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1. Introduction. Let G be a finite group. The real genus p{G) [8] is the minimum alge-
braic genus of any compact bordered Klein surface on which G acts. There are now several
results about the real genus parameter. The groups with real genus p < 5 have been classified
[8,9,12], and genus formulas have been obtained for several classes of groups [8,9,10,11,12].
Most notably, McCullough calculated the real genus of each finite abelian group [13]. In
addition, there is a good general lower bound for the real genus of a finite group [11].

Here we consider finite 3-groups acting on bordered Klein surfaces. We begin by
specializing the approach in [11] to obtain a lower bound for the real genus of a 3-group.
Then we determine the real genus of several infinite families of 3-groups. The lower bound is
attained for most of these families. We also develop some general ideas about 3-groups act-
ing on bordered surfaces. Finally, we determine the real genus of all groups with order 81.

We use the standard representation of a group G as a quotient of a non-euclidean crys-
tallographic group f by a bordered surface group K; then G acts on the Klein surface U/K,
where U is the open upper half-plane.

2. Preliminaries. We shall assume that all surfaces are compact. A bordered surface X
can carry a dianalytic structure [1, p. 46] and be considered a Klein surface or a non-singular
real algebraic curve. Thus the surface X has an algebraic genus g. The algebraic genus
appears naturally in bounds for the order of the automorphism group of a Klein surface, and
the real genus of a group is defined in terms of the algebraic genus.

There is a useful upper bound for the real genus of a finite group in terms of the orders
of the elements in a generating set [8, p. 712].

THEOREM A [8]. Let G be a finite group with generators z\,..., zc, where O(ZJ) = m,. Then

p{G) < 1 + o(G) c — 1 — > — (2.1)

Group actions on Klein surfaces have often been investigated using non-euclidean crys-
tallographic (NEC) groups; here see the monograph [2], an excellent reference for the work
on Klein surfaces. Let .y denote the group of all dianalytic automorphisms of the open upper
half-plane U. An NEC group is a discrete subgroup f of & (with the quotient space U/T
compact). Associated with the NEC group T is its signature, which has the form

(p; ±; [A,,. . . , krl {(v,i,.. •, v , , , ) , . . . , (v*,, . . . , vkSk)}). (2.2)
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The quotient space X = U/T is a surface with topological genus p and k holes. The surface is
orientable if the plus sign is used and non-orientable otherwise. The ordinary periods
k\,..., k, are the ramification indices of the natural quotient mapping from U to X in fibers
above interior points of X. The link periods v , i , . . . , viSi, are the ramification indices in fibers
above points on the rth boundary component of X. Associated with the signature (2.2) is a
presentation for the NEC group T. For more information about signatures, see [14] and [2].

Let F be an NEC group with signature (2.2) and assume k > 1 so that the quotient space
U/T is a bordered surface. Then the non-euclidean area IM(T) of a fundamental region for T
can be calculated directly from its signature [14, p. 235]:

where y is the algebraic genus of the quotient space U/T. If A is a subgroup of finite index in
T, then

[r : A] = /i(A)/M(r). (2.4)

An NEC group K is called a surface group if the quotient map from U to U/K is unramified.
If the quotient space U/K has a non-empty boundary, then K is called a bordered surface
group. Bordered surface groups contain reflections but no other elements of finite order.

Let X be a bordered Klein surface of algebraic genus g > 2, and let G be a group of
dianalytic automorphisms of X. Then X can be represented as U/K, where A" is a bordered
surface group with ix(K) = 2n(g — 1). Further, there exist an NEC group T and a homo-
morphism <p : T -» G onto G such that kernel <p = K [7]. The group G ^ T/K, so that from
(2.4) the algebraic genus g of the bordered surface X on which G acts is given by

g=l+ o(G) • H{T)/2TI. (2.5)

Thus (2.5) and (2.3) give the relationship between the algebraic genera g and y of A" and U/T,
respectively. This relationship is sometimes given as the Riemann-Hurwitz formula for the
quotient mapping X -> X/G = U/T; see [6], for example. In the following we will con-
sistently use g and y for the algebraic genera of the surfaces X and U/T, respectively.

Minimizing the algebraic genus g for a particular group G is therefore equivalent to
minimizing ix(T). Among the NEC groups T for which G is a quotient of T by a bordered
surface group, then, we want to identify one for which fi(T) is as small as possible.

3. A lower bound. Here we establish a useful lower bound for the real genus of a finite 3-
group. We specialize the approach in [11, §3] to obtain a bound that is much better for 3-
groups. The approach in [11] considered generators as having order 2, order 3 or "high"
order, and the ones of high order were all treated as having order 4 to produce the lower
bound. In a 3-group there are no generators of order 2, of course, and high order generators
must have order at least 9.

Let G be a finitely presented 3-group and S a generating set for G. Let t$(S) denote the
number of generators in S of order 3, and let //,(£) be the number of generators of order
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larger than 3 (and thus at least 9). We will write simply t3 and ti, if the generating set is
obvious. Then \S\ = h + t/,. We define

6(G) = minimum{8o,0S) + 6t3(S) \ S a generating set for G}.

A generating set for which 6(G) is attained is said to be 6-minimal. The quantity 6(G)/9 arises
naturally when obtaining a lower bound for (2.3) by treating all generators of high order as
having order 9; see the proof of Theorem 1. The following result is basic.

LEMMA 1. Let G' be a quotient group of the finitely presented group G. Then

Proof. Let n : G -» G' denote the quotient map. Then let 5 be a ^-minimal generating set
for G, and let 5" be the induced generating set for G'. Write t-$ — t3(S) and r'3 = h{S') and so
forth. Clearly |S| > |S"| so that

th + t3>t'h + t'v

If y e S' with o{y) > 3, then there is at least one generator x in S such that n(x) = y. But
o(x) > 3 also. Hence we have

th > t'h.

Now since S is ^-minimal,

6(G) = Sth + 6/3 = 6(th + t3) + 2th > 6(t'h + t\) + 2t'h > 6(G'),

whether or not the generating set 5" is ^-minimal.

Let G be a finite 3-group, and suppose there exist an NEC group F and a homomorph-
ism (j>: F -> G onto G such that K — kernel <p is a bordered surface group. Since the surface
group K contains no analytic elements of finite order, each ordinary period of F must be a
power of 3. We need an upper bound for 6(G).

LEMMA 2. Let G be a finite 3-group. Suppose there exist an NEC group F with signature
(2.2) and a homomorphism (f> : F —»• G onto G such that K=kernel 4> is a bordered surface
group. Let r3 denote the number of ordinary periods ofV equal to 3 and r/, the number greater
than 3. Then

where y is the algebraic genus of the quotient space U/F.

Proof. Simplify the canonical presentation for F as in [11, §2]; the simplified presentation
has y + r generators (that are elliptic, hyperbolic or glide reflections) plus some additional
reflections. Let S be the induced generating set for G. Since the order of G is odd, all reflec-
tions in F are in the bordered surface group K — kernel <j>. Therefore the generating set S has
at most y + r elements. Of the elements in 5", clearly at most y + o, can have order larger
than three. Now apply the definition of 9(G).

Now we establish our general lower bound.
THEOREM 1. Let G be a finite 3-group. Then

p{G)> \+o(G)[6(G)- 9]/9. (3.1)
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Proof. The only 3-groups with p < 1 are cyclic [8]. For a cyclic group G, p(G) — 0, and it
is a simple matter to check that the inequality holds. Assume then that p(G) > 2, and let G
act on the bordered surface X of algebraic genus g > 2. Then represent X as U/K where K is
a bordered surface group, and obtain an NEC group F and a homomorphism (j>: F -> G
onto G such that kernel <p = K. We use the notation of Lemma 2. In particular, y denotes the
algebraic genus of the quotient space U/T. Each ordinary period of F must be a power of 3.
Using (2.3) we obtain

Therefore

9[ix(r)/2n] >9Y + 8/v, + 6r3 - 9.

Since y > 0, applying Lemma 2 yields

9[»(r)/2n] > 6(G) - 9.

Now from (2.5) we have g > 1 + o(G)[9(G) - 9]/9. Thus p{G) > 1 + o(G)[e{G) - 9]/9.

We believe the lower bound (3.1) is quite useful, in general. We shall see examples of
infinite families of 3-groups for which the lower bound gives the real genus. Indeed, the lower
bound of Theorem 1 always gives the genus of a 3-group G if G has a 0-minimal generating
set that only contains elements of orders 3 and 9.

THEOREM 2. Let G be a finite 3-group. If a d-minimal generating set for G contains t ele-
ments of order 3, n elements of order 9, and no other elements, then

p(G) = 1 + o(G)(6t + 8n- 9)/9. (3.2)

Proof. We have 9(G) = 6t + 8« and (3.1) holds. But from the general upper bound (2.1),
we also obtain

p(G) < 1 + o(G)(n + t - l - t / 3 - n/9) = 1 + o(G)(6t + 8« - 9)/9.

4. General results. Next we use our lower bound to obtain some general results about 3-
groups acting on bordered surfaces.

Let X be a bordered Klein surface of algebraic genus g > 2. Then the automorphism
group G of A'has order at most 12(g — 1)[6]. This general upper bound can be improved, of
course, in special cases. (See [2] for a survey of these results.) For example, there is a basic
upper bound for /^-groups [3], where p is an odd prime. In particular, if the automorphism
group G is a 3-group, then o(G) < 3(g— 1). An immediate consequence of this result is a
lower bound for the real genus of a 3-group. Here we obtain this lower bound as a simple
consequence of Theorem 1.

THEOREM 3. Let G be a finite 3-group that is not cyclic. Then

p{G) > 1 + o(G)/3.

Proof. Any generating set for G must have at least two elements, and obviously
6(G) > 2-6. Now (3.1) gives the result.

https://doi.org/10.1017/S0017089500032791 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500032791


FINITE 3-GROUPS ACTING ON BORDERED SURFACES 467

There are infinite families of 3-groups for which these bounds are attained. See [3, §5], [2,
pp. 130, 131], and [11, §5]. The bound of Theorem 3 can be improved in special cases, of course.

THEOREM 4. Let G be a finite 3-group with p(G) >2.IfG is not generated by elements of
order 3, then

p(G) > 1 + 5o(G)/9.

Proof. Since p(G) ̂  0, the rank of G is at least two, and a generating set for G must con-
tain at least one element of high order. Hence 6{G) > 8 + 6, and (3.1) gives the lower bound.

Let G be a finite 3-group. It may well be that in any presentation for G, there are at least
two generators of high order. Let £2 be the subgroup of G generated by the elements of order
3. Then Q is a characteristic subgroup of G.

THEOREM 5. Let G be a finite 3-group. IfG/Q is not cyclic, then

p(G) > 1 + 7o(G)/9.

Proof. Since G/Sl is not cyclic, any generating set for G must have at least two elements
of order larger than 3. Hence 6(G) > 2-8, and the result follows from (3.1).

The lower bound for the real genus is even better for 3-groups that have rank three or
more.

THEOREM 6. Let G be a finite 3-group. If rank(G) > 2, then

Proof. Since rank(G) > 3, obviously 9{G) > 3-6.

This series of results about a 3-group G can also be obtained by considering the possible
signatures for an NEC group F such that G is a quotient of F by a bordered surface group
and the non-euclidean area /u,(P) is small. For instance, if G is a 3-group of the maximum
possible order for the value of the genus, then G must be a quotient of an NEC group with
signature (0; +; [3, 3]; {()}). For examples of this approach, see [9, §3] and [12, §3].

5. Genus formulas for particular families. We begin with an easy application of (3.2) to
abelian groups that only have factors of Z3 and Z9.

THEOREM 7. , . ,,-,-,
p((Z3)'x(Z9)") = 1 + y+2"~2(6t + Sn- 9).

Proof. Let G = (Z3)'x(Z9)". Clearly rank(G) = t + n, with a ^-minimal generating set for
G containing / elements of order 3 and n elements of order 9. Now (3.2) gives

p(G) = 1 + 3'9"(6/ + 8« - 9)/9.

The formula of Theorem 7 can also be obtained from the general results in [13], although it does
not appear there explicitly. The approach in [13] utilizes graphs of groups and is quite different,
however. In addition, see [11, p. 1284], where elementary abelian 3-groups are considered.
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Next let K be the nonabelian group of order 27 with no element of order 9. The group K
has presentation [11, p. 1282]

The group A" is a semi-direct product (Z3)

THEOREM 8. p(FC) = 1 + 33"-'(4n - 3).

Proof. The group A" is generated by two elements of order 3, and it is clear that 9(K) = 12
and 0(K") = 12M, with a 0-minimal generating set for K" containing 2n elements of order 3.
Now (3.2) yields p(K") = 1 + 33"(6-2« - 9)/9.

In particular, p(K) = 10 [11, p. 1282].
For m > 3, let Mm be the group with generators X, Y and defining relations

A*""' = Y3 = 1, Y~lXY = Xw"'~\ (5.1)

The group Mm is a nonabelian group of order 3m [5, p. 190]. The properties of these groups
are well-known, of course [5, pp. 190-194]. Each possesses a maximal cyclic subgroup of
order 3m~' . In fact, these groups are characterized among all nonabelian 3-groups by this
property [5, p. 193].

The group Mm is not generated by elements of order 3 and 9 (if m > 3), and the lower
bounds of Theorems 1 and 4 are not attained. To obtain the lower bound for the real genus
of Mm, we modify the proof of Proposition 1 of [12].

THEOREM 9. p(Mm) = 2(3m- ' - \)for m > 3.

Proof. Write G = Mm. We know p(G) > 2. Let G act on a bordered Klein surface X of
algebraic genus g > 2. Then represent X as U/K, where A" is a bordered surface group, and
obtain an NEC group F with signature (2.2) and a homomorphism a : F -> G onto G such
that kernel a = K. Let y be the algebraic genus of the quotient space U/Y. Since the order of
G is odd, it is basic that all period cycles of F are empty (Each reflection is in the kernel K,
but the surface group K contains no analytic elements of finite order).

Simplify the canonical presentation for F as in [11, §2]. In this simplified presentation,
there must be at least two elements with order 3 or more, since T/K = G. The number of
generators of F with order larger than two is at most y + r, where r is the number of ordinary
periods. Therefore y + r > 2. Let A = /A(F)/27T, which is given by (2.3). We obtain a lower
bound for A. Again, each ordinary period of F must be a power of 3. If y > 2, then obviously
A > 1. If y = 1, then r > 1 and A > 2/3.

Suppose y - 0 so that r > 2. If r > 3, then A > - 1 + 3 • 2/3 = 1. Assume r = 2. Then
the group F has signature (0; +; [X\, fa]; {()}), where we may take X\ < fa. From (2.3)

If fa >fa>9, then A>\-2- (1/9) = 7/9 > 2/3.
Assume, then, that y — 0, r = 2, and X\ = 3. The group F has presentation

x3 - yXl = c2 — [c, e] = xye — 1.
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But the only generating reflection c must be in the bordered surface group K, and e is
redundant. Thus the quotient group G = F/Kis generated by the two elements a(x) and a{y).
In any presentation for G, there must be at least one element of order 3"'~', since the sub-
group generated by elements of order dividing 3"'~2 has index 3 in G [5, Th. 4.3(i)(c), p. 191].
Therefore A2 = 3'"- ' , and

3 3'"- ' '

In this case, then, A < 2/3 and from (2.5) g = 1 + 3m • A = 1 + 3'"(2/3 - 1/3"'-') =
2(3'"-' - 1). In all other cases, A>2/3. Thus p{G) > 2(3m- ' - l).

The upper bound for p(G) is provided by (2.1) applied to the defining presentation (5.1).

In particular, the group Af3 of order 27 has real genus 16 [12, p. 405]. Write M = My, M
is a semi-direct product Z9 xe Z3.

THEOREM 10. p(M") = 1 + 33"-2(14« - 9).

Proof. The group M is generated by an element of order 9 and one of order 3, of course.
Clearly 6{M) = 14 and 9(M") — I4n, with a ^-minimal generating set for M" containing n
elements of order 3 and n of order 9. Now (3.2) gives p{M") = 1 + 33"(8« + 6n- 9)/9.

We also briefly consider direct products of elementary abelian 3-groups and the groups
K and M.

THEOREM 11. p((Z3)"xK) = 1 + 3"+2(2« + 1).

Proof. A 0-minimal generating set for (Z{)"xK contains n + 2 elements of order 3.

THEOREM 12. p((Z3)"xM) = 1 + 3"+\6n + 5).

Proof. A 0-minimal generating set for {Zy)"xM contains n + 1 elements of order 3 and
one of order 9.

The general lower bound of Theorem 1 is attained for the groups of Theorems 7, 8, 10,
11 and 12.

6. The groups of order 81. The real genus of each group with order less than 32 has been
determined [12]. For 3-groups the next order of interest is 81. There are 15 groups of order
81; five of these are abelian. These groups are listed in Burnside's classic book [4, pp. 145,
146], and our notation Gn refers to the nth group in Burnside's list. The real genus of each
abelian group has been determined [13]. Interestingly, all the nonabelian groups of order 81
yield to the methods of §§3 —5. The group Gg is the direct product Z3 x M, and G14 is the
direct product Z3 x K. Also G(, is the group M4. We consider each remaining group as an
extension of a large normal subgroup.

The groups C7, G10, and G\$ are extensions of Z3 x Z9. The abelian group A = Z3 x Z9
has presentation

P9 = Qi = l,PQ = QP. (6.1)
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To obtain the group G\s, adjoin to A an element R of order 3 that transforms the elements of
A according to the automorphism P -* PQ, Q ->• P~3Q. Then the group G\s [4, p. 146] has
generators P, Q, R and denning relations (6.1) together with

R3 = 1, R~lPR = PQ, R-XQR = P~3Q.

Then the element R~lP has order 3, and clearly G15 — (R, R~l P). Thus G15 is generated by
two elements of order 3. Now 0(ds) = 12 and p(G\S) = 28 by (3.2).

To obtain the group G10, adjoin to A = Z3 x Z9 an element S of order 3 that transforms
the elements of A according to the automorphism P -*• PQ, Q ->• Q. Then the group d o [4,
p. 145] is generated by P, Q, S with denning relations (6.1) and

S3 = l,S~lPS = PQ, QS = SQ.

Then the subgroup ft(do) — (Z3)3, s o t n a t d o is not generated by elements of order 3. But
obviously d o = (S, P), and 0(do) = 14. Hence p(G10) = 46.

The group G~i is a third extension of Z3 x Z9. The group Gi has presentation [4, p. 145]

P9 = g 3 = R3 = 1, PQ = QP, PR = RP, R~lQR = QP\

The Frattini subgroup cD(G7) = (P3) s Z3, so that G7/<D ^ (Z3)3 and G7 has rank 3. Also
fi(dO is a nonabelian subgroup of order 27, so that G7 is not generated by elements of order
3. But G7 = (P, Q, R), of course, and a ^-minimal generating set for G7 has two elements of
order 3 and one of order 9. Thus p(Gy) = 100, using (3.2).

The groups G\\,G\2, and G13 are extensions of the nonabelian group M — A/3 with
presentation (from (5.1))

X9 = 73 = 1, Y^XY^X4. (6.2)

First, to obtain the group G\\, adjoin to M an element W of order 3 that transforms the
elements of M according to the automorphism X-*• XY, Y->• Y. The group G\\ [4, p. 145]
has generators X, Y, W and denning relations (6.2) plus

W3 = 1, VTyXW = XY, YW= WY.

Then the element fP-'A'has order 3, and d , = (W, IV^X). Thus Gn is generated by two
elements of order 3 and 9(GU) - 12. Hence p(Gu) = 28.

The group Gn [4, p. 145] has generators X, Y, W and denning relations (6.2) and

= XY, YW= WY, W3 = X3.

Then Q,(G\i) is a nonabelian subgroup of order 27, so that Gn is not generated by elements
of order 3. But the element WX has order 3 and Gn = {X, WX). Now 9{Gn) - 14 and
p{Gn) = 46.

The group G13 is a third extension of M. The group Gn [4, p. 145] has presentation (6.2)
together with

VTXXW=XY, YW= WY, W3 = X(>.
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The element W has order 9. Here we have *(Gi3) = fi(Gi3) = (Q, P3) 2* (Z3)2 and
Gi3/<t> ^ (Z3)2. Thus any generating set for G13 must have at least two elements of order
larger than 3. Since <7|3 = (X, W), we have 9(Gi3) = 16 and p{Gu) = 64 by (3.2).

Finally consider G$, the group with presentation [4, p. 145]

P9 = Q9 = l,Q-lPQ = P4.

This group is a semi-direct product Z9X0Z9. For this group <J>(Gg) = &(G$) =
( 2 \ P3) ^ (Z3)2, and G8/<i> ^ (Z3)2. Thus the two elements P and Q of order 9 form a 0-
minimal generating set for G. Hence 0(G$) = 16 and p(Gg) = 64.

The following table gives p(G) for each nonabelian group G of order 81.

Group

MA

G-,
G8
Z3xM
G\o

P

52
100
64

100
46

Group

G11
G12
G,3
Z3xK
CMS

P

28
46
64
82
28

The nonabelian groups of order 81 provide examples of groups for which the bounds of
§4 are attained. For instance, each of the groups with p — 46 is generated by an element of
order 3 and one of order 9, and the bound of Theorem 4 is realized.
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