and only if<p has positive character.
When the extension exists, it is unique.

In connection with the above theorem, it is worth noting that the class of homo-
morphisms of positive character is sufficiently large to include all continuous nonzero
endomorphisms of radical L[(co) [13, Theorem 4.7].

We now prove our restriction theorems. First notice that, for every weight co, we
have L' (co) continuously imbedded in L^ and M ^ , and M(co) continuously imbedded
in Mioc. Thus, it follows from the closed graph theorem that restrictions of a linear
map continuous in the Frechet topologies of L'^. and Mioc to weighted convolution
algebras is automatically continuous. We start by specifying the domain. In this case
the map need not even be a homomorphism.

THEOREM 7.4. Suppose that cp : L'^ -> L^ is a continuous linear map. Ifco\ is any
weight on R+, then there is a decreasing continuous semiconvex algebra weight co2for
which <p(Lx(coi)) c Lx (co2), so that 0 restricts to a continuous linear map from L' (co\)
to Lx(co2). The analogous result holds for 0 : Ll

loc —*• Mioc with 0(L'(o>1)) C M(co2).

PROOF. For definiteness, we consider the case where 0 is a continuous linear map
on Ll

io(.. Let B be the closed unit ball in L'(o>i). It follows from Theorem 4.2 that
B is a bounded subset of Lx

Xoc. Since 0 is continuous, this implies that 4>(B) is a
bounded subset of L'^. c Mloc. Theorem 4.4 then guarantees a weight co2 with the
specified properties for which 0(2?) c M(co2) n L^ = Ll(co2). Since Lx(co\) is the
linear span of B, this implies that 0(L1(&>1)) c Lx(co2) as required. The case of
0 : L\x - • Mioc is similar, except that we do not have 0(B) c Ll

loc so we can only
conclude 0(Z.1(a>i)) c M(co2). This completes the proof. •

We know from Theorem 6.3 that every continuous nonzero homomorphism 0 :
Lx

loc -» Mioc has a unique extension to a continuous homomorphism of Mioc. On
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the other hand, many of our results on homomorphisms of Mioc require that the
homomorphisms not vanish on L,^ (see, for instance, Lemma 6.2). So the class of
homomorphisms we consider are nonzero continuous homomorphisms from Ll

ioc to
Mioc and their continuous extensions to Mloc; hence we usually identify (j> : L ^ -» Mioc

with its extension. Because of [13, Theorem 3.4] we have the analogous unique
extension result and use the same convention of identifying a nonzero continuous
homomorphism </> : Ll{co\) —> M(u>2) with its extension to M(eo\).

We will need the following extension of a result in [13].

THEOREM 7.5. Suppose that {fi,} is a strongly continuous semigroup in M(a>2),
where co2 is an algebra weight. Suppose also that a>\ (t) is an algebra weight for
which WfitWa^/^iit) is bounded. Then there exists a unique nonzero continuous
homomorphism <f> : Ll(a>\) -» M(co2) far which (j>(8,) = fi,.

PROOF. The existence is given in [13, Theorem 3.17]. The map <f> is given by the
strong Bochner integral <£(/) = /R+ f(t)ix, dt, that is, <£(/)* g = /R+ f(t)n, * g dt,
is a Bochner integral in M(a)2), for all g in L1 (co2).

To show that (p is nonzero, we first consider the case where l im , . ^ o)\(t)l/' < 1.
In this case u(t) = 1 belongs to L\a>\). Let —A be the generator of the semi-
group n,. Then A is a closed densely defined operator on L[(a)2) and is invertible
with A"1 = /R + ix, dt = /R+ u{t)ix,dt is a strong Bochner integral [13, page 601].
Hence A"1 is (the operator on Ll(a>2) of convolution by) 4>{u), so <j>(u) ^ 0. When
lim,^oo co\{t)xl' < er, one replaces the formula for - A " 1 with the resolvent formulas
(X + A)-] = fR+e-x'n,dt =<P(e-x')forX > r [13, Lemma 11.5.1].

Now suppose that * : Ll(coi) —>• M(co2) is another nonzero continuous homo-
morphism with W(8,) = [i,. Then we again have [13, Theorem 3.6] that 4*(/) =
/ f(t)fi, dt is a strong Bochner integral. Then 4> = * , and the proof is complete. •

The condition that \\fi,\\u>2/(
l)\(t)1S bounded is necessary as well as sufficient since

we must have ||/A,||W2 < H^HH^m = II^Hco^O- The natural choice of a»,(f) would
be co'(t) = \\fi, m , but we cannot be sure that co'(t) is an algebra weight in our sense
of the term. However, we can always find an algebra weight a>{{t) for which both
a)'(t)/coi(t) and a>x(t)lco'{t) are bounded (see [13, page 610] and [12, Lemma 2.1]).
In this case M{u>\) and M{co') are the same algebras with equivalent norms. We can
use Theorem 7.4, to get an application of Theorem 7.5 to Lx

Xoc. We will need this
application in our other restriction theorem.

LEMMA 7.6. Suppose that <p and W are continuous nonzero homomorphisms from

Llx to Mloc. If(P(S,) = V(8,)for all t, then <t> = * .

PROOF. Let a>(t) be a radical algebra weight. By Theorem 7.4, there are algebra
weights a>\ and <x>2 with <f>(Ll(co)) c M{(O\) and *(L'(a))) c M(a>2). Then co\ and
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o>2 are algebra weights, which must also be radical weights, so that both M(&>!) and
M(co2) are subalgebras of M(COXOL>2), and coia>2 is an algebra weight. It follows from
Theorems 4.5 and 6.7 (b) that <j>(8,) = W(8,) is a weak*-continuous semigroup in
M((J)\Q)2). Now let 0)3(0 = e~' co\(t)(i)2(t). Just as in the proof of Theorem 4.7, we
have <j>{8,) = ^(8,) is a strongly continuous semigroup in M(<y3). Thus </> and ^
are continuous maps from L'(a>) to A/(&>3), for which (j>(8,) = ty(8,) is a strongly
continuous semigroup. It then follows from Theorem 7.5 that 0 and 4* agree on L' (co).
Since L'(o>) is dense in L,1 .̂, this implies that <j> = * , and the proof is complete. •

We now have our other restriction theorem, in which we specify the range instead
of the domain.

THEOREM 7.7. Let </> : Ll
joc —> M\x be a continuous nonzero homomorphism and

let IJ., = <p(8,). If co2 is an algebra weight for which [i, is a strongly continuous
semigroup in M{a)2) (such weights exist by Theorem 4.7), then for any algebra weight
a>\(t) with Wn-iW^/coiit) bounded, we have that <f> restricts to a continuous nonzero
homomorphism from Ll(a>i) to M(co2). Conversely, if (p(Ll(a>i)) c M(co2), then

must be bounded.

PROOF. By Theorem 7.5, there is a continuous nonzero homomorphism * :
L'(CDI) -> M(co2) with vl>(<5,) = fit. It follows from Theorem 6.6 (a) that {/*,},
and hence 4', have positive character. Thus, by Theorem 7.3, * can be extended
by continuity to a homomorphism 4* : Ll

loc -> Mioc. Since <p(8,) — W(8,) = fx,, it
follows.from Lemma 7.6 that 0 = 4*. Thus (p restricts to * on L1 (&>i). Conversely if
4> restricts to a continuous homomorphism from L'(o>i) to M(co2), then

U < \\4\\\\8iU =

This completes the proof. D

A proof very similar to that above gives the following existence result, which
complements the uniqueness in Lemma 7.6.

THEOREM 7.8. Suppose that {/J,,} is a strongly continuous semigroup of positive
character in Mioc. Then there exists a unique continuous nonzero homomorphism
<t> : LlK ->• A/ioc with <p{8,) = \xt.

PROOF. Uniqueness follows from Lemma 7.6. For existence, choose, by Theo-
rem 4.7, an algebra weight a>2 for which /x, is a continuous semigroup in M(co2).
Then Theorem 7.5 gives an algebra weight u>\ and a nonzero continuous homomor-
phism of positive character <f> : L'(CDI) -> M(co2). Now extend <p to a continuous
homomorphism from L[

loc to Mioc using Theorem 7.3. •
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8. Applications and open questions

The extension and restriction theorems for homomorphisms in Section 7 and the
analogous theorems for semigroups and nets in Section 4 make it possible to prove
results about L,1^ from results about weighted convolution algebras and vice versa.
We have already used this technique to obtain results, in particular Theorem 7.8,
about L'^. In this section we illustrate how to go in the other direction.

THEOREM 8.1. Suppose that <f> : L'(o>i) -» M'(<y2) is a continuous nonzero
homomorphism of positive character, where a)\ and co2 are algebra weights. Then
there is aO < c < oo for which (j>{f) € Ll(u>2) if and only ifot(f) > c.

Notice that c = 0 means <p maps Lx{a>\) into L'(ct>2), which is usually the case we
would prefer, and that c = oo means 0 ( / ) is a function only for / = 0.

Since, by Theorem 7.1, the map 0 can be extended to be a continuous homomor-
phism from L\x to Mioc, Theorem 8.1 is a consequence of the following lemma.

LEMMA 8.2. Suppose that 0 : L,1^ —> M^ is a continuous nonzero homomorphism.
Then there is aO < c < oofor which </>(/) belongs to Ll

ioc if and only ifa(f) > c.

PROOF. L,1^ is a closed ideal in M ^ , so 0"1 (^'oc) is a closed ideal in L,1^. However,
all closed ideals in L\K are standard [10, Proposition 2.5 (a)]. Hence there is a
0 < c < oo for which 0~1(L1'OC) = Lc. This proves the lemma and also proves
Theorem 8.1. •

If the c in Theorem 8.1 is a positive finite number, then 0 induces a homomorphism
from L'[0, c) to M^/L^, and hence also induces a homomorphism from L'[0, c)
to M{(o2)/L

l(a>2). After moving to a quotient algebra, this continuously embeds
L'[0, a) into M(co2)/ V (&)2) for some 0 < a < c. It is not clear that this can happen.
This suggests the following question.

QUESTION 1. If <j> : L'(wi) —> M(a>2) is a continuous homomorphism and if <p(f)
is a function for some nonzero / in Ll(a)\), must 0 map Ll(a)]) to L'(w2)? When <j>
has character 0, do we even have the result of Theorem 8.1?

Ever since homomorphisms of positive character were introduced in [13] (which
drew heavily on arguments given for isomorphisms in [6]), these homomorphisms
often turned out to be better behaved than homomorphisms of character 0. In this
paper we saw, in Theorem 7.1, that these are precisely the homomorphisms that can be
extended to L'^.. Other results, like Theorem 8.1, are known for all homomorphisms
of positive character, but only for some homomorphisms of character 0. Below are
some such properties from earlier papers. In the earlier papers the results are often
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given for homomorphisms from Ll{co\) to Lx{a)z) and not also for those to M(a>2).

The more general case is proved similarly. The proofs in [13] work only for radical

weights, but the simpler proofs in [15] work in general.

PROPOSITION 8.3. Suppose that u>\ and co2 are algebra weights and that (j) :

L'(<i)i) —*• M(a>2) is a continuous nonzero homomorphism of positive character

A. Then we have

(a) [13, Theorem 4.9 (a)] and [15, Theorem 5.8] a(</>(fi)) = Aa(fi).

(b) [13, page 613] and [15, page 188] <p is one-one.

We now know that (a) and (b) are consequences of the analogous results, The-

orems 6.1 and 6.6, for L\x. We only know Proposition 8.3 (a) and (b) for some

homomorphisms of character 0, which suggests the following question (and its ana-

logue for 0 : Lx(u>\) -» A/(a>2)).

QUESTION 2. Suppose that 4> '• L[(a>i) —> Ll(a)2) is a continuous homomorphism

of character 0. Must <j> satisfy conditions (a) or (b) of Proposition 8.3?

For <f> of character 0, the analogue of Proposition 8.3 (a) would say a ((/>(/)) = 0

for all nonzero / in L'(&>i)- We do not know, in the characteristic 0 case, if this is

true when a{f) = 0, as in Lemma 6.2. A useful special case is [13, Lemma 4.5].
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