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Quantum Limits of Eisenstein Series and
Scattering States
Yiannis N. Petridis, Nicole Raulf, and Morten S. Risager

Abstract. We identify the quantum limits of scattering states for the modular surface. This is obtained
through the study of quantum measures of non-holomorphic Eisenstein series away from the critical
line. We provide a range of stability for the quantum unique ergodicity theorem of Luo and Sarnak.

1 Introduction

An important problem of quantum chaos is to describe the limiting behavior of
eigenfunctions. On a compact negatively curved Riemannian manifold X, Shnirel-
man [17], Colin de Verdière [2], and Zelditch [21] have proved that for a ‘generic’
family of eigenfunctions {φ j} of the Laplacian the associated measures dµ j(z) =∣∣φ j(z)

∣∣2 dµ(z) converge weakly to the standard volume element dµ(z) of X, which we
write as

(1.1) dµ j(z)→ dµ(z) as j →∞.

Zelditch [22] extended the result to finite volume hyperbolic surfaces. Lindenstrauss
and Soundararajan [11,18] have proved that for X = Γ\H2 where Γ ⊂ PSL2(Z) is of
a certain arithmetic type, (1.1) holds if φ j runs through the set of Hecke–Maaß cusp
forms. Earlier Luo and Sarnak [12] investigated the question of quantum chaos for
Eisenstein series E(z, 1/2 + it), i.e., generalized eigenfunctions on X = PSL2(Z)\H2.
Since this series is not square integrable, a certain normalization is needed. The actual
statement in [12] is the following: Let A and B be compact Jordan measurable subsets
of X. Then

(1.2) lim
t→∞

∫
A |E(z, 1/2 + it)|2 dµ(z)∫
B |E(z, 1/2 + it)|2 dµ(z)

=
µ(A)

µ(B)
.

In fact, see [12], this follows from the result

(1.3)

∫
A
|E(z, 1/2 + it)|2 dµ(z) ∼ 6

π
· µ(A) log t, t →∞.

Received by the editors September 19, 2011; revised November 27, 2011.
Published electronically February 3, 2012.
The first author was supported by NSF grant DMS-0401318; the second author was supported by a

grant from the DAAD (German Academic Exchange Service), and the third author was supported by a
grant from The Danish Natural Science Research Council

AMS subject classification: 11F72, 58G25, 35P25.
Keywords: quantum limits, Eisenstein series, scattering poles.

814

https://doi.org/10.4153/CMB-2011-200-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-200-2


Quantum Limits of Eisenstein Series and Scattering States 815

A general cofinite subgroup likely has few embedded eigenvalues, possibly finite, so
(1.1) may be irrelevant. So far the quantum unique ergodicity of Eisenstein series
is unproven for a general cofinite subgroup. A good substitute for the embedded
eigenvalues are the scattering poles (resonances). A natural question is to study the
quantum limits of these scattering states. We address this question for Γ = PSL2(Z).
As these states are not in L2(Γ\H2), some normalization is also needed. Consider a
simple pole ρ of the scattering matrix. By the explicit calculation of the scattering
matrix, see (2.2), such a pole is equal to half a zero of the Riemann zeta function. The
Eisenstein series also has a pole at this point, and the residue has Fourier expansion

res
s=ρ

E(z, s) =
(

res
s=ρ
φ(s)

)
y1−ρ +

∑
m6=0

cm
√

yKρ−1/2(2πmy)e2πimx.

These scattering states are formal eigenfunctions of the Laplace operator. We choose
to normalize them as follows: Set

uρ(z) = (res
s=ρ
φ(s))−1 res

s=ρ
E(z, s),

so that the scattering functions have the simplest possible growth behavior at infinity,
namely y1−ρ.

We let {γn} be a sequence of zeroes of the Riemann zeta function with 1/2 ≤
<(γn), which satisfies limn<(γn) = γ∞ < 1. Automatically <(γn) < 1, and the
Riemann hypothesis is equivalent to <(γn) = γ∞ = 1/2, but we shall not assume it.
The points ρn = γn/2 are poles of the scattering matrix φ(s).

Theorem 1.1 Let A be a compact Jordan measurable subset of X. Then∫
A
|uρn (z)|2 dµ(z)→

∫
A

E(z, 2− γ∞)dµ(z)

as n → ∞. This means that the quantum limit of the measures |uρn (z)|2 dµ(z) is the
invariant, absolutely continuous measure E(z, 2− γ∞)dµ(z).

Remark 1.2 We know that a positive proportion of the zeros ρ of ζ(s) lie on the
critical line and are simple. In fact, this proportion is at least 40.58%; see [1]. Under
the Riemann hypothesis and the conjectured simplicity of the Riemann zeros, there
is only one quantum limit, the one described in the theorem above: E(z, 3/2)dµ(z).

Theorem 1.1 follows rather easily by studying the quantum limits of Eisenstein
series off the critical line. We present two such theorems. The first addresses the
stability of (1.2) if, instead of real spectral value 1/4 + t2, we move in the complex
plane. To be precise let

dµs(t)(z) =
∣∣E( z, s(t)

) ∣∣ 2
dµ(z),

where s(t) = σt + it, σt > 1/2. We investigate what happens in the limit as t →∞,
assuming that σt → σ∞ ≥ 1/2. We find qualitative differences depending on
whether or not σ∞ = 1/2. If σ∞ = 1/2 the situation is very similar to that of [12].
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Theorem 1.3 Assume that σ∞ = 1/2. Let A, B be compact Jordan measurable subsets
of X. Then

µs(t)(A)

µs(t)(B)
→ µ(A)

µ(B)

as t →∞. In fact we have

µs(t)(A) ∼ µ(A)
3

π(2σt − 1)
.

We see that the rate of increase depends on the rate at which σt tends to σ∞ = 1/2.
Moreover, Theorem 1.3 implies that the quantum unique ergodicity of the Eisenstein
series holds in quite a big region in the complex plane (physical plane). For spectral
value λ tending to infinity, the results holds as long as =(λ) = o(

√
<(λ)) in the

region <(λ) ≥ 0. To see this we write λ = s(1 − s) with s = σ + it and σ ≥ 1/2.
Then =(λ) = o(

√
<(λ)) implies <(λ) = σ(1− σ) + t2 →∞. We easily deduce that

σ is bounded. Then (1− 2σ)t = o(
√
σ(1− σ) + t2) gives σ → 1/2, so we can apply

Theorem 1.3.
Surprisingly the situation is qualitatively different when σ∞ > 1/2. We prove the

following theorem.

Theorem 1.4 Assume that σ∞ > 1/2. Let A be a compact Jordan measurable subset
of X. Then

µs(t)(A)→
∫

A
E(z, 2σ∞)dµ(z)

as t →∞.

This proves that, when σ∞ > 1/2, the measures dµs(t) do not become equidis-
tributed. In fact it suggests in this case to consider different measures

dνs(t)(z) =

∣∣∣∣ E(z, s(t))√
E(z, 2σ∞)

∣∣∣∣2 dµ(z).

We note that, since 2σ∞ > 1, we have E(z, 2σ∞) > 0. The downside of this defini-
tion is that the function E(z, s(t))/

√
E(z, 2σ∞) is not an eigenfunction of the Lapla-

cian in contrast to E(z, s(t)). The upside is that the corresponding measures become
equidistributed.

Corollary 1.5 Assume that σ∞ > 1/2. Let A be a compact Jordan measurable subset
of X. Then

νs(t)(A)→ µ(A), t →∞.

The result of Theorem 1.4 looks similar to [5, Theorem 1], where the authors
consider the equidistribution of Eisenstein series for convex co-compact subgroups
Γ of Iso(Hn+1) with Hausdorff dimension of the limit set δΓ satisfying δΓ < n/2. In
both theorems the Eisenstein series E(z, 2σ∞) is well defined and E(z, 2σ∞)dµ(z) is
the quantum limit.

Similar results to Theorem 1.1 and Theorem 1.4 for more general surfaces with
cuspidal ends have recently been announced by Dyatlov [3].
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Remark 1.6 The crucial ingredients in [12] are

(i) a subconvex estimate for the L-series of a Maaß cusp form on its critical line,
e.g., L(φ j , 1/2 + it)� (1 + |t|)1/3+ε (see [14]);

(ii) a subconvex estimate for the Riemann zeta function on its critical line, e.g.,
ζ(1/2 + it)� (1 + |t|)1/6+ε;

(iii) estimates for ζ(1 + it) and (ζ ′/ζ)(1 + it).

For Theorem 1.3 we use subconvex bounds on L-functions and ζ(s). When σ∞ >
1/2, i.e., in Theorem 1.4, only convexity bounds are used. While we use estimates on
ζ(1 + it) and 1/ζ(1 + it) in both cases, the estimate for (ζ ′/ζ)(1 + it) is required only
for the theorem of Luo and Sarnak. Our results clarify the mechanism for quantum
unique ergodicity of Eisenstein series.

Remark 1.7 Equation (1.2) was extended by Jakobson [9] to the unit tangent bun-
dle of X. Koyama [10] extended the result to Eisenstein series for PSL2(Z[i]), and
Truelsen [20] to Eisenstein series for PSL2(OK ), with OK the integers of a totally real
field K of finite degree over Q with narrow class number one.

In both cases bounds of the type (i), (ii), and (iii) are used. In the case of K = Q(i)
the subconvex estimate analogous to (i) was established by Petridis and Sarnak [15],
and the general case was established by Michel and Venkatesh [13]. As a substitute
for (ii) and (iii), one uses estimates for the Dedekind zeta function ζK .

The analogous question for holomorphic Hecke cusp form of weight k has re-
cently been resolved by Holowinsky and Soundararajan [6]. Let fk be a sequence of
L2-normalized holomorphic Hecke cusp forms for the group SL2(Z) of weight k and
let φk(z) := yk/2 fk(z). Then the measures |φk(z)|2dµ(z) converge weakly to dµ(z),
as previously conjectured by Rudnick and Sarnak. We note that in this case φk is an
eigenfunction of the weight k Laplacian with eigenvalue k/2(1− k/2).

2 Proofs

The non-holomorphic Eisenstein series E(z, s), (z, s) ∈ H2×C is defined for<(s) > 1
by

E(z, s) =
∑

γ∈Γ∞\Γ

=(γz)s.

Here Γ = PSL2(Z), and Γ∞ is the cyclic subgroup generated by z 7→ z +1. The Eisen-
stein series E(z, s) admits a Fourier expansion of the cusp i∞ (see e.g., [7, (3.25)]),

E(z, s) =
∑
n∈Z

an(y, s)e2πinx

= ys + φ(s)y1−s +
2y1/2

ξ(2s)

∑
n 6=0

|n|s−1/2
σ1−2s(|n|)Ks−1/2(2π |n| y)e2πinx.

(2.1)

Here ξ(s) = π−s/2Γ(s/2)ζ(s) is the completed Riemann zeta function satisfying the
functional equation ξ(s) = ξ(1−s); σc(n) is the sum of the c-th powers of the divisors
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of n, and Ks(y) is the K-Bessel function. The scattering matrix is

(2.2) φ(s) =
ξ(2− 2s)

ξ(2s)
.

We notice that the corresponding expression in [12] is missing a factor of 2 in the
non-zero terms. This is irrelevant for their purpose but becomes crucial for ours.

The spectral decomposition of L2(Γ\H2) allows us to consider Maaß cusp forms
and incomplete Eisenstein series separately.

2.1 Maaß Cusp Forms

Since there is a basis of the cuspidal eigenspaces consisting of Hecke–Maaß cusp
forms, we restrict our attention to those.

Lemma 2.1 Let φ j be a Hecke–Maaß cusp form. Then∫
Γ\H2

φ j |E(z, σt + it)|2 dµ(z)→ 0,

as t →∞.

Proof The Maaß cusp form φ j has a Fourier expansion

φ j(z) = y1/2
∑
n6=0

λ(n)Kit j (2πny)e(nx),

with λ(1) = 1. We assume that it is even, since, if it were odd, 〈φ j , µs(t)〉 = 0. Being
a Hecke eigenform, φ j has an L-series with Euler product

L(φ j , s) =

∞∑
n=1

λ(n)

ns
=
∏
p

(
1− λ(p)p−s + p−2s

)−1
.

We want to understand the behavior as t →∞ of

J j(t) =

∫
Γ\H2

φ j(z)
∣∣E( z, s(t)

) ∣∣2 dµ(z).

We calculate

I j(s) =

∫
Γ\H2

φ j(z)E
(

z, s(t)
)

E(z, s)dµ(z),

and set s = s(t) to recover J j(t). For fixed s, I j(s) is a holomorphic function of
w = s(t). In [12] this function is identified for w = 1/2 + it , so we use the principle
of analytic continuation to deduce that

I j(s) =
R(s)

ξ(2s(t))

∏
Γ
(

s±it j±(s(t)−1/2)
2

)
2πsΓ(s)

,
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with

R(s) =
L(φ j , s− s(t) + 1/2)L(φ j , s + s(t)− 1/2)

ζ(2s)
.

We plug s = s(t) to get

J j(t) = 2−1πs(t)−s(t)L(φ j , 1/2− 2it)L(φ j , 2σt − 1/2)

∏
Γ
(

s(t)±it j±(s(t)−1/2)
2

)
|Γ(s(t))ζ(2s(t))|2

.

We apply Stirling’s formula [8, 5.112] in the form

(2.3) |Γ(σ + it)| =
√

2π |t|σ−1/2 e−
π
2 |t|
(

1 + O(|t|−1)
)

uniformly for |σ| ≤ M. Using this we find that the quotient of Gamma factors is

� j |t|1/2−2σt .

If σt is bounded away from 1/2, the function |ζ(2s(t))|−2 is bounded and the con-
vexity estimate L(φ j , 1/2 + it)� t1/2 suffices to guarantee that limt J j(t) = 0.

If σt is not bounded away from 1/2, then we need non-trivial estimates for
ζ(2s(t))−1 and L(φ j , 1/2 + it) to reach the same conclusion. Such estimates are cer-
tainly available: the estimate

(2.4) log−1 |t| � |ζ(2s(t))| � log |t|

is classical in the theory of the Riemann zeta function (see [19, 3.6.5 and 3.11.8]),
and the subconvex estimate

L(φ j , 1/2 + it) = O j,ε

(
|t|1/3+ε)

was proved by Meurman [14]. We note that any subconvex estimate of the form

L(φ j , 1/2 + it) = O(|t|1/2−ε) suffices to show that limt J j(t) = 0.

2.2 Incomplete Eisenstein Series

We now concentrate on the contribution of the incomplete Eisenstein series. Let
h(y) ∈ C∞(R+) be a function that decreases rapidly at 0 and∞. This means that
h(y) = ON (yN ) for 0 < y ≤ 1 and h(y) = O(y−N ) for y � 1 for all N ∈ N. Its
Mellin transform is

H(s) =

∫ ∞
0

h(y)y−s dy

y
,

and the Mellin inversion formula gives

(2.5) h(y) =
1

2πi

∫ a+i∞

a−i∞
H(s)ys ds
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for any a ∈ R. The function H(s) is entire and H(σ + it) is in the Schwartz space in
the t variable for any σ ∈ R. We consider the incomplete Eisenstein series

Fh(z) =
∑

γ∈Γ∞\Γ

h(=(γz)) =
1

2πi

∫ a+i∞

a−i∞
H(s)E(z, s) ds.

Lemma 2.2 Let Fh be an incomplete Eisenstein series as above. Then∫
Γ\H2

Fh(z) |E(z, σt + it)|2dµ(z) ∼{∫
Γ\H2 Fh(z)E(z, 2σ∞)dµ(z), if σ∞ 6= 1/2,∫
Γ\H2 Fh(z)dµ(z)(4ξ(2)(σt − 1/2))−1, if σ∞ = 1/2,

as t →∞.

Proof We choose a such that a > 2σt for all t . The function Fh(z) is smooth and
rapidly decreasing in the cusp. Then unfolding and using Parseval we get∫

Γ\H2

Fh(z)dµs(t)(z) =

∫
Γ\H2

Fh(z)
∣∣E( z, s(t)

) ∣∣ 2
dµ(z)

=

∫ ∞
0

∫ 1

0
h(y)

∣∣E( z, s(t)
) ∣∣ 2 dx dy

y2

=

∫ ∞
0

h(y)

(∑
n∈Z

∣∣an

(
y, s(t)

) ∣∣2) dy

y2
.

(2.6)

2.3 Contribution of the Constant Term

By (2.1) we have∣∣a0

(
y, s(t)

) ∣∣2 = y2σt + 2<
(
φ
(

s(t)
)

y1−2it
)

+
∣∣φ( s(t)

) ∣∣2 y2−2σt .

We analyze the three terms separately. The first term is∫ ∞
0

h(y)y2σt−1 dy

y
= H(1− 2σt ),

which converges to H(1− 2σ∞) when t →∞. Next

φ
(

s(t)
) ∫ ∞

0
h(y)y−2it dy

y
= φ

(
s(t)
)

H(2it).

The function H(2it) decays rapidly and φ(s(t)) is bounded; see [16, (8.6)]. By ana-
lyzing the same expression with φ(s(t))y1−2it instead of φ(s(t))y1+2it we find that the
term in (2.6) involving <(φ(s(t))y1−2it ) tends to zero.
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The last expression coming from the constant term is∣∣φ( s(t)
) ∣∣2 ∫ ∞

0
h(y)y1−2σt

dy

y
=
∣∣φ( s(t)

) ∣∣2 H(2σt − 1).

Certainly H(2σt − 1)→ H(2σ∞ − 1) as t →∞, and |φ(s(t))| is bounded.
Using the explicit expression for φ(s) in (2.2) we have better control of the behav-

ior of φ(s(t)) when σ∞ 6= 1/2. We have

|φ(s(t))| = |ξ(2− 2s(t))|
|ξ(2s(t))|

= π2σt−1

∣∣∣∣ζ(2(1− σt )− 2it)

ζ(2σt + 2it)

∣∣∣∣ ∣∣∣∣Γ(1− σt − it)

Γ(σt + it)

∣∣∣∣ .
Using the convexity bound ζ(σ + it) = O(|t|(1−σ)/2+ε) we get

ζ
(

2(1− σt ) + it
)

= O
(
|t|σt−1/2+ε)

.

By (2.4),
1

ζ(2σt + 2it)
= O(log |t|).

The quotient of Γ-factors is asymptotic to |t|1−2σt by (2.3). We therefore conclude
that, when σ∞ 6= 1/2, we have

(2.7) |φ(s(t))| → 0

as t →∞.
To summarize, we have proved that the contribution of the constant term in (2.6)

converges to H(1− 2σ∞) if σ∞ 6= 1/2 and is O(1) if σ∞ = 1/2.

2.4 Contribution of the Non-constant Terms

By (2.1) and (2.5) the contribution equals

A(t) =

∫ ∞
0

1

2πi

∫
<(s)=a

H(s)ysds
∞∑

n=1

8y

|ξ(2s(t))|2
n2σt−1

|σ1−2s(t)(n)|2
∣∣Ks(t)−1/2(2πny)

∣∣2 dy

y2

=

∫ ∞
0

1

2πi

∫
<(s)=a

H(s)
∞∑

n=1

ys

(2πn)s

8

|ξ(2s(t))|2
n2σt−1 |σ1−2s(t)(n)|2

∣∣Ks(t)−1/2(y)
∣∣2 ds

dy

y

=
1

2πi

∫
<(s)=a

H(s)
1

(2π)s

8

|ξ(2s(t))|2
∞∑

n=1

|σ1−2s(t)(n)|2

ns−(2σt−1)

∫ ∞
0

ys

∣∣Ks(t)−1/2(y)
∣∣2 dy

y
ds.

https://doi.org/10.4153/CMB-2011-200-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-200-2


822 Y. N. Petridis, N. Raulf, and M. S. Risager

We now use [4, 6.576 (4)] to calculate the integral involving the K-Bessel functions,
and the Ramanujan identity

∞∑
n=1

σa(n)σb(n)

ns
=
ζ(s)ζ(s− a)ζ(s− b)ζ(s− a− b)

ζ(2s− a− b)

to see that

A(t) =
1

2πi

∫
<(s)=a

H(s)
1

|ξ(2s(t))|2
ξ(s− 2σt + 1)ξ(s− 2it)ξ(s + 2it)ξ(s + 2σt − 1)

ξ(2s)
ds

=
1

|ξ(2s(t))|2 2πi

∫
<(s)=a

B(s)ds,

where B(s) equals H(s) times the ξ-factors. Since ξ(s) has poles at s = 0, 1, the
poles of B(s) in the region <(s) ≥ 1/2 are at 1 ± 2it , 2σt , 2 − 2σt , ±(2σt − 1),
and ±2it . We now move the line of integration to <(s) = 1/2. By considering
the Stirling asymptotics for the Γ-factors, convexity bounds for the zeta functions,
equation (2.4), and the rapid decay of H(s) we see that B(s) decays rapidly in vertical
strips, and this allows us to move the line of integration. We find that

A(t) =
1

|ξ(2s(t))|2
(

res
s=1±2it

B(s) + res
s=2σt

B(s)

+ δt · res
s=2−2σt

B(s) + (1− δt ) · res
s=2σt−1

B(s) +
1

2πi

∫
<(s)=1/2

B(s)ds
)
,

with δt = 1 if σt < 3/4 and 0 otherwise. We analyze these five terms.
(i) Using Stirling, convexity bounds on the zeta functions, (2.4), and the rapid

decay of H(1± 2it), the term

1

|ξ(2s(t))|2
res

s=1±2it
B(s) =

H(1± 2it)
ξ(1± 4it)ξ(1± 2it − 2σt + 1)ξ(1± 2it + 2σt − 1)

|ξ(2s(t))|2 ξ(2± 4it)

tends to zero as t →∞.
(ii) We now consider the second term:

1

|ξ(2s(t))|2
res

s=2σt

B(s) = H(2σt )
ξ(4σt − 1)

ξ(4σt )
,

which converges to H(2σ∞) ξ(4σ∞−1)
ξ(4σ∞) when t →∞ and σ∞ 6= 1/2. When σt → 1/2

it behaves asymptotically like

H(1)
1

4ξ(2)(σt − 1/2)
.
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(iii) We then move on to the third term:

1

|ξ(2s(t))|2
res

s=2−2σt

B(s) = H(2− 2σt )
ξ(1− 4σt )ξ(2− 2σt − 2it)ξ(2− 2σt + 2it)

|ξ(2s(t))|2 ξ(4− 4σt )

= H(2− 2σt ) |φ(s(t))|2 ξ(1− 4σt )

ξ(4− 4σt )
.

If σ∞ 6= 1/2, we can use (2.7) to conclude that this tends to zero, and if σ∞ = 1/2,
it is bounded, since |φ(s(t))|2 is bounded.

(iv) The fourth term is

1

|ξ(2s(t))|2
res

s=2σt−1
B(s) = H(2σt − 1) |φ(s(t))|2 .

When σ∞ 6= 1/2 this tends to zero and when σ∞ = 1/2 it is bounded, by the same
arguments as for the third term.

(v) We now deal with the last term, i.e.,

1

|ξ(2s(t))|2 2πi

∫
<(s)=1/2

B(s)ds =
1

2π |ξ(2σt + 2it)|2

×
∞∫
−∞

H(1/2 + iτ )
|ξ(1/2 + 2σt − 1 + iτ )|2 ξ(1/2 + i(τ − 2t))ξ(1/2 + i(τ + 2t))

ξ(1 + 2iτ )
dτ .

We note that H(1/2 + iτ ) is of rapid decay. We study first the exponential behavior
of the integral as a function of t . Stirling asymptotics for the integrand give

(e−π|τ |/4)2e−π|τ/2−t|/2e−π|τ/2+t|/2(eπ|τ |/2) ≤ e−πt ,

which cancels with the exponential growth of 1/ |ξ(2s(t))|2. Using (2.4), the rapid
decay of H(1/2 + iτ ), and any polynomial bound in τ of ζ(2σt − 1/2 + iτ ), we are
reduced to estimate in t the integral

log |t|
(t−1/2+σt )2

∫ ∞
−∞

H̃(τ )
(

1 + |τ + 2t|
)−1/4(

1 + |τ − 2t|
)−1/4

∣∣ζ(1/2 + i(τ − 2t)
)
ζ
(

1/2 + i(τ + 2t)
) ∣∣ dτ ,

where H̃ is some function of rapid decay. We separate now the two cases σ∞ > 1/2
and σ∞ = 1/2. In the first case we use the convexity bound on the ζ function to
estimate the expression as

log |t|
(t−1/2+σt )2

∫ ∞
−∞

H̃(τ )
(

1 + |τ + 2t|
) ε(

1 + |τ − 2t|
) ε

dτ = o(1),
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as σ∞ > 1/2. For the second case we can use any subconvex bound ζ(1/2 + it) =

O(|t|1/4−δ), for instance Weyl’s bound [19, Theorem 5.5]

ζ(1/2 + it)� |t|1/6+ε
.

We are reduced to estimate in t the integral

log |t|
(t−1/2+σt )2

∫ ∞
−∞

H̃(τ )(1 + |τ + 2t|)−1/4+1/4−δ(1 + |τ − 2t|)−1/4+1/4−δdτ ,

= t1−2σt +ε

∫ ∞
−∞

H̃(τ )(1 + |τ + 2t|)−δ(1 + |τ − 2t|)−δ dτ = o(1).

This concludes the evaluation of the non-constant terms in (2.6).
To summarize we have proved that if σ∞ 6= 1/2 the function

∫
Γ\H2 Fh(z)dµs(t)(z)

converges to

H(1− 2σ∞) + H(2σ∞)
ξ(4σ∞ − 1)

ξ(4σ∞)

as t →∞, and, if σ∞ = 1/2,∫
Γ\H2

Fh(z)dµs(t)(z) ∼ H(1)

4ξ(2)((σt − 1/2)
,

as t →∞. This finishes the proof once we notice that

H(1− 2σ∞)+H(2σ∞)
ξ(4σ∞ − 1)

ξ(4σ∞)

=

∫ ∞
0

h(y)
(

y(2σ∞−1)+1 + φ(2σ∞)y−2σ∞+1
) dy

y2

=

∫ ∞
0

h(y)

(∫ 1

0
E(z, 2σ∞)dx

)
dy

y2

=

∫
Γ\H2

Fh(z)E(z, 2σ∞)dµ(z)

and

H(1) =

∫
Γ\H2

Fh(z)dµ(z).

It is straightforward to verify that Theorems 1.3 and 1.4 follow from Lemmas 2.1
and 2.2 using an approximation argument as in the proof of [12, Proposition 2.3].

Remark 2.3 In [12] the point s = 1 was a double pole, coming from 2σt and 2−2σt

with σt = 1/2, and this explains the logarithm in (1.3).
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Proof of Theorem 1.1 We have

|uρn |
2 dµ(z) =

∣∣∣∣( res
s=ρn

φ(s)
)−1

res
s=ρn

E(z, s)

∣∣∣∣2 dµ(z)

=

∣∣∣∣( res
s=ρn

φ(s)
)−1

res
s=ρn

φ(s)E(z, 1− s)

∣∣∣∣2 dµ(z)

= |E(z, 1− ρn)|2 dµ(z).

The result now follows from Theorem 1.4 with σ∞ = 1− γ∞/2.

Proof of Corollary 1.5 Let f be a test function for the convergence in Corollary 1.5.
Then we use

f (z)

E(z, 2σ∞)

as test function for Theorem 1.4 to deduce that, as t →∞,∫
Γ\H2

f (z)

E(z, 2σ∞)
dµs(t) →

∫
Γ\H2

f (z)

E(z, 2σ∞)
E(z, 2σ∞)dµ(z) =

∫
Γ\H2

f (z) dµ(z).

Finally one uses the approximation argument in [12, Proposition 2.3] to complete
the proof.
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