Bifurcation and chain recurrence

M. HURLEY

Department of Mathematics, Case Western Reserve University, Cleveland, Ohio 44106, U.S.A.

(Received 5 February 1982)

Abstract. We show that there is a residual subset of the set of C^1 diffeomorphisms on any compact manifold at which the map

 $f \rightarrow$ (number of chain components for f)

is continuous. As this number is apt to be infinite, we prove a localized version, which allows one to conclude that if f is in this residual set and X is an isolated chain component for f, then

(i) there is a neighbourhood U of X which isolates it from the rest of the chain recurrent set of f, and

(ii) all g sufficiently C^1 close to f have precisely one chain component in U, and these chain components approach X as g approaches f.

(ii) is interpreted as a generic non-bifurcation result for this type of invariant set.

0. Introduction

A classical set of problems in the study of dynamical systems is concerned with understanding the structure of various invariant sets of a given system, and to describe how these sets change as one changes the system. This bifurcation problem is well understood in some instances. For example, the theorems of Kupka & Smale and Hartman & Grobman tell us that for each f in a residual subset of Diff'(M) $(r \ge 1)$, and each $n \ge 1$, f^n has a finite number of fixed points, and that if g is C' close enough to f, (how close depends on n), then g^n has exactly the same number of fixed points as f^n , and the fixed point set of g^n approaches that of f^n as g approaches f. See [6] or [8] for more details.

The main result of the present paper is an analogue of this well-known result. The setting is a compact Riemannian manifold M, with metric d. We consider the chain recurrent set of a map f in Diff^r (M), $r \ge 0$. (Diff⁰ (M) is the set of homeomorphisms of M to itself with the uniform metric d_0 ; Diff¹ (M) is the set of C^1 diffeomorphisms on M with the uniform C^1 metric d_1 , and so on.)

A point x in M is α -chain recurrent for f if for each $\beta > \alpha \ge 0$ there is a β -chain from x back to x, that is, a finite set of points

 $x_0, x_1, \ldots, x_p,$ with $x = x_0 = x_p$,

and

$$d(f(x_i), x_{i+1}) < \beta$$
 for $i = 0, 1, 2, ..., p-1$.

We will sometimes represent such a chain by the notation

$$x_0 \rightarrow x_1 \rightarrow \cdots \rightarrow x_p$$

and say that this β -chain goes from x_0 to x_p .

The chain recurrent set of f, CR (f), is the set of points in M that are α -chain recurrent for all $\alpha \ge 0$, (so chain recurrent and 0-chain recurrent mean the same thing). There is a natural equivalence relation that is defined on CR (f) by calling two points *equivalent* if for any β there is a periodic β -chain containing both points. More precisely, $x \sim y$ if for each $\beta > 0$ there is a β -chain going from x to y and a β -chain going from y to x. Each equivalence class is called a *chain component*. Let N(f) denote the (possibly infinite) number of chain components of f.

The basic new result of this paper is part (b) of the following theorem. Recall that a subset S of a topological space X is *residual* if S can be realized as a countable intersection of open, dense subsets of X.

THEOREM A. There is a residual subset I of $\text{Diff}^1(M)$ such that whenever f is an element of I, then

- (a) (Conley, Takens) f is a continuity point of CR(_);
- (b) N() is continuous at f.

One interprets the continuity in part (a) of the theorem by viewing CR() as a map from $(Diff^1(M), d_1)$ to (FM, d_H) , where d_1 is the uniform C^1 metric on $Diff^1(M)$, FM is the set of all closed non-void subsets of M, and d_H is the Hausdorff metric on FM,

$$d_H(F, F') = \inf \{t > 0 | F' \subset B(F, t) \text{ and } F \subset B(F', t)\},\$$

where

$$B(F,t) = \{x \in M \mid d(x,F) < t\}.$$

The relevant facts are that $(\text{Diff}^1(M), d_1)$ is a Baire space [2], so that any residual subset is dense; and that the metric topology makes (FM, d_H) a compact metric space [4]. A more detailed description is contained in [3]. The proof of (a) is essentially due to C. Conley. His description of CR (f) in terms of the attractors of f (see II.6 and II.7 of [1], especially 6.2.A on page 37) shows that the map $f \rightarrow CR$ (f) is upper semicontinuous; from this it is a standard argument to establish (a). More details are contained in the discussion surrounding lemma 1, below. See also [10, theorem 1], and corollary 3(a), below.

In part (b) of the theorem, the range of the map N() is $\{1, 2, ..., \infty\}$ viewed as the usual one-point compactification of the positive integers.

Theorem A more or less provides the kind of non-bifurcation result we spoke of in the opening paragraph of this paper. If $N(_)$ is continuous and finite at f, then diffeomorphisms that are C^1 close to f have exactly the same number of chain components as does f. In other words, one cannot break apart any of the chain components of f by using a C^1 perturbation. Unfortunately, the conclusion that one can draw from the continuity of $N(_)$ at f is much less informative if N(f)is infinite. Of course, this would not be a problem if N(g) were finite for all g in

a residual subset of $\operatorname{Diff}^1(M)$, but it is not known whether or not this is the case (unless the dimension of M is small). Moreover, S. Newhouse has shown, [5], that any residual subset of $\operatorname{Diff}^r(M)$ must contain diffeomorphisms f with $N(f) = \infty$ whenever both r and the dimension of M are at least 2. This fact motivates a different approach to improving the conclusions that can be drawn when N(f) is infinite. Instead of viewing the dynamics on all of M, we can consider only the chain-recurrent behaviour that is contained in a specified subset Y of M. Specifically, we say that an α -chain

$$x_0 \rightarrow x_1 \rightarrow \cdots \rightarrow x_p$$

is an (α, Y) -chain if each x_i lies in the closure of Y. CR (f; Y) is then defined to be the set of points x such that for each $\alpha > 0$ there is an (α, Y) -chain from x back to x,

$$x = x_0 \to x_1 \to \cdots \to x_p = x.$$

Just as in the original case, one can say that x and y in CR (f; Y) are equivalent if for each $\alpha > 0$ there is a periodic (α, Y) -chain

$$x_0 \rightarrow \cdots \rightarrow x_p = x_0$$
 with $x = x_0$ and $y = x_i$ for some *i*.

An equivalence class under this relation will be called a Y-chain component of f. Let N(f; Y) denote the (again, possibly infinite) number of Y-chain components of f.

THEOREM B. There is a countable basis \mathcal{U} for the topology on M, and a residual subset J of $\text{Diff}^1(M)$ with the property that whenever f is an element of J and U is an element of \mathcal{U} , then

- (a) f is a continuity point of CR(; U);
- (b) $N(_; U)$ is continuous at f.

Note that by taking U = M in theorem B one obtains theorem A.

COROLLARY. Suppose f is in J, X is a chain component of f, and B is an open neighbourhood of X with

$$\operatorname{clos}(B) \cap \operatorname{CR}(f) = X.$$

Then there is a neighbourhood G of f in $\text{Diff}^1(M)$ such that each g in G has exactly one chain component X_g contained in B, and no other chain component of g meets clos (B).

The proof of theorem B relies on the affirmative answer to the following stabilization question for invariant sets:

If U is open in M and contains an f-invariant set, can f be C' approximated by g such that any diffeomorphism sufficiently C' close to g has an invariant set contained in U?

We use the closing lemma [7] to obtain an affirmative answer to this question. This is the reason we restrict ourselves to C^1 diffeomorphisms in theorems A and B.

As an application of the above results, we obtain the following theorem. To say that A in M is a *chain transitive attractor* of f means that

(1) A is a chain component of f;

(2) A is an attractor of f; that is, there is an open neighbourhood U of A with f(clos(U)) contained in U and

$$\bigcap_{n\geq 0}f^n(U)=A.$$

THEOREM C. There is a residual subset \mathcal{A} of $\text{Diff}^1(M)$ such that if f is in \mathcal{A} , f_n converges to f in the C^1 topology, and A is a chain transitive attractor of f, then there are chain transitive attractors A_n of f_n with A_n converging to A in the Hausdorff topology. For large n there is only one A_n that is near A.

The C' version of theorem C was stated in [3] (theorem A(c)). However, the proof there contains an error. The C' version of theorem C for r greater than 1 is still an unsettled question.

§ 1 contains the proof of theorem B as well as a study of the stabilization question that is the key to that result. § 2 contains the application to attractors.

1. Proof of theorem B

We begin with three simple lemmas.

LEMMA 1. Suppose X_1 and X_2 are metric spaces, with X_2 compact. Let $h: X_1 \rightarrow FX_2$ be either upper or lower semicontinuous. Then the set of continuity points of h is a residual subset of X_1 .

This is [9, lemma 2.3]. The map h is lower semicontinuous at x in X_1 if whenever x_n approaches x and y is in h(x), then there are points y_n in $h(x_n)$ with y_n converging to y. h is upper semicontinuous at x if for any sequence $x_n \rightarrow x$, if y_n is in $h(x_n)$ and $y_n \rightarrow y$, then y is in h(x). If g is a map from some topological space X_1 into the extended half-line $S = [0, \infty]$ (viewed as the one-point compactification of $[0, \infty)$), then g is lower (upper) semicontinuous at x in X_1 if and only if the induced map

 $g^*: X_1 \rightarrow FS$ given by $g^*(z) = [0, g(z)]$

is lower (upper) semicontinuous at x. This agrees with the usual definition of lower (upper) semicontinuity for real-valued functions:

$$\liminf_{z \to x} g(z) \ge g(x) \qquad (\limsup_{z \to x} g(z) \le g(x)).$$

LEMMA 2. Fix f in Diff' (M) and a closed subset Y of M. Define a map $G: Y \rightarrow [0, \infty)$ by

$$G(x) = \inf \{ \alpha > 0 \mid x \text{ lies on a periodic } \alpha \text{-chain for } f \text{ which}$$

is contained in $Y \}.$

Then G is continuous.

Proof. Let $\gamma > 0$ be given, and choose $\delta < \gamma$ small enough that whenever x, y are in M and $d(x, y) < \delta$ then

$$d(f(x), f(y)) < \gamma.$$

Now suppose that x, y are in Y and within δ of each other, and that

 $x \to x_1 \to \cdots \to x_p \to x$

is an α -chain for f in Y. Then

$$d(f(y), x_1) \le d(f(y), f(x)) + d(f(x), x_1) < \gamma + \alpha,$$

and

$$d(f(x_p), y) \leq d(f(x_p), x) + d(x, y) < \alpha + \gamma.$$

Thus $d(x, y) < \delta$ implies that

$$G(\mathbf{y}) \leq G(\mathbf{x}) + \boldsymbol{\gamma}.$$

By the symmetry in the assumptions on x and y we conclude that

 $|G(x)-G(y)| < \gamma$

whenever $d(x, y) < \delta$, so G is continuous.

Note that for Y closed in M and G defined as in the lemma,

$$\operatorname{CR}\left(f;\,Y\right)=G^{-1}(0),$$

so the lemma shows that CR (f; Y) is closed in M. In addition, it shows that distinct Y-chain components of f are bounded apart in the sense that if X_1 and X_2 are disjoint Y-chain components of f then for some $\alpha > 0$ there is no periodic α -chain for f that is both contained in Y and meets each of the sets X_1 and X_2 .

LEMMA 3. Suppose f_n converges to f in the C^0 topology, $y_n \rightarrow y$ and $z_n \rightarrow z$ in M, and that for each n and each positive α there is an (α, Y) -chain for f_n going from y_n to z_n . Then for each positive α there is an (α, Y) -chain for f going from y to z.

Proof. Since (α, Y) -chains and $(\alpha, clos(Y))$ -chains are the same thing, we may as well assume that Y is closed. Let $\alpha > 0$ be given. Choose n large enough that

- (i) $d_0(f, f_n) < \alpha/3;$
- (ii) $d(f(y), f(y_n)) < \alpha/3;$
- (iii) $d(y, y_n) < \alpha/3$;
- (iv) $d(z, z_n) < \alpha/3$.

By assumption there is an $(\alpha/3, Y)$ -chain for f_n that goes from y_n to z_n ; denote it by

$$y_n = x_0 \rightarrow x_1 \rightarrow \cdots \rightarrow x_p = z_n$$

(of course the x_i 's depend on n, but we suppress this dependence from the notation). Now (i)-(iv) combined with the triangle inequality show that

$$y \rightarrow x_1 \rightarrow x_2 \rightarrow \cdots \rightarrow x_{p-1} \rightarrow z$$

is a α -chain in Y for f.

COROLLARY 3(a). The map $f \rightarrow CR(f; Y)$ is upper semicontinuous at all f in Diff' (M), for any $r \ge 0$ and any subset Y of M.

COROLLARY 3(b). If f, f_n , y, y_n , z, z_n are as in lemma 3 and for each n, y_n and z_n lie in a single Y-chain component of f_n , then y and z lie in a single Y-chain component of f.

Proof. 3(a), in the case Y = M, is essentially (although not explicitly) contained in [1]; see also [10] for a very closely related result. To prove 3(a) just use the lemma with $y_n = z_n$ for each n.

As for 3(b), the assumptions ensure that for each n and each positive α there are $(\alpha; Y)$ -chains for f_n from y_n to z_n and from z_n to y_n . Applying the lemma twice gives $(\alpha; Y)$ -chains for f from y to z and from z to y, which establishes 3(b).

PROPOSITION 4. The set

$$\mathscr{C}_r(Y) = \{f \in \text{Diff}^r(M) \mid \text{CR}(:;Y) \text{ is continuous at } f\}$$

is residual in Diff' (M) for any subset Y of M, and r in $\{0, 1, \ldots, \infty\}$.

Proof. Combine lemma 1 and corollary 3(a).

Recall that N(f; Y) is the number of Y-chain components of f.

PROPOSITION 5. Suppose f is in $\mathscr{C}_r(Y)$. Then N(:Y) is lower semicontinuous at f.

Proof. Let f_n approach f in Diff^r (M). Suppose first that N(f; Y) in finite, so that we can list the Y-chain components, X_1, \ldots, X_k . Since these sets are closed and disjoint, we can find open sets G_1, \ldots, G_k (open in Y) such that X_j is contained in G_j and the closures of the sets G_j are pairwise disjoint. Since CR $(f_n; Y)$ is assumed to approach CR (f; Y) in the Hausdorff topology, we can conclude that, for large n, at least one Y-chain component of f_n meets each of the sets G_j . We can then apply corollary 3(b) to see that for large enough n no Y-chain component of f_n can meet more than one of the sets G_j . Thus

lim inf
$$N(f_n; Y) \ge$$
 number of G_i 's = $k = N(f; Y)$.

Now suppose that N(f; Y) is infinite. By arguing as above for arbitrary finite collections of Y-chain components of f, we can show that $\liminf N(f_n; Y)$ is also infinite.

In what follows it will become necessary to restrict the possible subsets Y that we will consider. Accordingly, we fix a certain countable basis \mathcal{U} for the topology on M. We require that \mathcal{U} contains enough open sets so that any two disjoint, closed subsets of M can be separated by elements U, U' of \mathcal{U} with

$$\operatorname{clos}\left(U\right)\cap\operatorname{clos}\left(U'\right)=\emptyset.$$

We also require that each element of \mathcal{U} be an open subset of M whose topological boundary is a smooth codimension-one submanifold of M. Obtaining such a basis is no problem, since a compact manifold is always second countable, and obtaining the smoothness condition involves only some elementary arguments in differential topology (see, e.g. [2, exercise 1, p. 55]). This smoothness condition will facilitate certain technical arguments, and it does not interfere with the applications we have in mind (specifically, the corollary to theorem B, and theorem C).

Define \mathscr{C}_r to be the intersection of all the sets $\mathscr{C}_r(U)$ for U in \mathscr{U} . By proposition 4 and the fact that \mathscr{U} is countable, \mathscr{C}_r is a residual subset of Diff' (M).

THEOREM 6. There is a residual subset J of $\text{Diff}^1(M)$ with the property that whenever f is in J and U is in \mathcal{U} , then

- (a) f is a continuity point of $CR(_; U)$;
- (b) $N(_; U)$ is continuous at f.

Proposition 5 and lemma 1 combine to give a residual subset J of \mathscr{C}_1 at which the restriction of $N(_; U)$ to \mathscr{C}_1 is continuous for each U in \mathscr{U} . Since a residual subset of a residual set is residual, J is residual in Diff¹ (M). We need to show that the unrestricted map $N(_; U)$ is continuous at any f in J. If N(f; U) is infinite, this is equivalent to the lower semicontinuity of proposition 5, so we may assume that f_n approaches f in Diff¹ (M) with

$$\infty \ge N(f_n; U) > N(f; U)$$
 for all n ,

and look for a contradiction. By assumption on f, there is a $\delta > 0$ such that $d_1(f, g) < \delta$ and g in \mathscr{C}_1 imply that N(g; U) is equal to N(f; U), so to get a contradiction it will suffice to show that we can perturb any f_n to a map g_n in \mathscr{C}_1 with

$$N(g_n; U) \ge N(f_n; U).$$

This is a type of stabilization problem; it may be phrased in a stronger way as follows.

Stabilization question. If X is a U-chain component for f, is there an open set G in Diff' (M), containing f in its closure, such that every g in G has at least one U-chain component?

By using the closing lemma [7], we can give an affirmative answer in the case r = 1.

CLOSING LEMMA (Pugh). Suppose that $\{f^n(x) \mid -\infty < n < \infty\}$ is a recurrent orbit for a C^1 diffeomorphism f, that V is an open set containing the closure of this orbit, and that $\delta > 0$. Then there is a diffeomorphism g, C^1 - δ -close to f, with a hyperbolic periodic orbit in V.

Proof. The proof is contained in [7], although the statement that the periodic orbit lies in V is not explicitly made there. The argument in [7] proceeds by choosing a finite segment of the recurrent orbit, and then making perturbations in a small neighbourhood, W, of this orbit segment. The closed orbit that is produced consists of two segments, the first contained in W, and the second being a segment of the original recurrent orbit. Hence one only has to ensure that W is contained in V. For further details and for the definitions of 'hyperbolic' and 'recurrent', see [7] or [8].

LEMMA 7. Let U be an element of \mathcal{U} , f be in $\text{Diff}^1(M)$, and suppose $N(f; U) \ge 1$. Then there is an open set W in $\text{Diff}^1(M)$ with f in the closure of W and $N(g; U) \ge 1$ for all g in W.

Proof. $N(f; U) \ge 1$ implies that CR (f; U) is a non-void invariant set in the closure of U, so that clos (U) contains a recurrent orbit $\{f^n(x)\}$. The smoothness conditions on U in \mathcal{U} ensure that there is a smooth diffeomorphism h, C^1 -close to the identity, with $h(\operatorname{clos}(U))$ contained in U. If we let y = h(x) then y is a recurrent point of the diffeomorphism

$$g_0 = h \circ f \circ h^{-1},$$

and the closure of the g_0 -orbit of y lies in U. By the closing lemma, we can find $g C^1$ -close to g_0 such that g has a hyperbolic periodic orbit contained in U. By the local stability of hyperbolic orbits (see [6] for example), there is an open neighbourhood W(g) of g such that each map in W(g) also has a periodic orbit in U. Let W be the union of $W(g_n)$ for a sequence g_n converging to f.

Because the perturbations involved in the proof of lemma 7 are local (that is, they can be required to be the identity away from U, we obtain as an immediate corollary:

PROPOSITION 8. Let $\delta > 0$ be given, and suppose that X_1, \ldots, X_k are distinct U-chain components of h (U in U), with each X_i contained in an open set U_i in U, $U_i \subset U$, with the closures of the various U_i 's pairwise disjoint. Then there is a g in \mathcal{C}_1 with $d_1(h, g) < \delta$, CR (g; U_i) non-void for each j, and $N(g; U) \ge k$.

Proof of theorem 6. Part (a) of the theorem follows from proposition 4 and the fact that \mathcal{U} is countable, so we turn our attention to the proof of (b). f in J implies that for all g in a neighbourhood of f in \mathscr{C}_1

$$N(g; U) = N(f; U) \tag{*}$$

(recall that we can assume that N(f; U) in finite). Since J is contained in \mathscr{C}_1 , for all h in a C^1 neighbourhood of f

$$N(h; U) \ge N(f; U). \tag{**}$$

If one could find h arbitrarily close to f with strict inequality in (**), proposition 8 would allow one to find g in \mathscr{C}_1 , arbitrarily close to f, with

$$N(g; U) \ge N(h; U) > N(f; U).$$

This would contradict (*), and so the theorem is established.

Using theorem 6 and the upper semicontinuity of CR(), it is not hard to see that if X is an isolated chain component of f in J and g is C^1 close to f, then the single local chain component counted by N(g; U) (here U in \mathcal{U} is an open set that separates X from the rest of CR (f)) is in fact a full chain component of g. In other words, if U is in \mathcal{U} and

$$\operatorname{CR}(f) \cap U = \operatorname{CR}(f) \cap \operatorname{clos}(U)$$

is a single chain component of f, then

$$\operatorname{CR}(g; U) = \operatorname{CR}(g) \cap U$$

is a single chain component of g for all $g C^1$ close to f.

2. Proof of theorem C

Recall that the definition of 'chain transitive attractor' was given in the introduction.

THEOREM 9. There is a residual subset \mathcal{A} of Diff¹ (M) such that for any f in \mathcal{A} and any sequence f_n which converges to f in the C^1 topology, and any chain transitive attractor A of f, there are attractors A_n of f_n with A_n converging to A in the Hausdorff

topology. Moreover, for all large n there is a unique choice of A_n , and it will be chain transitive for f_n .

The uniqueness in the statement of the theorem is to be interpreted as follows. There are neighbourhoods V of A and W of f such that whenever f_n is in W, then A_n can be chosen so that A_n is in V. There is only one such choice, and it is a chain transitive attractor. Since A_n converges to A, this choice must be made for all large n.

LEMMA 10. Suppose g is in Diff¹ (M) and that A_1 and A_2 are attractors of g with $A_1 \neq A_2$. Then $A_1 \cup A_2$ contains at least two chain components of g.

Proof. Recall that the α -limit set of x under g

$$\alpha(x) = \bigcap_{m < 0} \operatorname{clos} \{g^{i}(x) | i \leq m\},\$$

is closed, non-empty, and g-invariant. It is easy to see that $\alpha(x)$ is also chain transitive ([1, II.4 and II.6.2]). It follows that any compact, non-void, g-invariant set contains at least one chain component. Consequently we need only show that $A_1 \neq A_2$ forces the existence of two disjoint, compact, non-empty, g-invariant sets in the union of A_1 and A_2 . If A_1 and A_2 are disjoint this is immediate, so assume that

$$A_3 = A_1 \cap A_2 \neq \emptyset.$$

By [1, II.5.3.A], A_3 is also an attractor of g. Let x be in $A_1 - A_3$ and consider $\alpha(x)$. Since A_1 is compact and g-invariant, $\alpha(x)$ is closed, non-empty, g-invariant, and in A_1 . Since A_3 is an attractor, it is not hard to show that $\alpha(x) \cap A_3$ is non-empty if and only if x is in A_3 (see [1, II.5.1.A]). Since we are assuming that x is not in A_3 , we must conclude that $\alpha(x)$ is contained in $A_1 - A_3$. Hence $\alpha(x)$ and A_3 are the disjoint, non-empty, compact, g-invariant sets we require.

Proof of theorem 9. By [3, 7.15], there is a residual subset T of Diff¹ (M) satisfying all but the uniqueness part of theorem 9. Let \mathscr{A} be the intersection of T with the residual set J of theorem 6. Since A is a chain transitive attractor of f, we can find U in \mathscr{U} with N(f; U) = 1, so N(g; U) = 1 for all $g C^1$ close to f. Thus, if g is near f, then g has exactly one attractor in U, for if there were more than one, then the lemma shows that g would also have more than one chain component in U. Let A_g denote this uniquely defined attractor of g. Since A_g is an attractor none of whose proper subsets is an attractor, A_g is chain transitive (this follows from Conley's characterization of CR (g) in terms of the attractors of g; see [1, 6.2.A, p. 37]). \Box

REFERENCES

- [1] C. Conley. Isolated Invariant Sets and the Morse Index. Amer. Math. Soc.: Providence, 1978.
- [2] M. Hirsch. Differential Topology. Springer-Verlag: New York, 1976.
- [3] M. Hurley. Attractors: persistence, and density of their basins. Trans. Amer. Math. Soc. 269 (1982), 247-271.
- [4] S. Nadler. Hyperspaces of Sets. Marcel Dekker: New York, 1978.

M. Hurley

- [5] S. Newhouse. Diffeomorphisms with infinitely many sinks. Topology. 13 (1974), 9–18.
- [6] Z. Nitecki. Differentiable Dynamics. M.I.T. Press: Cambridge, 1971.
- [7] C. Pugh. The closing lemma. Amer. J. of Math. 89 (1967), 956-1009.
- [8] S. Smale. Differentiable dynamical systems. Bull. Amer. Math. Soc. 73 (1967), 747-817.
- [9] F. Takens. On Zeeman's tolerance stability conjecture. Manifolds-Amsterdam, 1970, Springer Lecture Notes in Math. No. 197. Springer-Verlag: New York, 1971.
- [10] F. Takens. Tolerance stability. *Dynamical Systems-Warwick, 1974*, Springer Lecture Notes in Math. No. 468, pp. 293-304. Springer-Verlag: New York, 1975.