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The laminar flow past rectangular prisms is studied in the space of length-to-height
ratio (1 � L/H � 5), width-to-height ratio (1.2 � W/H � 5) and Reynolds number (Re �
700); L and W are the streamwise and cross-flow dimensions of the prisms. The primary
bifurcation is investigated with linear stability analysis. For large W/L , an oscillating
mode breaks the top/bottom planar symmetry. For smaller W/L , the flow becomes
unstable to stationary perturbations and the wake experiences a static deflection, vertical
for intermediate W/L and horizontal for small W/L . Weakly nonlinear analysis and
nonlinear direct numerical simulations are used for L/H = 5 and larger Re. For W/H =
1.2 and 2.25, the flow recovers the top/bottom planar symmetry but loses the left/right one,
via supercritical and subcritical pitchfork bifurcations, respectively. For even larger Re, the
flow becomes unsteady and oscillates around either the deflected (small W/H ) or the non-
deflected (intermediate W/H ) wake. For intermediate W/H and Re, a fully symmetric
periodic regime is detected, with hairpin vortices shed from the top and bottom leading-
edge (LE) shear layers; its triggering mechanism is discussed. At large Re and for all
W/H , the flow approaches a chaotic state characterised by the superposition of different
modes: shedding of hairpin vortices from the LE shear layers, and wake oscillations in the
horizontal and vertical directions. In some portions of the parameter space the different
modes synchronise, giving rise to periodic regimes also at relatively large Re.
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1. Introduction
Flows past bluff bodies and their transitions with increasing Reynolds numbers from
steady two-dimensional (2-D) wake flows, through unsteady and three-dimensional (3-D)
flows, to fully turbulent wakes have attracted much attention over the years (Oertel 1990;
Williamson 1996b; Choi et al. 2008; Thompson et al. 2021), as their relevance goes beyond
the fundamental interest and encompasses several industrial applications, for example, in
the field of vortex-induced vibrations (Williamson & Govardhan 2008).

1.1. Two-dimensional cylinders
Most studies on 2-D bluff bodies have focused on circular and square cylinders as
prototypes to characterise the flow bifurcations. At the critical Reynolds number (based on
the free-stream velocity U∞ and cylinder diameter D) Rec ≈ 45−47 the flow undergoes
a Hopf bifurcation from a symmetric steady state towards a time-periodic asymmetric
state (Noack & Eckelmann 1994) that gives origin to the von Kármán vortex shedding.
The triggering mechanism is known to result from a global instability (Jackson 1987),
which arises when the region of local absolute instability is large enough (Chomaz
2005), and whose onset therefore depends on the size of the wake recirculation region
and on the maximum reverse flow velocity (Chiarini et al. 2022c). At larger Reynolds
numbers the flow undergoes a secondary instability and becomes three dimensional. For
the circular cylinder, mode A with spanwise wavelength λ≈ 3.9D becomes unstable at
Re ≈ 190, while mode B with λ≈ 1.2D becomes unstable at slightly larger Re (Barkley
& Henderson 1996; Williamson 1996a,b). A further quasi-periodic mode with λ≈ 2.5D
has been found to become unstable at larger Reynolds numbers (Blackburn & Lopez 2003;
Blackburn et al. 2005; Blackburn & Sheard 2010).

For 2-D rectangular cylinders, the flow dynamics and the physical mechanism of the
bifurcations vary with the length-to-height ratio L/H . For Re � 300, in fact, the Strouhal
number of the flow increases in an almost stepwise manner with L/H , due to a pressure
feedback loop that locks the shedding of vortices from the shear layers separating from
the leading edge (LE) and trailing edge (TE) (Okajima 1982; Nakamura et al. 1991; Mills
et al. 1995; Hourigan et al. 2001). This stepwise increase is closely related to the number
of large-scale vortices that fit along the sides of the rectangular cylinders. Two different
regimes are possible depending on the relative phase of the LE and TE vortices (Chiarini
et al. 2022d). Using dynamic mode decomposition, Zhang et al. (2023) observed that
the feedback mechanism at Re = 1000 changes with the length-to-height ratio. For small
L/H , the pressure feedback loop encompasses the whole separation region and the flow
is controlled by the impinging shear-layer instability; for larger L/H , the feedback loop
covers the entire chord of the cylinder and the flow is controlled by the LE vortex shedding
instability. The first onset of three-dimensionality also depends on L/H : unlike short
cylinders, where the flow becomes three dimensional via modes A, B and C of the wake
(Robichaux et al. 1999; Blackburn & Lopez 2003), for long enough rectangular cylinders,
Chiarini et al. (2022b) found that the first 3-D unstable mode is of quasi-subharmonic
nature (mode QS) and is due to an inviscid mechanism triggered by the interaction of the
vortices placed over the cylinder sides.

1.2. Axisymmetric 3-D bluff bodies
Less studies have considered flows past 3-D bluff bodies, although they are ubiquitous in
human life and engineering applications, e.g. tall buildings, chimneys, pylons, cars, trains
and other ground vehicles. These flows exhibit a richer physics and, already at low Re, the
first bifurcations and their sequence depend on the body geometry.
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Unlike 2-D cylinder wakes, the flow past a sphere becomes asymmetric prior to a
transition to unsteady flow (Magarvey & Bishop 1961a,b; Magarvey & MacLatchy 1965).
The wake remains steady and axisymmetric up to Re ≈ 211 (Johnson & Patel 1999),
and then transitions to a steady asymmetric state through the regular bifurcation of an
eigenmode of azimuthal wavenumber m = 1 (Tomboulides & Orszag 2000). The resulting
wake is characterised by a pair of steady streamwise vortices and exhibits a reflectional
symmetry about a longitudinal plane of arbitrary azimuthal orientation. At higher Re,
a Hopf bifurcation renders the flow oscillatory. Natarajan & Acrivos (1993) found with
stability analysis that an unsteady m = 1 mode of the steady axisymmetric base flow
becomes unstable at Re ≈ 277, as confirmed by the experiments and simulations of
Tomboulides et al. (1993); Johnson & Patel (1999); Tomboulides & Orszag (2000). This
unsteady regime consists of hairpin vortices (HVs) shed downstream of the sphere in the
same plane as that of the steady asymmetric regime. Citro et al. (2017) performed a 3-
D global stability analysis of the steady asymmetric flow to characterise the eigenmode
responsible for this second bifurcation. They found a critical Reynolds number of Re =
272, and deduced from a structural sensitivity analysis (Giannetti et al. 2010) that the
instability is driven by the region outside the asymmetric wake. At larger Reynolds
numbers, Re > 600, the wake loses its periodicity and the flow becomes more chaotic
(Magarvey & Bishop 1961b).

A similar bifurcation scenario has been observed for the flow past a disk perpendicular
to the incoming flow. At Re ≈ 115, a regular bifurcation leads to a 3-D steady asymmetric
state, with a reflectional symmetry Natarajan & Acrivos (1993); Fabre et al. (2008); Meliga
et al. (2009). At slightly larger Re, i.e. Re ≈ 121, a Hopf bifurcation breaks the remaining
reflectional symmetry and time invariance. At Re ≈ 140, a third bifurcation occurs that
preserves the flow unsteadiness but restores a reflectional symmetry orthogonal to that
preserved by the first bifurcation.

Similarly, Bohorquez et al. (2011) investigated the stability of the flow past bullet-shaped
bodies (slender cylindrical bodies with an elliptical LE and a blunt TE). They found the
same sequence of bifurcations and observed that the critical Re increases with the aspect
ratio. Compared with the sphere and disk wakes, the symmetry plane selected by the first
regular bifurcation is preserved over a larger range of Reynolds numbers, up to Re ≈ 500.

1.3. Non-axisymmetric 3-D bluff bodies
Many studies on non-axisymmetric 3-D bluff bodies have focused on two simple types of
geometry: finite circular cylinders and rectangular prisms.

Inoue & Sakuragi (2008) investigated the vortex shedding past finite circular cylinders
of span-to-diameter ratio 0.5 � W/D � 100 with direct numerical simulations (DNS) for
Re � 300. They found that the flow changes drastically depending on W/D and Re, and
identified five basic wake patterns: (i) periodic oblique vortex shedding, (ii) quasi-periodic
oblique vortex shedding, (iii) periodic hairpin vortex falloff, (iv) two stable counter-
rotating vortex pairs, and (v) alternating shedding of counter-rotating vortex pairs from
the free ends. For the same geometry with W/D ∈ [0.5, 2], Yang et al. (2022) obtained
consistent results by DNS and linear stability analysis (LSA) for Re � 1000.

Rectangular prisms differ from finite circular cylinders, as the sharp corners set the
location of flow separation. The bifurcation sequence and critical Re are expected to
change with the length-to-height ratio L/H (as already observed for 2-D rectangular
cylinders) and width-to-height ratio W/H . Marquet & Larsson (2015) investigated the
linear stability of the steady flow past thin rectangular plates with L/H = 1/6 and various
widths. For 1 � W/H � 2, a pitchfork bifurcation breaks the top/bottom planar symmetry,
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similar to the flow past axisymmetric bodies like spheres and disks. For W/H > 2.5, a
Hopf bifurcation breaks the top/bottom symmetry and leads to a time-periodic regime,
similar to 2-D cylinders. Surprisingly, for intermediate widths 2 � W/H � 2.5, a Hopf
bifurcation breaks the left/right planar symmetry. Zampogna & Boujo (2023) set the
width to W/H = 1.2 and investigated the flow bifurcations for 1/6 � L/H � 3. Their
analysis yields a series of pitchfork and Hopf bifurcations. Two stationary modes that
break respectively the top/bottom and left/right planar symmetries become first unstable.
At larger Re, two oscillatory modes become unstable and again break either the top/bottom
or left/right symmetry. The critical Re of the first bifurcation increases monotonically
with L/H , similar to flows past 2-D rectangular cylinders (Chiarini et al. 2021) and
axisymmetric bodies (disk, sphere and bullet-shaped bodies). For the flow past a cube,
this bifurcation scenario is confirmed by the low-Re experiments of Klotz et al. (2014)
and DNS of Saha (2004) and Meng et al. (2021): at Re ≈ 216 the steady symmetric
flow bifurcates towards a steady asymmetric regime with only one planar symmetry;
at Re = 265 the flow undergoes a Hopf bifurcation and oscillates about the bifurcated
asymmetric regime, with a shedding of HVs similar to that past a sphere and a disk.

1.4. Present study
In this work we take a step forward from the works of Marquet & Larsson (2015)
and Zampogna & Boujo (2023), and characterise the sequence of bifurcations for the
flow past rectangular prisms in a 3-D space of parameters, varying simultaneously the
length-to-height and width-to-height ratios and the Reynolds number. We use linear and
weakly nonlinear (WNL) stability analyses to characterise the first bifurcations, and fully
nonlinear DNS to describe the flow regimes at larger Re. We consider 1 � L/H � 5,
1.2 � W/H � 5 and Re � 700. The DNS focus on L/H = 5, similar to the benchmark
known as BARC (benchmark on the aerodynamics of a rectangular 5:1 cylinder; see
https://www.aniv-iawe.org/barc-docs), which aims to characterise the flow past elongated
bluff bodies and set standards for simulations and experiments in the turbulent regime.

The structure of the paper is as follows. Section 2 briefly describes the mathematical
formulation and numerical methods. The low-Re steady flow is characterised in § 3.1,
while §§ 3.2 and 3.3 deal with the LSA and § 3.4 with the WNL stability analysis. Section
4 presents the DNS results and details the flow regimes after the first bifurcations for
L/H = 5. A concluding discussion is provided in § 5.

2. Methods

2.1. Flow configuration
The incompressible flow past rectangular prisms with aspect ratio 1 � L/H � 5 and
1.2 � W/H � 5 is considered; here L , W and H are the length, width and height of
the prism, i.e. the sizes in the streamwise, spanwise and vertical directions; see figure 1.
A Cartesian reference frame is placed at the LE of the prisms, with the x axis aligned with
the flow direction and the y and z axes denoting the spanwise and vertical directions. The
Reynolds number is based on H and on the free-stream velocity U∞. Unless otherwise
stated, all quantities are made dimensionless with H and U∞. The flow is governed
by the incompressible Navier–Stokes (NS) equations for the velocity u = (u, v, w) and
pressure p,

∂u
∂t

+ u · ∇u = −∇ p + 1
Re

∇2u, ∇ · u = 0. (2.1)
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L = 1/6 L = 1 L = 3 L = 5

U
∞ W

L
H

x
z

yW = 5

W = 2.25

W = 1.2

Figure 1. Overview of the prism geometry for various lengths L and widths W .

2.2. Mathematical formulation
The onset of instability is studied by LSA. The field {u, p} is divided into a time-
independent base flow {u0, p0} and an unsteady contribution {u1, p1} of small amplitude
ε, i.e.

u(x, t) = u0(x) + εu1(x, t) and p(x, t) = p0(x) + εp1(x, t). (2.2)

Using this decomposition in the NS equations (2.1), the steady base flow equations
for {u0, p0} are obtained at order ε0, while the linearised NS equations governing the
small perturbations {u1, p1} are obtained at order ε1. Using the normal-mode ansatz
{u1, p1}(x, t) = {û1, p̂1}(x)eλt + c.c. (where c.c stands for complex conjugate) yields an
eigenvalue problem for the complex eigenvalue λ= σ + iω and eigenvector {û1, p̂1}:

λû1 + u0 · ∇û1 + û1 · ∇u0 = −∇ p̂1 + 1
Re

∇2û1, ∇ · û1 = 0. (2.3)

The linear stability of the system is determined by the sign of the real part of λ, i.e
σ . If all σ < 0, perturbations decay and the flow is stable. If σ > 0 for at least one
mode, perturbations grow exponentially. A mode is stationary or oscillatory if ω = 0
or ω > 0, respectively. For each geometry (L , W ), several modes may become unstable
as Re increases; the critical Reynolds number Rec of each mode is computed by cubic
interpolation of σ(Re) with at least three values of Re that bracket σ = 0.

2.3. Numerical method
Two different numerical methods are used. The LSA is performed with the non-
commercial, finite elements software FreeFem++ (Hecht 2012), while the DNS are
performed with an in-house code based on finite differences.

For the LSA (§ 3.2), the steady base flow solution of (2.1) and the eigenvalue and
eigenmodes solution of (2.3) are calculated with the same method as in Zampogna &
Boujo (2023). Given the two symmetry planes y = 0 and z = 0 of the prism, we consider
only the quarter space y, z � 0 and build in the numerical domain {x, y, z | − 10 �
x � 20; 0 � y, z � 10} an unstructured tetrahedral mesh with nodes strongly clustered
near the prism. See Appendix A for convergence studies with respect to mesh and
domain sizes. The weak form of the equations is discretised with Arnold–Brezzi–Fortin
MINI-elements (P1 for pressure and P1b for each velocity component). For W/H > 2.5,
dimensions in the y direction are normalised by W and y derivatives are scaled by a
factor 1/W . The nonlinear base flow equations are solved with a Newton method, and
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the eigenvalue problem with a Krylov–Schur method. Calculations are run in parallel
with a domain-decomposition method, typically on 48 processes. Boundary conditions
are as follows: free-stream velocity u0 = (1, 0, 0)T and zero perturbation u = 0 at the inlet;
then, for both the base flow and the perturbations, a no-slip condition u = 0 on the body,
stress-free condition −pn + Re−1∇u · n = 0 at the outlet and symmetric (S) conditions
un = 0, ∂nut = 0 or antisymmetric (A) conditions ut = 0, ∂nun = 0 on the symmetry
planes y = 0 and z = 0 (where subscripts n and t denote normal and tangential directions,
respectively), the specific choice depending on the considered field, i.e. doubly symmetric
base flow Sy Sz or eigenmode belonging to one of the four possible families Sy Sz , Sy Az ,
Ay Sz and Ay Az . Adjoint modes, used to compute structural sensitivities, are obtained in a
similar way (see Zampogna & Boujo (2023) for more details).

The 3-D nonlinear simulations (§ 4) consider L/H = 5 and W/H = 1.2, 2.25 and 5.
The NS equations are solved using a DNS code introduced by Luchini (2016) and written
in the computer programming language CPL (Luchini 2021), which employs second-
order finite differences on a staggered grid in the three directions. This DNS code has
been previously validated and used to compute the flow past rectangular cylinders in the
laminar (Chiarini et al. 2022b) and turbulent (Chiarini & Quadrio 2021, 2022; Chiarini
et al. 2022a) regimes. The momentum equation is advanced in time by a fractional step
method using a third-order Runge–Kutta scheme. The Poisson equation for the pressure is
solved using an iterative SOR (successive over-relaxation) algorithm. The presence of the
prism is dealt with by a second-order implicit immersed boundary method, implemented
in staggered variables (Luchini 2013). The computational domain extends for −25H �
x � 75H , −40H � y � 40H and −25H � z � 25H in the streamwise, spanwise and
vertical directions, corresponding to domain sizes Lx = 100H , L y = 80H and Lz = 50H .
The computational domain is discretised with Nx = 1072 and Nz = 590 points in the
streamwise and vertical directions. The number of points in the spanwise direction is
Ny = 666, 720 and 804 for W/H = 1.2, 2.25 and 5, respectively. The points are distributed
with a geometrical progression in the three directions, to obtain a higher resolution close
to the prisms, especially close to the corners and in the wake. Close to the corners the
grid spacing is �x = �y = �z ≈ 0.008H . The adaptive time step is computed at every
iteration to enforce a Courant–Friedrichs–Lewy (CFL) number below unity, yielding
an average value of �t ≈ 0.0066H/U∞. After the transient regime, all simulations are
advanced for more than 1000 convective time units H/U∞ to ensure convergence of all
quantities of interest. See Appendix A for a convergence study with respect to the grid
resolution and the time step.

3. Global LSA

3.1. Base flow
The steady symmetric base flow is shown in figure 2 by means of isosurfaces of zero
streamwise velocity (u0 = 0) coloured by streamwise vorticity ωx . The wake has a different
shape depending on the prism geometry. Long and narrow bodies (e.g. L = 5, W =
1.2) tend to exhibit a convex backflow region centred about the vertical and horizontal
symmetry planes y = 0 and z = 0, somewhat reminiscent of axisymmetric wakes. For
these bodies, the top/bottom and left/right recirculation regions originating from the LEs
reattach on the body upstream of the TEs. By contrast, short and wide bodies (e.g. L = 1,
W = 5) tend to exhibit a non-convex backflow region, with two lobes above and below the
horizontal symmetry plane z = 0. Interestingly, moving downstream the backflow region
enlarges in the vertical direction z and shrinks in the spanwise direction y, resulting in
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L = 1 L = 5

W = 5

W = 2.25

W = 1.2

Figure 2. Base flow near the first bifurcation, visualised with isosurfaces of zero streamwise velocity (u0 = 0)
coloured by streamwise vorticity ωx .
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Figure 3. Base flow properties: (a) recirculation length, (b) drag coefficient. Solid lines: lr (Re) and Cx (Re)
for different body lengths L = 1/6, 0.5, 1 . . . , 4.5, 5; dotted line: lr and Cx at the onset of the first bifurcation
according to the LSA (§ 3.2). Body width from left to right: W = 1.2, 2.25, 5.

‘peanut’-shaped y − z cross-sections. In addition, the upper/lower recirculation regions
originating from the LEs extend all the way down to the TEs without reattaching on the
body and are therefore connected with the main wake recirculation.

Some quantitative properties of the base flow are shown in figure 3. For all the body
widths considered, the recirculation length lr (length of the downstream recirculation
region along the symmetry axis y = z = 0 measured from the TE, figure 3a) generally
increases with Re, like most 2-D and 3-D bluff body wakes (Giannetti & Luchini 2007;
Marquet & Larsson 2015). Also, lr decreases with L due to a decreasing LE separation
angle, in agreement with the observations of Zampogna & Boujo (2023) for prisms
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Oscillatory Sy Az

Stationary Sy Az

Stat.
AySz

0
1

2

3

4

5

1 2 3

L

W

4 5

Figure 4. Stability diagram for the first bifurcation. Filled symbols: pitchfork (stationary) bifurcation; open
symbols: Hopf (oscillatory) bifurcation. Red: symmetry breaking in the horizontal y direction (Ay Sz); black:
symmetry breaking in the vertical z direction (Sy Az). Circles: actual calculations; squares: interpolations along
L or W . By symmetry, for W = 1, the Sy Az and Ay Sz eigenmodes bifurcate simultaneously.

with W = 1.2 and of Chiarini et al. (2022c) for 2-D bluff bodies of different shapes.
The recirculation length is also seen to increase with W . Anticipating on the linear
stability results (§ 3.2), we follow the evolution of the recirculation length at the first
bifurcation (lowest critical Re; blue dashed line): lr increases with W , while it remains
fairly independent on L with an overall slightly decreasing trend. For W = 2.25, we note
that the value of lr at the onset of the primary bifurcation is not continuous with L , because
the mode that drives the primary instability changes with the length of the prism and the
lowest Rec jumps at L � 1.5 (see figure 5).

The base flow drag coefficient Cx = 2Fx/(ρU∞H W ), where Fx is the drag force,
decreases or stays constant with the Reynolds number in almost the complete space of
parameters; see figure 3(b). For narrower bodies, W = 1.2 and 2.25, the drag coefficient
has a non-monotonic trend with L , first decreasing and then increasing. For longer
bodies, W = 5, it monotonically increases with L for all Re. At the first bifurcation (blue
dashed line), Cx varies with L following different trends depending on the body width:
it decreases and then increases for W = 1.2, monotonically decreases for W = 2.25 and
remains essentially constant for W = 5.

3.2. Linear stability
We now turn to the LSA. For each geometry, we consider the steady symmetric base flow
and look at the eigenmodes that become linearly unstable as Re increases. In particular,
we are interested in the symmetries of the modes and their stationary/oscillatory nature
(pitchfork/Hopf bifurcation).

3.2.1. First bifurcation: stability diagram
We start considering the first bifurcation. Figure 4 summarises the effect of the geometry.
Three main regions appear in the L-W plane. The flow past wide bodies (large W/L)
first become unstable to oscillatory Sy Az perturbations that break the temporal and
top/bottom planar symmetries and preserve the left/right planar symmetry, leading to
a periodic vortex shedding across the shorter body dimension. This is consistent with
the 2-D limit W → ∞, and resembles the results for the flow past finite-length circular
cylinders (Yang et al. 2022). Increasing L/W , the flow first becomes unstable to stationary
Sy Az perturbations that break the top/bottom spatial symmetry and maintain the left/right
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Figure 5. (a) Neutral curves: critical Reynolds number Rec as a function of body length L for different body
widths W = 1.2, 2.25 and 5. Filled symbols and solid lines indicate stationary (pitchfork) bifurcations; open
symbols and dashed lines indicate oscillatory (Hopf) bifurcations. (b) Critical frequency as a function of body
length L for the first few bifurcations: Strouhal number Stc = ω(Rec)/(2π). Different lines correspond to
different modes. In both (a) and (b), thicker lines show the eigenmode that becomes unstable at the lowest
Reynolds number.

one. This bifurcation leads to a static vertical deflection of the wake. Finally, further
increasing L/W , the flow first becomes unstable to stationary Ay Sz perturbations that
break the left/right symmetry while preserving the top/bottom one. This corresponds to a
static horizontal deflection of the wake. By symmetry, the Sy Az and Ay Sz modes become
unstable simultaneously in the special case of bodies of square cross-section W/H = 1,
as observed by Marquet & Larsson (2015), Meng et al. (2021) and Zampogna & Boujo
(2023). Interestingly, the oscillatory Ay Sz mode observed by Marquet & Larsson (2015)
for thin plates L = 1/6 of intermediate width 2 � W � 2.5 seems restricted to a narrow
region of the L-W plane (see also the neutral curves for W = 2.25 in figure 5 and for
L = 1/6 and 1 in figure 7).

3.2.2. Eigenmodes and neutral curves
We now proceed to characterise in more detail the linear stability of the steady symmetric
base flow for increasing values of Re and a few selected geometries. Figure 5 shows
the critical Reynolds number and frequency of the first bifurcations as a function of the
body length L for W = 1.2, 2.25 and 5. The eigenmodes of the first two bifurcations for
these widths and the two body lengths L = 1 and 5 are shown in figures 6; see also the
supplementary material. We focus on the first few bifurcations, as the eigenmodes that
become unstable at significantly larger Reynolds numbers become less relevant.

For narrow bodies, W = 1.2, the first two bifurcations of the steady symmetric base
flow occur in short succession (as W is close to 1), and correspond to stationary Sy Az and
Ay Sz modes that break either of the two planar symmetries (Zampogna & Boujo 2023).
A pair of streamwise streaks of positive and negative streamwise perturbation velocity
arise in the wake (figure 6), leading to a vertical or horizontal displacement of the wake.
Other bifurcations occur at larger Re and correspond to oscillatory Sy Az and Ay Sz modes.
For small L , these modes are almost as unstable as their stationary counterparts, but they
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Figure 6. First and second bifurcating eigenmodes (left and right, respectively), visualised with isosurfaces of
streamwise velocity.

quickly become much more stable as L increases, i.e. the corresponding Rec increases
faster; accordingly, for long bodies, these oscillatory modes of the symmetric base flow
are not directly relevant to the secondary stability of the deflected flow (§ 4.1.2). The
associated angular frequency is of the order ω � 0.4 − 0.6 (St = f H/U∞ � 0.06 − 0.09,
where f = ω/(2π)) for L � 2. The increase of Rec with L is consistent with the stationary
bifurcation of the flow past axisymmetric bodies: a disk much thinner than its diameter
L/D � 1, a sphere L/D = 1, bullet-shaped bodies 1 � L/D � 3.5 (Natarajan & Acrivos
1993; Fabre et al. 2008; Meliga et al. 2009; Bohorquez et al. 2011) and with the primary
oscillatory bifurcation of the flow past 2-D bodies of different shape (Jackson 1987;
Chiarini et al. 2022c).

For wide bodies, W = 5, the first bifurcation corresponds to an oscillatory Sy Az mode
for all L (as already observed in figure 4). The critical Reynolds number increases with
L and is rather well separated from the following bifurcations. The angular frequency
is ω � 0.5 − 0.6 (St � 0.08 − 0.10). The unstable eigenmode is stronger in the central
region (small |y|); see figure 6. The second bifurcation corresponds to an oscillatory Sy Sz
modes for all L . Like the leading Sy Az mode, it is associated with vortex shedding in the
upper and lower shear layers, with a similar frequency but different inter-layer phasing.
Unlike the Sy Az mode that breaks the top/bottom symmetry, the Sy Sz mode preserves
both planar symmetries. In other words, in the vertical plane y = 0 the two leading modes
can be categorised as ‘sinuous’ and ‘varicose’, respectively. To the best of our knowledge,
unsteady doubly symmetric Sy Sz modes have not been reported in 3-D bluff body wakes
in previous works except for thin plates (L = 1/6, W > 3.1, Marquet & Larsson 2015); see
also § 4.2. At larger Re further bifurcations are observed, including some involving doubly
antisymmetric modes (Ay Az). All these bifurcations are oscillatory and the corresponding
frequencies are almost independent of L , and differ by one order of magnitude depending
on the bifurcation; see figure 5.

For bodies of intermediate width, W = 2.25, the increasing trend of Rec with L is
similar, but the leading mode changes with L: stationary for L > 1.5 (similar to narrower
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Figure 7. Same as figure 5, as a function of body width W for different body lengths L = 1/6 (data from
Marquet & Larsson 2015), 1 and 5.

bodies) and oscillatory with ω � 0.3 − 0.6 (St � 0.05 − 0.10) for L < 1.5 (similar to
wider bodies). As mentioned previously (figure 4), for this specific width, the first
bifurcation breaks the left/right symmetry for very short bodies (L < 0.5), which leads
to the unusual vortex shedding across the larger body dimension observed by Marquet &
Larsson (2015), and breaks the top/bottom symmetry otherwise, leading to the more usual
vortex shedding across the smaller dimension (0.5 < L < 1.75) or to a static vertical wake
deflection (L > 1.75). Interestingly, the stationary Sy Az mode remains fully stable in the
range of Re investigated when L < 1.5, while for L > 1.5, it is restabilised for large enough
Re. Other bifurcations at larger Re draw a more complicated pattern than for W = 1.2 and
5. Their order of appearance depends on L and some modes are unstable only in some
interval of L . For almost all values of L , however, doubly symmetric Sy Sz and doubly
antisymmetric Ay Az modes only correspond to the third or higher bifurcations.

Figure 7 offers a complementary picture, with neutral curves shown as a function of
the body width W for the three body lengths L = 1/6, L = 1 and L = 5. The first critical
Re tends to decrease with W , albeit not monotonically: the first bifurcation lies on the
envelope of different neutral curves corresponding to different modes, each mode being
more unstable in a preferred interval of W .

3.3. Structural sensitivity
We now look at the structural sensitivity of the two leading modes. Bodies with L = 1
and 5 and W = 1.2, 2.25 and 5 are considered. Figure 8 shows isosurfaces of ||û1|| ||û†

1||,
the product of the Euclidean norms of the eigenmode (direct mode) and the associated
adjoint mode. This quantity was introduced by Giannetti & Luchini (2007) as an upper
bound for the eigenvalue variation |δλ| induced by a specific perturbation of the linearised
NS operator, namely a ‘force–velocity coupling’ representing feedback from a localised
velocity sensor to a localised force actuator at the same location. In this sense, the
structural sensitivity is an indicator of the eigenvalue sensitivity and identifies the
wavemaker (Monkewitz et al. 1993). The most sensitive regions, where the direct and
adjoint modes overlap, are found in the near wake of the body for all modes, which

1008 A33-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

16
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.165


A. Chiarini and E. Boujo

L = 1 L = 5

W
=

5
W

=
2
.2

5
W

=
1
.2

Sy Az

Sy Az

Sy Az

AySz

AySz

SySz

Sy Az

Sy Az

Sy Az

AySz

AySz

SySz

Figure 8. Structural sensitivity of the first (left) and second (right) bifurcating eigenmodes: representative
isosurfaces of ||û1|| ||û†

1|| (opaque orange). The isosurface u0 = 0 is reproduced from figure 2 (translucent
grey).

is typical of bluff body wakes. As expected, these regions with large sensitivity are
symmetric with respect to both y and z.

All the Sy modes, which preserve the left/right symmetry, are most sensitive in two
regions located symmetrically with respect to the horizontal symmetry plane z = 0. For
oscillatory Sy modes, observed for smaller L/W , the structural sensitivity is maximum
exactly on the u0 = 0 isosurface, in two flat and elongated regions separated by more than
one body height; see also the cross-sections in the supplementary material. By contrast,
for stationary Sy modes observed for larger L/W , the structural sensitivity is maximum
inside the backflow region, in more compact regions located closer to the horizontal plane.

Stationary Ay Sz modes are most sensitive in two regions located symmetrically with
respect to the vertical symmetry plane y = 0, and the structural sensitivity is maximum
inside the backflow region.

The peculiar oscillatory Ay Sz mode observed for short lengths and intermediate widths
(e.g. L = 1, W = 2.25) has a more convoluted structural sensitivity, maximum outside and
near the downstream end of the backflow region.

Overall, the structural sensitivity shows that the wavemaker of all the considered modes
is located downstream, in relation with the wake recirculation region. For elongated bodies
with L = 5 (§§ 3.4–4), the structural sensitivity is null in the recirculating regions along
the lateral sides of the prism (see the u0 = 0 isosurface in figure 8), meaning that these
modes do not originate from the LE shear layer.

3.4. Weakly nonlinear analysis
In § 3.2 we have investigated the linear stability of the Sy Sz steady base flow, characterising
the different eigenmodes that become unstable. It is worth emphasising that, when Re
increases past the first bifurcation, the linear stability of the base flow is not necessarily
relevant. Rigorously speaking, to detect secondary bifurcations one should study the linear
stability of the nonlinearly bifurcated state itself (e.g. static deflected wake or periodic
vortex shedding) or use nonlinear simulations. For instance, the onset of the 3-D instability
in the 2-D cylinder wake can be predicted using Floquet analysis of the 2-D limit cycle
for Re > 47 (Barkley & Henderson 1996). In general, when the base flow is unstable to
at least two eigenmodes, the nonlinear flow cannot be predicted only by comparing the
growth rates or the critical Re of these modes. In some cases, WNL analysis is able to
capture the dominant nonlinear interactions between competing modes, thus providing
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a very useful reduced-order model (a set of scalar amplitude equations) able to inform
about the types of bifurcations (e.g. subcritical or supercritical), the different bifurcated
flows and their linear stability, ranges of multistability and hysteresis, etc. For example,
Zampogna & Boujo (2023) found that for the flow past an Ahmed body (3-D rectangular
prism with (L , W ) = (3, 1.2) and rounded LEs), where a steady Sy Az mode becomes
linearly unstable before a steady Ay Sz mode, the WNL analysis correctly predicts that the
vertically and horizontally deflected wakes exchange their stability as Re increases.

In this section we perform a WNL analysis to study the flow behaviour in the vicinity
of codimension-two points, where two eigenmodes become unstable simultaneously.
Anticipating on the DNS (§ 4), we focus on (L , W ) = (5, 1.2) and (5, 2.25). For each
of these two geometries, the top/bottom (Sy Az) and left/right (Ay Sz) symmetry-breaking
eigenmodes undergo a stationary bifurcation at close Re values. The method is the same as
in Zampogna & Boujo (2023) (see Appendix B for details about the derivation). In short,
we use the technique of multiple scales. We introduce a small parameter ε2 quantifying
the departure from criticality Re−1

c − Re−1, expand the flow field as a power series in ε,
introduce slow time scales ε2t , ε4t . . ., and use a small-amplitude shift operator meant to
bring together the two bifurcations at the same critical Reynolds number Rec. By injecting
all this in the NS equations and collecting like-order terms in ε, we obtain a series of linear
problems to be solved successively. A set of two coupled equations for the slowly varying
amplitudes of the Sy Az and Ay Sz modes, i.e. A and B, respectively, is then obtained by
imposing non-resonance conditions (Fredholm alternative). Remarkably, although their
coefficients are computed at Re = Rec only, these ordinary differential equations can be
solved very easily and yield stable and unstable solutions (A, B) as a function of Re
(assumed sufficiently close to Rec).

For (L , W ) = (5, 1.2), we obtain the third-order amplitude equations

dt A = λA A − χA A3 − ηA AB2, (3.1)

dt B = λB B − χB B3 − ηB A2 B. (3.2)

See Appendix B for the expressions of the λ, χ and η coefficients. The above system has
four possible equilibrium solutions (dt A = dt B = 0): (i) symmetric base flow (A, B) =
(0, 0) described in § 3.1, (ii) pure vertical deflection (A, 0), (iii) pure horizontal deflection
(0, B), and (iv) mixed state (A, B). Note that (3.1) and (3.2) is invariant under reflections
A → −A and B → −B, so we discuss only A � 0 and B � 0. The linear stability of
each state is determined by computing the eigenvalues of the 2 × 2 Jacobian of (3.1) and
(3.2) linearised about the state of interest. Here, we obtain the bifurcation diagram of
figure 9(a). The symmetric state (A, B) = (0, 0) is stable up to Re ≈ 352, when the Sy Az
eigenmode becomes unstable and the flow settles to a vertically deflected state (A, 0).
Almost at the same Re, the Ay Sz eigenmode becomes unstable, but the horizontally
deflected state (0, B) is initially unstable. Near Re ≈ 353, there is an exchange of stability
between states (A, 0) and (0, B), i.e. the wake leaves the vertically deflected state and
enters a horizontally deflected state. In the very narrow range of bistability between these
two states, a mixed state (A, B) exists, but is unstable. Qualitatively, the bifurcation
scenario is similar to that found by Zampogna & Boujo (2023) for Ahmed bodies of
dimensions (L , W ) = (3, 1.2) and a range of close-by geometries.

For (L , W ) = (5, 2.25), we find a subcritical pitchfork bifurcation of the Ay Sz mode.
In this case, leading-order nonlinearities do not lead to saturation but instead make the
system more unstable, so (3.1) and (3.2) does not yield a stable solution. This calls for the
inclusion of higher-order nonlinearities to capture saturation, so we derive the fifth-order
amplitude equations
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Figure 9. Bifurcation diagrams obtained from WNL analysis in the vicinity of codimension-two steady
bifurcations. Here A and B are the amplitudes of the top/bottom (Sy Az) and left/right (Ay Sz) symmetry-
breaking eigenmodes, respectively. Solid and dashed lines denote stable and unstable branches, respectively.
Results are shown for (a) L = 5, W = 1.2 and (b) L = 5, W = 2.25.

dt A = λA A − χA A3 − ηA AB2 + κA AB4 + βA A3 B2 + γA A5, (3.3)

dt B = λB B − χB B3 − ηB A2 B + κB A4 B + βB A2 B3 + γB B5. (3.4)

The above system has the same type of equilibrium solutions as previously described.
However, the pure deflected states may each have one or two different amplitudes (A1, 0)

and (A2, 0), and (0, B1) and (0, B2); similarly, up to four mixed states may exist, (Ai , Bi ),
i = 1, 2. Here, we obtain the bifurcation diagram of figure 9(b). The symmetric state
(A, B) = (0, 0) is stable up to Re ≈ 282, when the Sy Az eigenmode becomes unstable and
the flow settles to a vertically deflected state (A, 0). This first bifurcation is supercritical,
so there exists only one such state. At Re ≈ 286 the Ay Sz mode becomes unstable, and
this second bifurcation is subcritical: the branch (0, B) is initially unstable and moves
towards lower Reynolds numbers, before becoming stable again and folding back to a
larger Reynolds number. One mixed state (A, B) exists but is unstable. The state (A, 0)

becomes unstable at Re ≈ 287, leaving (0, B) as the only stable state. Therefore, there is
a narrow interval of bistability between the vertically and horizontally deflected states.

4. Three-dimensional nonlinear simulations
In this section we perform 3-D, unsteady, fully nonlinear simulations to explore the
successive bifurcations observed in the flow past elongated prisms with L = 5 and W =
1.2, 2.25 and 5, up to Re = 700. The specific length L = 5 is chosen as it defines the
international BARC benchmark (Bruno et al. 2014). To distinguish the different regimes,
we use the notation xYy Zz : the lower case x determines whether the regime is steady (s),
periodic (p) or aperiodic (a); the upper case Y and Z determine the planar symmetries
of the flow, i.e. whether the flow is symmetric (S) or antisymmetric (A) with respect to
the y = 0 and z = 0 planes. For unsteady flows, the symmetry refers to the time-averaged
flow. For example, the sSy Sz regime refers to a steady regime that retains the left/right and
top/bottom planar symmetries (like the symmetric base flow of § 3.1). For W = 2.25 and
5, the periodic regimes pSy Szl and pSy Szt are characterised by vortex shedding from the
LE (l) and TE (t) shear layers, respectively.
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Figure 10. Dependence of the aerodynamic forces on the Reynolds number for L = 5 and W = 1.2.
(a) Streamwise force Fx , where the red line denotes 8.47 × Re−0.3799. Here circles refer to the average value
and bars to the root mean square of the fluctuations. (b) Lateral forces Fy and Fz . (c) Frequency spectra of Fx
(left), Fy (centre) and Fz (right) in logarithmic scale.

We use the aerodynamic forces as driving quantities to detect the different flow regimes.
Indeed, the frequency spectra and the instantaneous/mean/root-mean-square values of
the aerodynamics forces provide immediate information about the spatial and temporal
symmetries of the flow, i.e. whether the flow is steady/periodic/aperiodic and whether the
instantaneous and mean fields exhibit top/bottom or right/left planar symmetries. However,
we have verified that the same information regarding the temporal symmetries of the flow
is obtained by inspecting the velocity field and probing time signals at different locations
of the flow. To further characterise the flow regimes, we also report visualisations of mean
and instantaneous fields, phase-space diagrams and proper orthogonal decomposition
(POD) modes.

4.1. Narrow prism: W = 1.2
For L = 5 and W = 1.2, five different regimes are identified when the Reynolds number
is increased up to Re = 700. This is conveniently visualised in figure 10, where the
aerodynamic forces are shown as a function of Re. For Re � 352, the flow is steady and
retains the Sy Sz symmetry, in agreement with the LSA (§ 3.2). At Re ≈ 355 the sSy Sz
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Figure 11. Steady regimes for L = 5 and W = 1.2. Isosurfaces of streamwise vorticity, with red/blue indicating
ωx = ±0.075. Left: sSy Az regime at Re = 355. Right: s Ay Sz regime at Re = 370. Top: horizontal x − y plane.
Centre: vertical x − z plane. Bottom: y − z plane.

regime is unstable and the flow experiences a pitchfork bifurcation towards the sSy Az
regime. The flow loses the top/bottom planar symmetry but retains the left/right one. For
Re � 370, the flow enters the s Ay Sz regime, i.e. recovers the top/bottom planar symmetry
and loses the left/right one. This regime remains stable up to Re ≈ 500, when the flow
becomes unsteady. The flow first approaches the periodic p Ay Sz regime, characterised by
an alternating shedding of HVs from the top/bottom LE shear layers. For Re � 515, the
wake oscillates and the flow is in the aperiodic a Ay Sz regime.

4.1.1. Low Re: steady sSy Az and s Ay Sz regimes
The nonlinear simulations show that the primary bifurcation breaks the top/bottom planar
symmetry leading to the steady sSy Az regime, similarly to shorter bodies (Marquet
& Larsson 2015; Zampogna & Boujo 2023). This bifurcation occurs at Re ≈ 355, in
agreement with the critical Reynolds number Rec = 353 found in § 3.2. The simulations
show that, for Re � 365, the steady Ay Sz mode dominates and the flow recovers the
top/bottom planar symmetry but loses the left/right one, as predicted by the WNL analysis.
We observe a small discrepancy between the linear and WNL stability analyses (Rec ≈
355) and the fully nonlinear simulations (Rec ≈ 365).

To characterise the s Ay Sz and sSy Az regimes, figure 11 shows isosurfaces of positive
(red) and negative (blue) values of the streamwise vorticity, and illustrates the loss of
the planar symmetries. This is similar to the wakes past disks, spheres and bullet-shaped
bodies at Reynolds numbers larger than Re ≈ 115, 210 and 350 (Johnson & Patel 1999;
Tomboulides & Orszag 2000; Fabre et al. 2008; Bohorquez et al. 2011). In these steady
regimes, the wake features a pair of counter-rotating streamwise vortices that are absent at
lower Re. These vortices exhibit an eccentricity that increases with x . The eccentricity is
in the z direction in the sSy Az regime and in the y direction in the s Ay Sz regime.

In both the sSy Az and s Ay Sz regimes we find that the flow asymmetry is confined in
the wake, confirming that the Ay Sz and Sz Ay global modes are unstable modes of the
wake. Indeed, the recirculating regions that arise along the sides of the prism retain the
top/bottom and left/right planar symmetries in both regimes (not shown for brevity). These
regions do not play a relevant role in the triggering mechanism of the primary instability,
as confirmed by the results of the structural sensitivity (figure 8). A similar conclusion has
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Figure 12. Dependence of the aerodynamic forces on Re in the sSy Sz , sSy Az and s Ay Sz regimes for L = 5 and
W = 1.2. (a,b) Total forces. (c) Viscous and pressure components of the drag force. (d) Viscous and pressure
components of F⊥, the single non-zero force perpendicular to the incoming flow (Fz in the sSy Az regime and
Fy in the s Ay Sz regime). The red line in (a) denotes 8.47 × Re−0.3799.

been drawn for the primary, Hopf instability of the flow past elongated 2-D rectangular
cylinders (Chiarini et al. 2021).

Figure 12 shows that when the flow bifurcates to the sSy Az and s Ay Sz regimes, the
drag decreases according to a power law, Fx ∼ Reα with α = −0.3799. This is similar
to the flow past a sphere (Johnson & Patel 1999), a short circular cylinder (Yang et al.
2022) and a cube (Saha 2004; Meng et al. 2021); for the latter, Saha (2004) report
α = −0.372 and Meng et al. (2021) found a value between −0.4 and −0.3. The decrease
of Fx is entirely due to a decrease of the friction contribution Fx, f (see figure 12(c)),
as the pressure contribution Fx,p does not change with Re. An increase of Re, indeed,
results into a downstream shift of the flow reattachment point xr over the sides of the
prism, leading to a longer recirculating region and to a decrease of Fx, f (figure 13). We
note that a power function fits well the relation between xr and Re, being xr ∼ Re1.1651

for the left and right sides and xr ∼ Re0.9485 for the top and bottom sides. In contrast,
the non-zero cross-stream component of the aerodynamic forces increases with Re.
Unlike for Fx , this is due to an increase of both the friction and pressure contributions
(see the bottom right panel of figure 12), and is associated with the increasing flow
asymmetry.

The regular bifurcation towards an asymmetric steady flow is found for prisms with
small W only, irrespective of L (§ 3.2). This is the case of many other 3-D bluff bodies:
besides the largely studied axisymmetric sphere and disk, the existence of a regular
bifurcation in non-axisymmetric flows has been reported by Marquet & Larsson (2015)
for thin plates with W/D < 2, by Yang et al. (2022) for short circular cylinders with
W/D < 1.75 and by Sheard et al. (2008) for short cylinders with hemispherical ends. The
main difference is that the bifurcated wake retains a symmetry plane that is randomly
oriented (selected by perturbations; Tomboulides & Orszag 2000) for axisymmetric
bodies, but dictated by the planar symmetries of the geometry for non-axisymmetric
bodies.
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Figure 13. Position of the reattachment point xr on the top/bottom and right/left sides (i.e. size of the
recirculating regions on the prism walls) as a function of Re for L = 5 and W = 1.2. Red solid line: 0.0023 ×
Re1.1651. Red dashed line: 0.0095 × Re0.9485. In the unsteady regimes (Re > 500), xr is the reattachment point
of the time-averaged flow.

4.1.2. Large Re: p Ay Sz and a Ay Sz regimes
A further bifurcation occurs at Re ≈ 510. It consists of a Hopf bifurcation of the s Ay Sz
deflected wake; the flow becomes unsteady and starts oscillating about the deflected s Ay Sz
regime. A similar regime, with the flow oscillating about an asymmetric steady state has
been observed for the flow past a sphere (Johnson & Patel 1999), a cube (Saha 2004), a
disk (Meliga et al. 2009) and a short cylinder (Pierson et al. 2019). Interestingly, when
considering the time-average forces, the decreasing power law that fits Fx and Re in
the sSy Sz , sSy Az and s Ay Sz regimes holds also in the unsteady regime for intermediate
Reynolds numbers up to Re = 575 (figure 10). For these Re, indeed, the time-average flow
field – and its dependence on Re – resembles the steady s Ay Sz regime. The average size
of the recirculating regions over the lateral sides increases with the Reynolds number, as
shown in figure 13 by means of the reattaching point xr . For larger Re, the structure of the
time-average flow changes and Fx increases. For Re � 575, indeed, the average xr (Re)
deviates from the power law found at smaller Re: the lateral recirculating regions shrink
as Re increases (figure 13).

The dynamics of the flow progressively changes with Re. At Re = 510 the flow enters
the periodic p Ay Sz regime, which is characterised by an alternating shedding of HVs
from the top and bottom LE shear layers (figure 14). At this Re, a single peak St ≈ 0.277
is found in the frequency spectrum S(Fz), while Fy remains practically constant in time.
The attractor draws a limit cycle in the phase space.

For Re � 515, a frequency St ≈ 0.0776 appears in S(Fy) and the flow becomes aperi-
odic. Here it is characterised by a superposition of two different modes, (i) the shedding of
HVs from the top and bottom LE shear layers (with St ≈ 0.28), and (ii) the oscillating
motion of the wake in the y direction (with St ≈ 0.08); see figure 15 and the related
discussion. The two frequencies are not commensurate and, as shown in the force diagrams
of figure 14, a torus replaces the limit cycle in the phase space. At this Re, the peak at St ≈
0.28 is much larger than the other one, indicating that the shedding of HVs dominates.

For Re � 550, the wake oscillates also in the z direction and a further frequency St ≈
0.03 appears in S(Fz) (figure 14). The different Re at which the two oscillating modes
arise agree with the results of the LSA, which reveals that, for L � 2, the unsteady Ay Sz
wake mode becomes unstable at smaller Re compared with the unsteady Sy Az mode. As
mentioned above, the presence of this additional mode leads to an increase of the average
Fx (figure 10). When Re is further increased, the different modes nonlinearly interact and
the flow becomes progressively more chaotic (figure 14). The relative height of the peaks
at St ≈ 0.28 and St ≈ 0.03 in S(Fz) indicates that the flow dynamics is mainly driven by
the LE vortex shedding at low Re, while the vertical wake oscillating motion takes over at
large Re (not shown).
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Figure 14. Unsteady regimes for L = 5 and W = 1.2. (a) Frequency spectra of Fy (left) and Fz (right), 510 �
Re � 550. (b–c) Structure of the flow for Re = 510, 535 and 575 (top to bottom). (b) Instantaneous isosurfaces
λ2 = −0.05 coloured by streamwise vorticity in the range −1 �ωx � 1. (c) Force diagrams Fy − Fx (left) and
Fz − Fx (right).

To examine the spatial structure of the different modes and relate them with the flow
frequencies, we use POD; see Appendix C for details. Figure 15 considers Re = 515.
As shown in Figure 15(a,b), the dominant POD modes are associated with the same
frequencies found in the frequency spectra (figure 14) and with their multiples. The POD
modes come in pairs (i.e. with the same singular values and frequencies), as typical for
oscillating structures. Mode 1 is associated with St ≈ 0.28, and a shedding of vortices
from the top and bottom sides is clearly visible in its spatial structure. Mode 3, instead,
is associated with St ≈ 0.07. Its spatial structure is confined in the wake and breaks the
left/right symmetry consistently with an oscillating mode of the wake in the y direction
about a Ay Sz state. At this Re the energy fraction associated with the LE vortex shedding
is approximately 1.5 times larger than that associated with the lateral wake oscillation (see
Figure 15a), consistently with the peak heights in the frequency spectra.

For elongated prisms with W = 1.2 and L = 5, the characteristic frequency of the wake
oscillation (St ≈ 0.07) is smaller than for a sphere (St ≈ 0.129 at Re = 270; Tomboulides
& Orszag 2000), a cube (St ≈ 0.091 − 0.095 at Re = 270 − 300; Saha 2004), and a short
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Figure 15. The POD analysis for L = 5, W = 1.2 and Re = 515. (a) Energy fraction E j = λ j /
∑
λ j of the

first eight POD modes. Here λ j denotes the j th eigenvalue of the snapshot covariance matrix, and is related
with the j th singular value by σ j = λ2

j (see Appendix C). (b) Frequency associated with the first eight POD
modes, ordered by decreasing σ j (i.e. decreasing E j ). Dashed lines: main DNS frequencies, also shown in
figure 10. (c) Visualisation of the POD modes 1 (left) and 3 (right). Isosurfaces of λ2 (arbitrary value) coloured
by streamwise vorticity (symmetric blue-to-red colour map from negative to positive values).

cylinder (St ≈ 0.125 at Re = 283; Yang et al. 2022). This is consistent with the LSA
results (figure 5) that point out a decrease of St with L .

4.2. Intermediate width: W = 2.25
For L = 5 and W = 2.25, the scenario becomes more complicated, with many regimes
identified up to Re = 700 (figure 16). In agreement with the LSA (§ 3.2), the critical
Re corresponding to the onset of the first bifurcation decreases with the width of the
prism. For W = 2.25, the primary instability consists of a pitchfork bifurcation towards
the steady sSy Az regime, for Re between 270 and 290. At Re ≈ 300, another bifurcation
restores the top/bottom planar symmetry and breaks the left/right one, thus leading to the
s Ay Sz regime, similar to smaller W . The simulations show an hysteresis in the transition
from sSy Az to s Ay Sz . Bistability is detected for some values of Re, in agreement with
the subcritical nature of the bifurcation (see the WNL analysis in § 3.4). Interestingly,
at larger Re the flow recovers both planar symmetries and settles again in a sSy Sz
regime, before becoming unsteady at Re ≈ 375 with a combination of two different modes:
(i) oscillation of the wake and (ii) symmetric shedding of HVs from the top and bottom LE
shear layers. As Re further increases, the wake oscillation mode stabilises, leading to the
periodic pSy Szla and pSy Szlb regimes, and then destabilises again at larger Re, leading
eventually to the aperiodic aSy Sz regime.

4.2.1. Low Re: steady regimes sSy Az and s Ay Sz
The nonlinear simulations show that the flow is steady and retains the Sy Sz symmetry
for Re � 290, in agreement with the results of the LSA. At Re ≈ 290 the flow undergoes
a regular bifurcation towards the steady sSy Az regime, qualitatively similar to W = 1.2.
Further increasing Re, the flow remains steady but recovers the top/bottom symmetry and
loses the left/right one, i.e. enters the s Ay Sz regime. Unlike for smaller W , this bifurcation
is hysteretic, and both the sSy AZ and s Ay Sz regimes are simultaneously stable for a small
range of Re ≈ 300; see figure 17(a–d) and the WNL analysis in § 3.4.

1008 A33-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

16
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.165


Journal of Fluid Mechanics

0.75

0.80

0.85

0.90

0.95

F x
(a)

(b)

(c)

sSySz

sSyAz
&

sAySz

sSyAz

sAySz pSySzla

pSySzlbsSySz
aSyAz
pSyAz

aSySz

pSySz

300

400

0.2

0.4

0.6

–10 –5 –10 –5 –8 –6 –4 –2

450

Re

St

500 400 450

Re
500 400 450

Re
500

400 500 600 700

–0.04

–0.02

0

0.02

0.04

0.06

Re

F y
,F

z

Fz
Fy

0.2

0.4

0.6

St

0.2

0.4

0.6

St

Figure 16. As figure 10, for L = 5 and W = 2.25. Red line in the top panel: 4.33 × Re−0.2905.
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Figure 17. Steady regimes for L = 5 and W = 2.25. Back view of the y − z plane. The red and blue isosurfaces
are for ωx = ±0.1. Results are shown for (a) Re = 300, regime sSy Az ; (b) Re = 300, regime s Ay Sz ; (c)
Re = 330, regime s Ay Sz ; (d) Re = 360, regime sSy Sz . (e) Zoom of figure 16(b) in the range 280 � Re � 370.

By increasing the Reynolds number in the 320 � Re � 350 range, the flow asymmetry
in the y direction decreases, and at Re = 350 the flow recovers the left/right planar
symmetry; for Re ≈ 360, the flow is steady and Fy ≈ Fz ≈ 0. This symmetrisation is
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Figure 18. Forces and frequency content for L = 5, W = 2.25 and 375 � Re � 450. (a) Frequency spectra for
Fx (left) and Fz (right) for Re = 375, 390, 420 and 450. For Re = 420, S(Fz) is not visible as fluctuations in
Fz are almost null. (b) Main frequencies for Fx (left) and Fz (right). (c) Zoom of figure 16(a,b) in the range
370 � Re � 460. For 440 � Re � 460, the bars are not visible as the oscillations of Fx are small.

shown in figure 17. Like for W = 1.2 (figure 11), at Re = 300 a pair of counter-rotating
streamwise vortices are found in the wake, with eccentricity in the y direction (figure
17b). As Re increases, a new pair of counter rotating vortices arises, becomes stronger
and progressively pushes the other pair away (figure 17c). Eventually, at Re ≈ 360 the two
pairs of vortices are placed symmetrically with respect to the z axis, and have the same
intensity (figure 17d). At this Re the flow exhibits again both top/bottom and left/right
planar symmetries (sSy Sz regime). This does not happen for W = 1.2, as two pairs of
streamwise vortices of characteristic size H = 1 cannot be simultaneously accommodated
at the TE when W < 2.

In passing, we note that in the steady sSy Az , s Ay Sz and sSy Sz regimes a decreasing
power law fits well the relation between Fx and Re, where Fx ∼ Reα with α = −0.2905.
However, the agreement does not extend to the unsteady regime, unlike W = 1.2. Also,
like for smaller W , the decrease of Fx with Re is mainly due to the enlargement of the
side recirculating regions (not shown).

4.2.2. Intermediate Re: aperiodic aSy Az and periodic pSy Az regimes
At Re ≈ 375 the flow becomes unsteady and enters different regimes in short succession.
This is conveniently visualised in figures 18 and 19, where the frequency content and the
structure of the flow are shown for 375 � Re � 470.

For 375 � Re � 380, the flow approaches the aperiodic aSy Az regime: unlike for
smaller W , the flow oscillates about a Sy Az state that retains the left/right symmetry and
breaks the top/bottom one. With two non-commensurate frequencies, St ≈ 0.05 and 0.23,
the attractor draws a torus in the phase space. As shown in the top panel of figure 19(a),
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Figure 19. Structure of the flow for L = 5, W = 2.25 and Re = 375, 390, 420 and 450 (top to bottom). (a) Side
view of instantaneous isosurfaces of λ2 = −0.25 coloured with −1 �ωx � 1. (b) Force diagrams Fy − Fx and
Fz − Fx . The lack of top/bottom symmetry in the top two views of panel (a) is highlighted with arrows.

at this Re the flow behaviour is the result of the superposition of two different modes:
(i) asymmetric oscillating mode of the wake in the z direction (St ≈ 0.05) and
(ii) symmetric in-phase shedding of HVs from the top and bottom LE shear layers
(St ≈ 0.23). For Re ≈ 385, instead, the wake oscillation mode stabilises and the flow
approaches the periodic pSy Az regime. The wake remains deflected in the z direction and
the unsteadiness is only due to the in-phase shedding of HVs, with a frequency St ≈ 0.24
that slightly increases with Re (see figure 18c). A limit cycle replaces the torus in the
phase space (figure 19).

We use POD to examine the structure of the flow at Re = 380. In figure 20 we
separate the modes responsible for the two non-commensurate frequencies detected in the
frequency spectra. Here POD mode 1 is associated with St ≈ 0.23 and its spatial structure
shows a Sy Sz shedding of HVs from the top and bottom sides of the prism. Mode 5,
instead, matches the St ≈ 0.05 frequency, with a Sy Az spatial structure that agrees with an
asymmetric oscillating mode of the wake in the z direction. This suggests that the aperiodic
aSy Az regime found at Re ≈ 380 is the result of a superposition of an oscillatory Sy Az
mode of the wake and an unsteady Sy Sz mode of the LE shear layers. Interestingly, this
interpretation is supported by the LSA, which indeed predicts an unsteady Sy Sz mode to
become unstable for Re � 350 for this geometry, with a frequency that is compatible with
St ≈ 0.2 (figure 5). Also, the neutral curves (figure 5) show that, for L � 4, an unsteady
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Figure 20. The POD analysis for L = 5, W = 2.25 and Re = 380. (a) Energy fraction E j = λ j /
∑
λ j of the

first eight POD modes. (b) Frequency associated with these modes. Dashed lines: main DNS frequencies as in
figure 18. (c) The POD modes 1 (left) and 5 (right). Isosurfaces of λ2 (arbitrary value) coloured by streamwise
vorticity.

Sy Az mode of the wake with St ≈ 0.06 − 0.07 becomes unstable, but for a small range of
Re only. For L ≈ 4, for example, the unstable range is between 330 � Re � 350. Recalling
that these neutral curves refer to the low-Re sSy Sz steady base flow, it is possible that due
to nonlinear effects, an increase of Re extends this curve to L = 5, explaining this sudden
destabilisation/stabilisation of the wake mode.

Figure 20 shows that at Re = 380 the energy fraction associated with LE vortex
shedding is approximately 25 times larger than that associated with the asymmetric
oscillating mode of the wake; at this Re the flow dynamics is mainly driven by the HVs
shed by the LE shear layers. The effect of the Reynolds number on the spatial structure of
the POD mode associated with the shedding of HVs from the LE shear layers is further
discussed in Appendix C.2 (figure 32).

4.2.3. Intermediate Re: periodic pSy Szl regime
As Re is further increased, the flow recovers once again the top/bottom planar symmetry
and, for 390 < Re � 470, it is in the periodic and symmetric pSy Szl regime (figure 19). In
this regime, two distinct behaviours can be further distinguished, based on the fluctuations
of Fz , characterised by a synchronisation/anti-synchronisation of the vortex shedding from
the top and bottom LE shear layers.

For 390 < Re � 420, the flow shows an in-phase shedding of HVs from the top and
bottom LE shear layers, and the flow instantaneously retains the top/bottom and left/right
planar symmetries (third row of figure 19); this is regime pSy Szla. Accordingly, the
unbalance of the viscous and pressure forces between the top/bottom and left/right sides
is null at all times, leading to Fz ≈ Fy ≈ 0. For this regime, we detect the leading
flow frequency by inspecting the S(Fx ) spectrum. To the best of our knowledge, such
a synchronous vortex shedding that preserves all spatial symmetries at all times and
generates neither lift force nor side force has not been reported.

For 420 < Re � 470, instead, the flow remains periodic with St ≈ 0.24, but the shedding
of vortices from the top and bottom LE shear layers is in phase opposition (last row of
figure 19); this is regime pSy Szlb. In this regime the flow retains the top/bottom planar
symmetry in an average sense only, and the oscillations of Fz are not null. Accordingly,
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Figure 21. Flow structures of the doubly symmetric pSy Szla regime for L = 5, W = 2.25 and Re = 400:
isosurfaces of λ2 = −0.05 coloured by −1 �ωx � 1. The four snapshots are separated in time by T/4, where
T is the period of the shedding of HVs.

unlike for 380 � Re � 420, at these Re the POD mode associated with the LE vortex
shedding is top/down antisymmetric (see Appendix C.2).

We now consider regime pSy Szla and detail the dynamics of the HVs shed from the top
and bottom LE shear layers at Re ≈ 400.

Figure 21 shows the flow structures at four different instants equispaced in one shedding
period T = 1/St . A pair of HVs of opposite vorticity is shed in phase from the top
and bottom LE shear layers, with a spanwise wavelength λz dictated by the width of
the prism λz ≈ W . The top/bottom LE shear layers, indeed, periodically release tubes
of negative/positive spanwise vorticity that, due to the finite width of the prism, are not
exactly aligned with the spanwise direction. As such, they are modulated by the vertical
and spanwise velocity gradients and form HVs: the central part of the tubes, farther from
the wall, is convected downstream faster and forms the HV heads; the lateral parts, closer
to the wall, are convected more slowly and form the HV legs. Accordingly, the HVs induce
low-speed velocity (negative velocity fluctuations) between their legs and high-speed
velocity (positive velocity fluctuations) in the outer region. Once generated, the two HVs
are shed downstream and continue moving as a pair in the wake, where they progressively
move apart in the z direction due to their mutual induction, until they are dissipated by
viscosity. The shedding of HVs is accompanied by a periodic enlargement and shrinking of
the top/bottom recirculation regions (not shown). The recirculating regions enlarge while
the LE shear layers accumulate vorticity, and suddenly shrink when the HVs are shed.

The shedding of HVs from the LE shear layers is reminiscent of the flow past 2-D
rectangular cylinders: spanwise vortices are periodically shed from the LE shear layers due
to the so-called impinging-LE-vortex (ILEV) instability (Naudascher & Rockwell 1994).
The ILEV instability is a resonant oscillation of the fluid. Vortices are shed periodically
from the LE shear layer and, when a LE vortex passes over the TE, it triggers the shedding
of a new LE vortex (Chiarini et al. 2022d). The flow frequency thus changes with the
length of the body and the dynamics of the LE and TE vortex shedding are synchronised.
In the 2-D case, therefore, the shedding of vortices from the LE is not the result of an
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(a) (b)

Figure 22. Lateral view of the flow structures for rectangular prisms with (a) (L , W ) = (∞, 2.25) and a sharp
LE and (b) (L , W ) = (5, 2.25) and a rounded LE with R = 1/64 at Re = 400. Isosurfaces of λ2 = −0.05
coloured by −1 �ωx � 1. The flow approaches the regimes pSy Szla and pSy Az , respectively.

absolute instability of the LE shear layer, but is interconnected with the dynamics of the
TE vortex shedding (Hourigan et al. 2001; Chiarini et al. 2022d).

To investigate the role of the LE and TE shear layers in the mechanism that sustains the
pSy Szla regime, two types of additional simulations have been carried out at Re = 400
for modified prism geometries. First, to isolate the LE shear layer from the interaction with
the TE, we have considered a rectangular prism of infinite length and W = 2.25. As shown
in figure 22(a), the flow enters the pSy Szla regime in this case too, with pairs of HVs shed
in phase from the top and bottom LE shear layers. Interestingly, the shedding frequency
closely matches that found for L = 5, St ≈ 0.24. This indicates that, for 3-D prisms, the
triggering mechanism of the LE vortex shedding does not require the presence of a TE,
as instead observed for 2-D blunt bodies (Chaurasia & Thompson 2011; Thompson 2012).
A possible feedback mechanism that triggers the formation of the HVs may therefore be
embedded within the recirculating regions that arise over the top and bottom sides of the
prism.

Second, to support this hypothesis, we have considered rectangular prisms with
L = 5 and W = 2.25, but with a rounded LE. Five curvature radii R have been considered,
ranging from R = 1/2 (semicircular LE) to R = 1/64. For R = 1/2, the flow does not
separate from the LE, and recirculating regions do not form over the top and bottom sides
of the prism. In this case the flow approaches a steady and asymmetric sSy Az regime and
shedding of HVs from the LE is not detected. When a smaller R is considered, the flow
separates from the LE and progressively larger recirculating regions form over the top and
bottom sides of the prism. However, the shedding of HVs is only detected for the smallest
radius R = 1/64. In this case the flow enters a periodic regime around the asymmetric
Sy Az state, characterised by the in-phase shedding of HVs from the top and bottom LE
shear layers (figure 22b). Again, the shedding frequency matches well that found for the
sharp configuration, St ≈ 0.238.

In summary, these additional simulations support the hypothesis that in the pSy Szl
regime the shedding of HVs from the LE shear layers is the result of a feedback mechanism
that takes place in the recirculating regions over the top/bottom sides of the prism and does
not require the presence of a TE.

4.2.4. Large Re: aperiodic regime aSy Sz
For larger Reynolds numbers Re � 460, the lateral and vertical oscillating modes of the
wake become unstable, and the flow progressively enters a chaotic regime (figure 23).
Unlike for smaller W , for 500 � Re � 700, the flow oscillates around a Sy Sz state, and the
time-average value of the cross-stream forces is Fy = Fz = 0. This recalls the results of
Zdravkovich et al. (1989) and Zdravkovich et al. (1998), who investigated the flow past a
finite circular cylinder at Re ≈ 105, varying the width-to-height ratio between 0.25 � W �
10. In agreement with our results, they found an asymmetric flow pattern for 1 � W � 2
only.
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Figure 23. Unsteady regimes at larger Re for L = 5 and W = 2.25. (a) Frequency spectra of Fy (left) and
Fz (right) for 470 � Re � 625. (b–c) Structure of the flow for Re = 470, 485 and 625 (top to bottom).
(b) Instantaneous isosurfaces of λ2 = −0.05 coloured by −1 �ωx � 1. (c) Force diagrams Fy − Fx (left) and
Fz − Fx (right).

According to our simulations, the flow loses the instantaneous left/right symmetry at
Re ≈ 465. For 465 � Re � 470, S(Fy) (figure 23) shows a single peak at St ≈ 0.134,
which is half the frequency of the LE vortex shedding (see S(Fz) in the same figure).
The flow enters a pSy Sz regime. In this range of Re the flow remains periodic and the
attractor is a limit cycle that draws a closed line in the phase space (see the force diagrams
in figure 23). As Re increases, the bifurcated limit cycle becomes unstable. At Re = 485, a
new incommensurate frequency St ≈ 0.079 arises in S(Fy); the flow is therefore aperiodic
and the attractor draws a torus in the phase space.

For Re � 500, additional frequencies appear and the flow becomes chaotic. In the aSy Sz
regime the flow dynamics is dominated by the nonlinear interaction of three different
modes: (i) shedding of HVs from top and bottom LE shear layers; (ii,iii) oscillating modes
of the wake in the z and y directions. The frequency of the first two modes are detected
with the peaks in S(Fz), i.e. St ≈ 0.25−0.30 and St ≈ 0.02−0.03. The frequency St ≈
0.04−0.05 of the wake oscillating mode in the y direction, instead, is visible in S(Fy). As
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Figure 24. As figure 10, for L = 5 and W = 5. The additional panels are a zoom in the range 330 � Re � 380,
where synchronisation occurs (see § 4.3.2).

Re increases, the frequency of the LE vortex shedding increases and the corresponding
peak in the frequency spectrum becomes less evident and more broad-banded (not shown).
Like for smaller W , indeed, at larger Re the LE vortex shedding weakens and the flow
unsteadiness is mainly driven by the wake oscillating modes. Note that St ≈ 0.03 is close
to what was found for W = 1.2, indicating that the frequency of the wake oscillating mode
in the z direction is only marginally influenced by the width of the prism for 1.2 � W �
2.25. In contrast, the frequency of the wake oscillation mode in the y direction clearly
decreases with W . Figure 23 shows that, for Re > 500, the shedding of HVs arises also
over the lateral sides of the prism.

4.3. Wide prism: W = 5
For L = 5 and W = 5, three main regimes have been identified for Re < 700 (figure 24). In
agreement with the LSA, at Re ≈ 250 the steady Sy Sz flow experiences a Hopf bifurcation
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Figure 25. Characterisation of the pSy Szt regime for L = 5 and W = 5. (a) Isosurfaces of spanwise vorticity
(red and blue for ωy = ±0.25) at Re = 275. (b) Friction drag for 225 � Re � 300. (c) Pressure drag for 225 �
Re � 300. (d) Flow frequency for 250 � Re � 300.

towards the periodic pSy Szt regime, which is characterised by the unsteady Sy Az mode
of the wake. For Re � 305, the flow approaches the aperiodic aSy Sz regime. Here the
wake oscillates in both the y and z directions, and vortices are shed from the top/bottom
LE shear layers. The interaction between these modes largely changes with the Reynolds
number. For some Re, wake oscillations and vortex shedding synchronise and the flow
recovers periodicity.

4.3.1. Low Re: periodic regime pSy Szt
The nonlinear simulations show that the unsteady Sy Az mode of the wake becomes
unstable at Re ≈ 250 and that, for 250 � Re � 300, the flow experiences a periodic
oscillation of the wake in the z direction around the steady Sy Sz state (figure 25a). Unlike
for smaller W , here the flow unsteadiness is driven by the wake oscillation and HVs are
not shed by the LE shear layers. The hairpin-like structures observed in the wake are thus
the result of an interaction between the top and bottom TE shear layers; this resembles
the so-called hairpin shedding regime found for shorter bluff bodies of various shapes
(Tomboulides & Orszag 2000; Saha 2004; Yang et al. 2022). The flow is periodic with
a single frequency close to that found with LSA (St = 0.09; § 3.2). As expected, the
intensity of the wake oscillation increases with Re, as conveniently visualised in figure 24
by means of the root mean square of F ′

z = Fz −〈Fz〉t (〈·〉t indicates average in time):
F ′

z,rms ≈ 0.004 at Re = 250 and F ′
z,rms ≈ 0.036 at Re = 300. In this regime, an increase of

Re is accompanied by an increase of Fx , which is entirely ascribed to a monotonic increase
of the pressure contribution Fx,p. In fact, similarly to W = 1.2 (figure 13), an increase of
Re leads to larger side (time-average) recirculating regions and, thus, to a decrease of the
friction contribution to Fx (figure 25b).

4.3.2. Intermediate Re: aperiodic and frequency-locking regimes
As the Reynolds number increases, the limit cycle loses its stability via a Neimark–Sacker
bifurcation, and new frequencies appear in the flow. At Re ≈ 305 a torus replaces the limit
cycle. The unsteady Ay Sz wake mode predicted by the LSA of the steady Sy Sz base flow
(§ 3.2) becomes unstable, and the flow experiences an oscillating motion in both y and
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Figure 26. First aperiodic regimes for L = 5 and W = 5. (a) Frequency spectra of Fy (left) and Fz (right)
for 305 � Re � 345. (b-c) Structure of the flow for Re = 315 (top) and Re = 335 (bottom). (b) Instantaneous
isosurfaces λ2 = −0.25 coloured by −1 �ωx � 1. (c) Force diagrams Fy − Fx (left) and Fz − Fx (right).

z directions. The new frequency is St ≈ 0.03, in agreement with the value predicted by
the LSA. As Re increases, the two modes interact nonlinearly and different frequencies
arise in the spectra (figure 26), resulting in a progressive loss of coherency. However, the
frequency spectra (and the POD, not shown) indicate that the horizontal oscillations at
St = 0.03 are less intense than the vertical oscillations at St = 0.09. As a result, up to
Re ≈ 325 the dynamics is mainly driven by the vertical oscillation of the wake and the
resulting hairpin-like structures.

For Re � 325, a new mode arises with a frequency in the range 0.16 � St � 0.2
associated with the shedding of spanwise vorticity tubes from the top/bottom LE shear
layers that roll up and generate HVs in the wake, similarly to what was found for
smaller W . The interaction of these vortices with the wake unsteadiness is analysed later
in this subsection. The LE vortex shedding frequency for W = 5 is smaller than that for
W = 1.2 and 2.25. This LE vortex shedding progressively breaks the coherency of the
flow (see the force diagrams and the emergence of several peaks in the frequency spectra
in figure 26). As Re increases, the importance of the LE vortex shedding on the flow
dynamics progressively increases (see the peaks at St ≈ 0.09 and 0.19 in S(Fz) and the
following POD analysis) and, for Re � 330, its contribution is comparable to that of the
wake oscillation.

For two narrow ranges of Reynolds numbers, the flow oscillations influence each other
in a way that produces synchronisation into a periodic regime. This phenomenon, known
as frequency locking (Iooss & Joseph 1990; Kuznetsov 2004), has already been observed
by Chiarini et al. (2022d) for LE and TE vortex shedding in the flow past 2-D rectangular
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Figure 27. Aperiodic and frequency-locking regimes for L = 5 and W = 5 at larger Reynolds numbers 345 �
Re � 385. Same conventions as figure 26, but with the main flow frequencies given in the bottom plot of panel
(a). (b,c) Results are shown for Re = 353 (top) and Re = 375 (bottom). Note that vortices are shed from the LE
shear layer in phase opposition for Re = 353 (lock-in region I) and in phase for Re = 375 (lock-in region II).

cylinders. The two sheddings, of periods TL E and TT E , synchronise, and different stable
cycles (periodic orbits) arise in the torus, with a long-time period Tlp = pTT E = qTL E ,
where p, q ∈N. In the present case, the frequency locking is visualised in figure 27. The
characteristic frequencies of the vertical wake oscillation (St ≈ 0.09 − 0.10; squares) and
LE vortex shedding (St ≈ 0.18 − 0.20; circles) increase weakly with Re. The frequency of
the LE vortex shedding is approximately twice that of the wake oscillation, meaning that
two LE vortices are shed from the top/bottom LE shear layers during one wake oscillation
period. The flow is periodic for 353 � Re � 357 (lock-in region I) and 373 � Re � 375
(lock-in region II): the LE vortex shedding synchronises with the vertical wake oscillation,
and a limit cycle arises with Tlp = TT E = 2TL E (i.e. p = 1 and q = 2). Notably, the relative
phase between the top and bottom vortex shedding is different in the two synchronised
regimes. The LE vortices are indeed shed from the top and bottom LE shear layers in
phase opposition in region I and in phase in region II (see figure 27 and the following
POD analysis). This explains why the St = 1/TL E frequency is not visible in S(Fz) for the
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Figure 28. Frequency-locking regime for L = 5, W = 5 and Re = 353 (lock-in region I). Lateral view of
isosurfaces λ2 = −0.05 coloured by streamwise vorticity (blue-to-red colour map for −1 �ωx � 1). The
snapshots are separated in time by T/8, where T is the period of the wake oscillation. Black/red labels refer to
vortices shed in the considered/previous period. Here LEV1, LEV2 and LEV3 refer to LE vortices shed from
the top and bottom LE shear layers, respectively; HV1, HV2 and HV3 indicate HVs that arise in the wake once
LEV1, LEV2 and LEV3 cross the TE.

lock-in region II: since the top and bottom LE vortices are shed in phase, they do not create
any instantaneous unbalance of vertical force. By contrast, in region I the closed trajectory
in the Fz − Fx force diagram is not symmetric with respect to Fz = 0, meaning that the
time-averaged Fz is non-zero. More generally, the time-averaged top/bottom symmetry is
lost for 345 � Re � 360 (figure 24). Regarding the lateral aerodynamic force, the different
phase locking in the two synchronised regimes results in a different behaviour: Fy ≈ 0 at
all times in region I, while Fy oscillates with St = 1/TT E = 1/(2TL E ) in region II.

We now illustrate the interaction between the LE and TE vortex shedding in region I.
Figure 28 shows eight snapshots of the flow at Re = 353, equispaced in one period TT E .
Black and red labels refer to vortices shed from the prism in the current and previous
periods, respectively. Vortices shed from the top and bottom LE shear layers are in phase
opposition. At t = t1 a spanwise-aligned vortex, LEV1, is generated from the top LE shear
layer and convected downstream (see t = t2). At t = t3, LEV1 crosses the TE corner in
phase with the upwards motion of the wake and rolls up (t4 to t6), generating a large head-
up hairpin vortex (HV1) that is then shed downstream (t7 and t8). The same dynamics

1008 A33-32

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

16
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.165


Journal of Fluid Mechanics

300 320 340 360 380

0.1

0.2
St

300 320 340 360 380

0.1

0.2

0.3

ReRe

(a)

(b)

 /
 

 

Figure 29. The POD analysis for L = 5 and W = 5 in the range 305 � Re � 385. (a) Circles and squares refer
to the unsteady wake mode (St ≈ 0.09) and LE vortex shedding mode (St ≈ 0.19), respectively. When the
two phenomena are distributed over several POD modes, the sum of their energy content is reported in the
right panel. (b) Lateral view of the POD mode associated with LE vortex shedding. Isosurfaces of λ2 coloured
by streamwise vorticity. From left to right: aperiodic regime at Re = 345, periodic regimes at Re = 357 and
Re = 375.

is observed over the bottom side. A spanwise-aligned vortex LEV3 is shed from the LE
shear layer at t = t3. It crosses the bottom TE at t = t5 and rolls up, generating a head-
down hairpin vortex HV3 at t = t6. Moving again to the top side, at t = t5 the second
spanwise-aligned vortex LEV2 is shed from the top LE shear layer. It crosses the TE
corner at t = t5 in phase with the downwards motion of the wake and generates a hairpin
vortex HV2 that is then connected with the HV3 hairpin vortex.

In region II, LE vortices interact with the vertical wake oscillation in a similar way
to generate the large HVs that characterise the wake dynamics. However, the top/bottom
LE vortices are shed in phase, and thus, cross the top/bottom TE in phase (figure 27b,
bottom row). When a top/bottom LE vortex crosses the top/bottom TE in phase with an
upward/downward motion of the wake, a head-up/head-down hairpin-like vortex arises in
the wake.

In the aperiodic regimes (Re ∈ [345, 350], [360, 365] and [380, 385]), a similar
interaction between the LE vortex shedding and the wake unsteadiness as in the lock-in
region I is observed, although not fully periodic.

We use POD to further examine the dependence of the flow structure on Re (figure 29).
In agreement with the above discussion, the dominant POD modes are associated with
the wake unsteadiness and with the LE vortex shedding, and exhibit a single frequency
of St ≈ 0.09 and St ≈ 0.19, respectively. The POD modes associated with the wake
unsteadiness mainly evolve in the wake and feature large-scale head-up and head-down
HVs downstream of the TE (not shown for brevity). The POD modes associated with
the LE vortex shedding, instead, originate over the top and bottom sides where they
feature spanwise-aligned structures (figure 29b). The spatial structure of the LE vortex
shedding POD modes changes with Re, as visible along the sides of the prism. In the
aperiodic regime (Re = 345, 365, 385) and in lock-in region I (Re = 357), the modes are
antisymmetric with respect to an inversion of the z axis, with ωx (x, y, z) = ωx (x, y, −z).
This agrees with the out-of-phase shedding of vortices from the top and bottom LE shear
layers. In lock-in region II (Re = 375), instead, the modes exhibit a top/down symmetry
with ωx (x, y, z) = −ωx (x, y, −z), which is consistent with in-phase LE vortex shedding.
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Figure 30. Unsteady regimes for L = 5 and W = 5 at larger Reynolds numbers 400 � Re � 600. (a) Frequency
spectra of the aerodynamic forces Fy (left) and Fz (right). (b–c) Structure of the flow at Re = 400 (top) and
Re = 500 (bottom). (b) Isosurfaces of λ2 = −0.05 coloured by streamwise vorticity. (c) Force diagrams Fy −
Fx (left) and Fz − Fx (right).

Also, the POD confirms that in the aperiodic aSy Sz regime the relative intensity of the
LE vortex shedding increases with Re (see right plot of figure 29a). However, the wake
unsteadiness dominates in the periodic regimes.

4.3.3. Large Re: aperiodic regime
For Re � 400, the synchronisation between the LE and TE vortex shedding is lost, and
the flow becomes progressively more chaotic. Like for lower Re, the frequency of the
wake oscillation remains approximately constant (St ≈ 0.095−0.1 for Re ∈ [400, 600]),
while that of the LE vortex shedding keeps increasing (St ≈ 0.21−0.32). The increase in
Re is accompanied by a slight increase in the oscillation amplitude in the y direction, as
visualised in figure 24. For Re � 500, a third peak appears in S(Fy) at St ≈ 0.125, and a
shedding of HVs occurs also along the lateral sides of the prism (figure 30).

5. Conclusion
In this study we have investigated the sequence of bifurcations of the laminar flow past 3-
D rectangular prisms for length-to-height and width-to-height ratios 1 � L � 5 and 1.2 �
W � 5, and Reynolds number up to Re ≈ 700.

Linear stability analysis shows that the nature of the primary bifurcation changes
with the geometry. The flow past wide prisms with large W/L experiences first a Hopf
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(a)

(d ) (e)

( f ) (g)

(b) (c)

200 300 400 500

Re
600 700

1.20

2.25W

5.00
( f ) (g)

(e)

(a) (b) (c) (d )

Figure 31. Regimes observed in the flow past rectangular prisms with L = 5 for Reynolds numbers up to
Re = 700. Blue, green and red shaded areas refer to steady, periodic and aperiodic states, respectively. Different
tones refer to different regimes, accordingly to figures 10, 16 and 24. The solid lines separating the regimes are
a guide to the eye. Vertical axis not to scale. Steady flows (a)-(c) are represented with ωx = ±0.1 isosurfaces
and unsteady flows (d)-(g) with snapshots of λ2 isosurfaces coloured by streamwise vorticity.

bifurcation and becomes unstable to oscillatory perturbations that break the top/bottom
planar symmetry, leading to a periodic vortex shedding across the smaller dimension of
the body. For smaller W/L , the primary instability consists of a pitchfork bifurcation:
for intermediate (small) W/L , the flow becomes unstable to stationary perturbations that
break the top/bottom (left/right) planar symmetry and lead to a static vertical (horizontal)
deflection of the wake. In all cases, the critical Re of the primary instability increases with
L and depends non-monotonically on W .

A WNL analysis has been performed for (L , W ) = (5, 1.2) and (L , W ) = (5, 2.25)

in the vicinity of the critical Re of the static modes. Two coupled amplitude equations
are obtained, revealing the sequence of bifurcations close to the bifurcation points. For
W = 1.2, third-order amplitude equations yield a supercritical bifurcation scenario similar
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to that of Ahmed bodies (Zampogna & Boujo 2023), with an exchange of stability between
the vertically and horizontally deflected states at Re ≈ 353. For W = 2.25, fifth-order
amplitude equations yield a subcritical bifurcation for the horizontally deflected state,
with a narrow interval of bistability where the vertically and horizontally deflected states
coexist. Fully nonlinear DNS confirm the bifurcation sequence predicted by the LSA
and the WNL analysis, including the bistability-induced hysteresis for W = 2.25 and the
bifurcated states.

At larger Re, nonlinear DNS revealed a rich sequence of bifurcations (figure 31) that has
been investigated by means of frequency spectra, force diagrams and POD. Overall, the
flow dynamics is driven by five different modes: (i,ii) static deflections of the wake in the
vertical and horizontal directions, (iii) vortex shedding of HVs from the LE shear layers,
and (iv,v) unsteady flapping of the wake in the vertical and horizontal directions. Their
nonlinear interaction changes with W and Re giving rise to several regimes, ranging from
steady and periodic regimes at small Re to aperiodic and chaotic regimes at larger Re.
For intermediate W , we observed, for the first time, a periodic LE shedding of HVs that
instantaneously preserves all spatial symmetries and generates neither lift nor side forces.
Interestingly, in some portions of the parameter space the different modes synchronise and
give origin to periodic regimes also at relatively large Re.

The mechanism sustaining the shedding of the HVs from the LE shear layers has been
investigated. Unlike in the flow past 2-D rectangular cylinders, this LE vortex shedding
does not require the presence of a sharp TE, and does not necessarily lock with the TE
vortex shedding. Indeed, for W = 2.25, the same vortex shedding has been found for a
3-D rectangular flat plate without TE (L = ∞). By rounding the LE corners, we have also
shown that the LE vortex shedding is the result of a feedback mechanism embedded within
the recirculating regions that form over the lateral sides of the prisms.

Having characterised the flow stability and dynamics over a wide range of body widths
and lengths, the present study serves as a stepping stone to further investigation in more
complex settings. For instance, the laminar wakes of spheres and 2-D cylinders translating
close to a solid wall have been studied extensively (Thompson et al. 2021). Ground
proximity is by definition an essential feature for ground vehicles such as cars and trains,
and although many numerical simulations have been carried out, the stability of these
flows remains largely unexplored in both the laminar and turbulent regimes, except for
a few studies (e.g. simplified train geometry with (L , W ) = (6.9, 0.83)H and ground
clearance 0.15H in Li et al. 2024). Another topic of interest is that of body attitude (yaw
and pitch): in the laminar regime a small misalignment may significantly alter the onset
and sequence of bifurcations; in the turbulent regime ground vehicles may be subject to
crosswind or varying front/rear load distribution. Finally, the effect of stochastic conditions
(e.g. disturbances in the incoming flow) on the laminar bifurcations and wake dynamics
could be studied, especially near codimension-two bifurcations where two stationary
modes become unstable simultaneously (e.g. (L , W ) = (3, 1.2) at Re ≈ 330, (5, 1.2) at
Re ≈ 350 and (5, 2.25) at Re ≈ 300), which may result in multistability, with the wake
switching randomly between two or more static deflected states. A treatment in the spirit
of Ducimetière et al. (2024) would yield a rigorously derived reduced-order model in the
form of coupled stochastic amplitude equations, one for each symmetry-breaking mode,
which could then be used to predict flow statistics.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2025.165.
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Appendix A. Convergence study
In this appendix we report the sensitivity of the results on the grid resolution for the LSA
and 3-D nonlinear DNS.

For the LSA, tables 1–2 show how the critical Reynolds numbers of the first two
bifurcations vary with the mesh size and domain size. The numerical domain is
{x, y, z | xmin � x � xmax ; 0 � y, z � ymax = zmax }. The mesh density is n1 on the prism
surface, n2 on the boundaries of the subdomain {x, y, z | − 5 � x � 15; 0 � y, z � 2}
and n3 = 1 on the outermost boundaries. Given the weak influence of the mesh size and
domain size on Rec,1 and Rec,2, we choose mesh M3 and domain D1 throughout the linear
and WNL analyses, similar to Zampogna & Boujo (2023).

For the 3-D nonlinear DNS, sensitivity to the grid resolution and to the time step
has been investigated with six additional simulations, two for each considered geometry.
The number of points in the streamwise and vertical directions has been decreased
from (Nx , Nz) = (1072, 590) on the standard grids to (Nx , Nz) = (860, 400) for all three
geometries; in the spanwise direction, the number of points has been decreased from
Ny = 666, 720 and 804 to Ny = 460, 500 and 560 for W = 1.2, 2.25 and 5 respectively. On
the coarser grid, two different time steps have been used, �t ≈ 0.0066 and 0.0033, leading
to an average CFL number of approximately 1 and 0.5. For each geometry, we considered a
single Reynolds number: Re = 535 for W = 1.2 (a Ay Sz regime), Re = 450 for W = 2.25
(pSy Szlb) and Re = 385 for W = 5 (aSy Sz). In all cases, we find an excellent qualitative
and quantitative agreement on the mean and fluctuating forces between the standard and
coarse grids, and between the two �t as well (table 3). We observe an excellent agreement
in terms of frequencies too, with differences smaller than 0.7 % between the coarse and
standard grids (not shown).

Mesh M1 M2 M3 M4 M5 M6 M7
(n1, n2) (30,10) (40,10) (60,10) (60,12) (60,15) (80,10) (80,12)

W = 1.2, L = 1/6 Nelmts 0.76 0.83 0.97 1.46 2.49 - -
Rec,1 (Sy Az) 109 109 108 108 108 - -
Rec,2 (Ay Sz) 113 113 113 113 113 - –

W = 1.2,L = 5 Nelmts 0.92 1.14 1.63 2.23 - 2.27 3.04
Rec,1 (Sy Az) 357 354 352 352 - 352 352
Rec,2 (Ay Sz) 354 354 353 353 - 353 353

W = 5, L = 1/6 Nelmts 0.76 0.82 0.95 1.43 2.46 - -
Rec,1 (Sy Az) 61 60 60 60 60 - -
Rec,2 (Sy Sz) 80 79 79 79 79 - -

W = 5, L = 5 Nelmts 0.78 0.86 1.04 1.55 2.61 1.26 1.83
Rec,1 (Sy Az) 233 234 235 235 235 235 236
Rec,2 (Sy Sz) 259 259 263 264 264 263 265

Table 1. Influence of the mesh size on the first two critical Reynolds numbers for four different prism
geometries. Domain D1: (xmin, xmax ) = (−10, 20), ymax = zmax = 10. Here Nelmts is in millions.
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Domain D1 D2 D3 D1 D2 D3
(xmin, xmax ) (-10,20) (-15,30) (-20,40) (-10,20) (-15,30) (-20,40)
ymax , zmax 10 15 20 10 15 20

L = 1/6 L = 5
W = 1.2 Nelmts 0.97 1.16 1.49 1.63 1.81 2.14

Rec,1 (Sy Az) 108 109 109 352 354 354
Rec,2 (Ay Sz) 113 113 113 353 354 354

W = 5 Nelmts 0.95 1.14 1.46 1.04 2.06 2.06
Rec,1 (Sy Az) 60 61 61 235 236 236
Rec,2 (Sy Sz) 79 79 80 263 262 263

Table 2. Influence of the domain size on the first two critical Reynolds numbers for four different prism
geometries. Mesh M3: (n1, n2) = (60, 10). Here Nelmts is in millions.

W Re Nx Ny Nz �t Fx Fy Fz F ′
x,rms F ′

y,rms F ′
z,rms

1.2 535 860 460 400 0.0066 0.7833 0.0202 0 0.0011 0.0027 0.0144
1.2 535 860 460 400 0.0033 0.7834 0.0203 0 0.0010 0.0026 0.0144
1.2 535 1072 666 590 0.0066 0.7831 0.0201 0 0.0010 0.0028 0.0143

2.25 450 860 500 400 0.0066 0.7660 0 0 0.0021 0 0.0412
2.25 450 860 500 400 0.0033 0.7660 0 0 0.0021 0 0.0412
2.25 450 1072 720 590 0.0066 0.7658 0 0 0.0020 0 0.0410

5 385 860 560 400 0.0066 0.8116 0 0 0.0117 0.0015 0.0886
5 385 860 560 400 0.0033 0.8118 0 0 0.0118 0.0016 0.0890
5 385 1072 804 590 0.0066 0.8131 0 0 0.0116 0.0011 0.0760

Table 3. Convergence study for the 3-D nonlinear simulations. Influence of the grid resolution on the
aerodynamic forces for (L , W ) = (5, 1.2) and Re = 535 (a Ay Sz regime), (L , W ) = (5, 2.25) and Re = 450
(pSy Szlb regime), and (L , W ) = (5, 5) and Re = 385 (aSy Sz regime).

Appendix B. Weakly nonlinear analysis
We detail here the derivation of the systems of third- and fifth-order amplitude equations
(3.1), (3.2) and (3.3), (3.4) in the vicinity of a codimension-two bifurcation for two
stationary modes A and B. The procedure is similar to that in Zampogna & Boujo
(2023).

B.1. Derivation of the amplitude equations
When the two modes of interest do not bifurcate exactly at the same Reynolds number, we
introduce a reference critical Reynolds number Rec, typically chosen between the critical
Reynolds numbers of the two modes. Departure from criticality is measured as

Re−1
c − Re−1 = ε2α̃, (B1)

which defines the small parameter 0 < ε � 1 and the order-one parameter α̃ = O(1). We
also define a shift operator S such that, unlike the original linearised NS operator A,
the shifted linearised NS operator Ã=A+ ε2S is singular exactly at Re = Rec for both
modes. In other words, denoting B∂t q +Aq = 0, the linearised NS equations and q̂ =
{û, p̂}, one has Ãq̂ A

1 = Ãq̂ B
1 = 0, while Aq̂ A

1 = −σABq̂ A
1 and Aq̂ B

1 = −σBBq̂ B
1 .
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We use the method of multiple scales. We introduce slow time scales T1 = ε2t , T2 =
ε4t, . . . and inject the expansion

q(x, t, T1, T2 . . .) = q0 + εq1 + ε2q2 + ε3q3 + . . . (B2)

in the NS equations at Re = Rec, where the time derivative now reads ∂t + ε2∂T1 +
ε4∂T2 + . . .. Collecting like-order terms yields the following series of problems.

B.1.1. Zeroth and first orders
At order ε0 we find the nonlinear NS equations and the zeroth-order field q0(x) is the
steady Sy Sz base flow at Re = Rec. At order ε1 we obtain the linearised and shifted NS
equations

∂t q1 + Ãq1 = 0. (B3)

Since Ã is singular at Re = Rec, the first-order field is a superposition of the Sy Az and
Ay Sz eigenmodes:

q1(x, T1, T2, . . .) = Aq̂ A
1 + B q̂ B

1 . (B4)

Here A(T1, T2, . . .) and B(T1, T2, . . .) are real-valued slowly varying amplitudes to be
determined.

B.1.2. Second order
At order ε2 the field q2 is a solution of the linearised and shifted NS equations

B∂t q2 + Ãq2 = {F2, 0}, (B5)

where

F2 = − α̃∇2u0 − (u1 · ∇)u1

= − α̃∇2u0 − A2ûA
1 · ∇ ûA

1 − AB C(
ûA

1 , ûB
1
) − B2ûB

1 · ∇ ûB
1 , (B6)

and introducing the notation C(a, b) = (a · ∇)b + (b · ∇)a. Symmetry considerations
show that (B5) can be inverted: all the terms in F2 are either Sy Sz or Ay Az and cannot
resonate since Ã is singular to Sy Az and Ay Sz modes. Therefore,

q2(x, T1, T2, . . .) = α̃qα
2 + A2q A2

2 + B2q B2

2 + ABq AB
2 , (B7)

where the q∗
2 fields are solutions of

Ãqα
2 = −{∇2u0, 0}, Ãq A2

2 = −{(
ûA

1 · ∇)
ûA

1 , 0
}
,

Ãq B2

2 = −{(
ûB

1 · ∇)
ûB

1 , 0
}
, Ãq AB

2 = −{C(
ûA

1 , ûB
1
)
, 0

}
. (B8)

B.1.3. Third order
At order ε3 the field q3 is a solution of the linearised and shifted NS equations

B∂t q3 + Ãq3 = {F3, 0}, (B9)
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where

F3 = −(∂T1 A)ûA
1 − (∂T1 B)ûB

1 + A
(
σ̃A ûA

1 − α̃C(
ûA

1 , uα
2
) − α̃∇2ûA

1

)

+B
(
σ̃B ûB

1 − α̃C(
ûB

1 , uα
2
) − α̃∇2ûB

1

)
− A3C(

ûA
1 , uA2

2
) − B3C(

ûB
1 , uB2

2
)

−AB2
(
C(

ûA
1 , uB2

2
) + C(

ûB
1 , uAB

2
)) − A2 B

(
C(

ûB
1 , uA2

2
) + C(

ûA
1 , uAB

2
))

,

(B10)

and where σ̃A = σA/ε2 and σ̃B = σB/ε2. All the terms in F3 are resonant with either
ûA

1 or ûB
1 . To avoid secular terms, we impose a compatibility condition, i.e. we require

the respective inner products with either ûA†
1 or ûB†

1 be zero. With the normalisation
〈ûA†

1 , ûA
1 〉 = 〈ûB†

1 , ûB
1 〉 = 1, we obtain

∂T1 A = λ̃A A − χ̃A A3 − η̃A AB2, (B11)

∂T1 B = λ̃B B − χ̃B B3 − η̃B A2 B, (B12)
with the coefficients

λ̃A = σ̃A + α̃〈ûA†
1 , −C(

ûA
1 , uα

2
) − ∇2ûA

1 〉,
χ̃A = 〈ûA†

1 , −C(
ûA

1 , uA2

2
)〉,

η̃A = 〈ûA†
1 , −C(

ûA
1 , uB2

2
) − C(

ûB
1 , uAB

2
)〉, (B13)

and similar expressions for λ̃B , χ̃B and η̃B upon exchange of indices A and B.
Equations (B11) and (B12) constitute the leading-order system of amplitude equations.

If the derivation is stopped at this order, one can reintroduce the fast time t = ε2T1 and
obtain the system (3.1), (3.2), with the coefficients λA = ε2λ̃A, χA = ε2χ̃A, etc.:

dt A = λA A − χA A3 − ηA AB2, (B14)

dt B = λB B − χB B3 − ηB A2 B. (B15)
To derive higher-order amplitude equations, the third-order field

q3(x, T1, T2, . . .) = α̃Aq A
3 + α̃Bq B

3 + A3q A3

3 + B3q B3

3 + AB2q AB2

3 + A2 Bq A2 B
3

(B16)
is needed, where the q∗

3 fields are solutions of

Ãq A
3 = {−C(

ûA
1 , uα

2
) − ∇2ûA

1 + 〈
ûA†

1 , C(
ûA

1 , uα
2
) + ∇2ûA

1
〉
ûA

1 , 0
}
,

Ãq A3

3 = {−C(
ûA

1 , uA2

2
) + χ̃A ûA

1 , 0
}
,

Ãq A2 B
3 = {−C(

ûB
1 , uA2

2
) − C(

ûA
1 , uAB

2
) + η̃B ûB

1 , 0
}
, (B17)

with similar expressions for q B
3 , q B3

3 and q AB2

3 upon exchange of A and B.
Because the kernel of Ã is not empty, the q∗

3 fields are defined up to an arbitrary
constant along ûA

1 or ûB
1 . We remove this component such that 〈ûA†

1 , uA
3 〉 = 〈ûA†

1 , uA3

3 〉 =
〈ûA†

1 , uAB2

3 〉 = 〈ûB†
1 , uB

3 〉 = 〈ûB†
1 , uB3

3 〉 = 〈ûB†
1 , uA2 B

3 〉 = 0.

B.1.4. Fourth order
At order ε4 the field q4 is a solution of the linearised and shifted NS equations

B∂t q4 + Ãq4 = {F4, 0}, (B18)
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where symmetry considerations show that F4 is not resonant. Therefore, one can invert
(B18) and compute

q4(x, T1, T2, . . .) = α̃2qα
4 + ∂T1(A2)q(A2)′

4 + ∂T1(AB)q(AB)′
4 + ∂T1(B2)q(B2)′

4

+ α̃A2q A2

4 + α̃ABq AB
4 + α̃B2q B2

4 + A4q A4

4 + B4q B4

4

+ A3 Bq A3 B
4 + A2 B2q A2 B2

4 + AB3q AB3

4 , (B19)

where the q∗
4 fields are solutions of

Ãqα
4 = {−(

uα
2 · ∇)

uα
2 − ∇2uα

2 , 0
}
, Ãq(A2)′

4 = {−uA2

2 , 0
}
,

Ãq A2

4 = {−C(
uA2

2 , uα
2
) − C(

ûA
1 , uA

3
) − ∇2uA2

2 , 0
}
, Ãq(AB)′

4 = {−uAB
2 , 0

}
,

Ãq AB
4 = {−C(

uAB
2 , uα

2
) − C(

ûB
1 , uA

3
) − C(

ûA
1 , uB

3
) − ∇2uAB

2 , 0
}
,

Ãq A2 B2

4 = {−(
uAB

2 · ∇)
uAB

2 − C(
uA2

2 , uB2

2
) − C(

ûB
1 , uA2 B

3
) − C(

ûA
1 , uAB2

3
)
, 0

}
,

Ãq A3 B
4 = {−C(

uA2

2 , uAB
2

) − C(
ûB

1 , uA3

3
) − C(

ûA
1 , uA2 B

3
)
, 0

}
,

Ãq A4

4 = {−(
uA2

2 · ∇)
uA2

2 − C(
ûA

1 , uA3

3
)
, 0

}
, (B20)

with similar expressions for q(B2)′
4 , q B2

4 , q AB3

4 , q B4

4 upon exchange of A and B.

B.1.5. Fifth order
At order ε5 the field q5 is a solution of the linearised and shifted NS equations

B∂t q5 + Ãq5 = {F5, 0}, (B21)

where all the terms in F5 resonate with either ûA
1 or ûB

1 . Imposing a compatibility
condition yields

∂T2 A =〈
ûA†

1 , Aa + A3b + AB2c + AB4d + A3 B2e + A5 f
〉
, (B22)

where

a = α̃2
[
−C(

uα
2 , uA

3
) − C(

ûA
1 , uα

4
) − ∇2uA

3

]
,

b = α̃
[
−C(

uA2

2 , uA
3
) − C(

uα
2 , uA3

3
) − C(

ûA
1 , uA2

4
) − ∇2uA3

3

]
− 2λ̃AC

(
ûA

1 , u(A2)′
4

)
,

c = α̃
[
−C(

uB2

2 , uA
3
) − C(

uα
2 , uAB2

3
) − C(

uAB
2 , uB

3
) − C(

ûB
1 , uAB

4
) − C(

ûA
1 , uB2

4
)

−∇2uAB2

3

]
− 2λ̃BC

(
ûA

1 , u(B2)′
4

) − (λ̃A + λ̃B)C(
ûB

1 , u(AB)′
4

)
,

d = − C(
uB2

2 , uAB2

3
) − C(

uAB
2 , uB3

3
) − C(

ûB
1 , uAB3

4
) − C(

ûA
1 , uB4

4
)

+ 2χ̃BC
(
ûA

1 , u(B2)′
4

) + (η̃A + χ̃B)C(
ûB

1 , u(AB)′
4

)
,

e = − C(
uB2

2 , uA3

3
) − C(

uAB
2 , uA2 B

3
) − C(

uA2

2 , uAB2

3
) − C(

ûB
1 , uA3 B

4
) − C(

ûA
1 , uA2 B2

4
)

+ 2η̃AC
(
ûA

1 , u(A2)′
4

) + 2η̃BC
(
ûA

1 , u(B2)′
4

) + (χ̃A + η̃B)C(
ûB

1 , u(AB)′
4

)
,

f = − C(
uA2

2 , uA3

3
) − C(

ûA
1 , uA4

4
) + 2χ̃AC

(
ûA

1 , u(A2)′
4

)
. (B23)
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A similar equation is obtained for ∂T2 B upon exchange of A and B.
Terms proportional to λ̃A, χ̃A, etc., come from the interaction of the eigenmodes with

the fourth-order fields q(A2)′
4 , q(AB)′

4 and q(B2)′
4 , and are obtained after developing ∂T1(A2),

∂T1(AB) and ∂T1(B2) and using (B11) and (B12). By contrast, all the forcing terms of the
form ∂T1(Am Bn)u∗

3 with m + n = 1 or 3 vanish when imposing the compatibility condition
because of our earlier choice 〈û†

1, u∗
3〉 = 0.

Defining coefficients ∗̃′, we obtain

∂T2 A = λ̃′A A − χ̃ ′
A A3 − η̃′

A AB2 + κ̃ ′
A AB4 + β̃ ′

A A3 B2 + γ̃ ′
A A5, (B24)

∂T2 B = λ̃′B B − χ̃ ′
B B3 − η̃′

B A2 B + κ̃ ′
B A4 B + β̃ ′

B A2 B3 + γ̃ ′
B B5. (B25)

Finally, the total fifth-order amplitude equations are obtained by reconstructing the total
derivatives dt (A, B) = (ε2∂T1 + ε4∂T2)(A, B), i.e. combining (B11), (B12) and (B24),
(B25):

dt A = λA A − χA A3 − ηA AB2 + κA AB4 + βA A3 B2 + γA A5, (B26)

dt B = λB B − χB B3 − ηB A2 B + κB A4 B + βB A2 B3 + γB B5. (B27)

Here now λA = ε2λ̃A + ε4λ̃′A, χA = ε2χ̃A + ε4χ̃ ′
A, etc. Therefore, compared with the

third-order system, the fifth-order system has not only higher-order terms but also
corrected coefficients.

B.2. Equilibrium solutions

B.2.1. Third-order system
The third-order system (3.1), (3.2) has the following four possible equilibrium solutions.

• Symmetric state: A = B = 0.
• Pure vertical symmetry breaking: A2 = λA/χA, B = 0.
• Pure horizontal symmetry breaking: A = 0, B2 = λB/χB .
• Mixed state (double symmetry breaking): A2 = (χBλA − ηAλB)/(χAχB − ηAηB),

B2 = (χAλB − ηBλA)/(χAχB − ηAηB).

B.2.2. Fifth-order system
The fifth-order system (3.3), (3.4) has four types of equilibrium states, with the following
multiple possible amplitudes.

• Symmetric state: A = B = 0.

• Pure vertical symmetry breaking: A2 = ±
√

(χA ± √
�)/(2γA), B = 0, where � =

χ2
A − 4λAγA. Real-valued solutions exist when � > 0 and (χA ± √

�)/γA > 0.
Focusing on positive values, this yields up to two different amplitudes A1, A2.

• Pure horizontal symmetry breaking: A = 0, B2 = ±
√

(χB ± √
�)/(2γB), where

� = χ2
B − 4λBγB . Real-valued solutions exist when � > 0 and (χB ± √

�)/γB > 0.
Again, there are up to two different positive amplitudes B1, B2.

• Mixed states (double symmetry breaking) A �= 0, B �= 0. These states correspond to
the intersections of conic sections, since u = A2 and v = B2 satisfy the bivariate
quadratic equations
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Figure 32. The POD analysis for L = 5 and W = 2.25 at Re = 420 (left) and Re = 450 (right). In both cases
the flow is periodic and has a single dominant mode, of frequency St ≈ 0.255 and St ≈ 0.265, respectively (see
figure 19). (a) Energy fractions of the first eight modes and corresponding frequencies. (b) Structure of POD
mode 1, to be compared with figure 20. Isosurfaces of λ2 coloured by streamwise vorticity ωx (blue-to-red
colour map ranges from negative to positive values). For Re = 420, the structure of the mode is the same as for
Re = 380, and shows the same symmetries. For Re = 450, instead, the symmetries of the mode change.

0 = λA − χAu − ηAv + κAv2 + βAuv + γAu2, (B28)

0 = λB − χBv − ηBu + κBu2 + βBuv + γBv2. (B29)

An analytic treatment of these equations can be found, for example, in chapter 11 of
Richter-Gebert (2011). There are in general zero, two or four real-valued intersections.
Here, we compute these intersections numerically with the algorithm of Nakatsukasa et al.
(2015).

Appendix C. Proper orthogonal decomposition

C.1. Numerical implementation
To perform the POD analysis of § 4, we used the method of snapshots (Sirovich 1987)
on a portion of the domain (−3.7 � x � 17.7, |y|, |z|� 3.2 for W = 1.2, 2.25 and −3.7 �
x � 17.7, |y|� 4.2, |z|� 6.2 for W = 5) and, to avoid the need of weight matrices for
scalar products, interpolated on a uniform cubic grid (with Nx = 410 and Ny = Nz =
120 for W = 1.2, 2.25 and Nx = 318, Ny = 100 and Nz = 150 for W = 5). This yields
approximately 5.9 × 106 (for W = 1.2, 2.25) and 4.8 × 106 (for W = 5) grids points and,
with three velocity components at each point, Ndof ≈ 17.7 × 106 and Ndof ≈ 14.4 × 106

degrees of freedom. The number of snapshots and their time separation has been chosen

1008 A33-43

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

16
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.165


A. Chiarini and E. Boujo

carefully: the sampling time δts � 1/(20 fl) ensures that the largest frequency fl of interest
detected in the spectra is captured; similarly, the total time T � 8/ fs ensures that the
smallest frequency fs is captured. For example, for W = 2.25 and Re = 380, this yields
δts = 0.195 and T = 600δts (i.e. m = 600 snapshots).

With the snapshots collected in the Ndof × m matrix S, the m × m covariance matrix
ST S is formed and the eigenvalue problem ST SZ = ZΛ is solved for the r largest
eigenvalues λ j (components of the diagonal matrix Λ) and corresponding eigenvectors
z j (columns of Z ). The positive square roots of the eigenvalues of ST S are the singular
values of S and the columns of the matrix Φ = SZ are the POD modes. Frequencies
associated with a given POD mode are detected by projecting the snapshots on that mode
and performing a frequency analysis of the so-obtained time-dependent coefficient.

C.2. Effect of Re on the LE vortex shedding POD mode for W = 2.25
Figure 32 considers L = 5 and W = 2.25 and shows the effect of Re on the spatial structure
of the POD mode associated with the LE vortex shedding.

The structure of that mode does not change when Re is increased from 380 to 420.
The flow is periodic and the unsteadiness is driven by the in-phase shedding of HVs from
the top/bottom LE shear layers (figure 19). When Re is further increased, however, the
symmetries of the mode change, in agreement with a shedding of HVs in phase opposition
from the top /bottom LE shear layers: for 380 � Re � 420, the POD mode is symmetric
with respect to z = 0, with ωx (x, y, z) = −ωx (x, y, −z). whereas for 440 � Re � 460, it
is antisymmetric, with ωx (x, y, z) = ωx (x, y, −z).
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