
Canad. Math. Bull. Vol. 48 (1), 2005 pp. 41–49

Degree Homogeneous Subgroups

John D. Dixon and A. Rahnamai Barghi

Abstract. Let G be a finite group and H be a subgroup. We say that H is degree homogeneous if, for

each χ ∈ Irr(G), all the irreducible constituents of the restriction χH have the same degree. Sub-

groups which are either normal or abelian are obvious examples of degree homogeneous subgroups.

Following a question by E. M. Zhmud’, we investigate general properties of such subgroups. It appears

unlikely that degree homogeneous subgroups can be characterized entirely by abstract group proper-

ties, but we provide mixed criteria (involving both group structure and character properties) which are

both necessary and sufficient. For example, H is degree homogeneous in G if and only if the derived

subgroup H ′ is normal in G and, for every pair α, β of irreducible G-conjugate characters of H ′, all

irreducible constituents of αH and βH have the same degree.

1 Introduction

Let G be a finite group and H be a subgroup. We say that H is degree homogeneous

(and write (G,H) ∈ ∆) if, for each χ ∈ Irr(G), all the irreducible constituents of

the restriction χH have the same degree. We have two obvious examples of degree

homogeneous subgroups: normal subgroups are degree homogenous by Clifford’s

theorem, and abelian subgroups are degree homogeneous because their irreducible

characters are all of degree 1. Following a question in [2, p. 304], our object is to

investigate general properties of such pairs (G,H). As Lemma 1 shows, it is unlikely

that the class ∆ can be characterized entirely by abstract group properties, but Theo-

rem 5, Theorem 12 and Theorem 9 give mixed criteria (involving both group struc-

ture and character properties) for these pairs. Theorem 17 and Theorem 18 describe

some related classes.

Notation We shall generally follow the notation of [6]. In particular, Irr(G) denotes

the set of all irreducible (ordinary) characters of G, Lin(G) is the set of characters of

degree 1 and, for any character θ, Irr(θ) is the set of irreducible constituents of θ. If

K is a normal subgroup of G, and α ∈ Irr(K), then IG(α) := {x ∈ G | αx
= α} is the

inertia subgroup of α. We use cd(G) to denote the set of degrees of the irreducible

characters of G.

2 Degree Homogeneous Subgroups

We begin with some simple properties of ∆.
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Lemma 1

(a) If (Gi ,Hi) ∈ ∆ for i = 1, 2 then (G1 × G2,H1 × H2) ∈ ∆.
(b) If (G,H) ∈ ∆ and H ≤ L ≤ G, then (L,H) ∈ ∆.

(c) If (G,H) ∈ ∆ and K ≤ H is normal in G, then (G/K,H/K) ∈ ∆.

Proof (a) Every irreducible character χ of G1 × G2 has the form χ((x, y)) =

θ(x)φ(y) for all (x, y) ∈ G1 × G2 where θ ∈ Irr(G1) and φ ∈ Irr(G2), and con-

versely every function of this form is an irreducible character (see, for example,

[6, (4.21]). Thus the irreducible constituents of the restriction of χ to H1 × H2 are

characters of the form ψ((x, y)) = λ(x)µ(y) where λ and µ are irreducible con-

stituents of θH1
and φH2

, respectively. The assertion now follows.

(b) By Frobenius reciprocity, every irreducible character ψ of L is an irreducible

constituent of some χ ∈ Irr(G). Now (b) follows since Irr(ψH) ⊆ Irr(χH).
(c) This follows at once since each irreducible character of G/K corresponds to

some χ ∈ Irr(G) of the same degree with K ≤ kerχ.

Suppose that (G,H) ∈ ∆. Then for each d ∈ cd(H) we define

Cd := {χ ∈ Irr(G) | all constituents of χH have degree d}

and

Dd := {θ ∈ Irr(H) | θ(1) = d}

Set

Kd :=
⋂

χ∈Cd

kerχ and Ld :=
⋂

θ∈Dd

ker θ.

Then the following holds.

Theorem 2 If (G,H) ∈ ∆ then, with the notation above, Kd = Ld, and so Ld ⊳ G. In

particular, H ′
= L1 ⊳ G and Ld ≤ H ′ whenever d ∈ cd(H).

Proof If x ∈ Ld, then clearly χ(x) = χ(1) for all χ ∈ Cd, and so x ∈ Kd. Conversely,

by Frobenius reciprocity, θ ∈ Dd if and only if Irr(θG) ⊆ Cd. Thus x ∈ Kd implies

that θG(x) = θG(1) for each θ ∈ Dd. Since ker θG
=

⋂

y∈G y−1(ker θ)y ≤ ker θ, we

conclude that x ∈ Ld. Thus Kd = Ld as asserted.

The group L1 is simply the intersection of the kernels of the linear characters of H

and so L1 = H ′. Moreover, if θ ∈ Irr(H) has degree d, then for each linear character

λ of H, θλ ∈ Irr(H) and so θλ ∈ Dd. Hence x ∈ Ld implies that θ(x)λ(x) = θ(x) = d

for each linear character λ, and so x ∈ kerλ. Thus Ld ≤ L1 as claimed.

As an immediate corollary we get:

Corollary 3 Suppose that (G,H) ∈ ∆. If G is simple and H 6= G, then H must be

abelian. On the other hand if H is perfect, then H must be normal.
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In general, the necessary conditions given in Theorem 2 are not sufficient for a

subgroup to be degree homogeneous, as the following example shows.

Example 4 Let V be the regular embedding in S9 of the elementary abelian 3-group

of order 32. Define G as the normalizer of V in S9. Then G is the holomorph of

V , and a point stabilizer L in G is isomorphic to GL(2, 3). The group L contains a

single conjugacy class of elementary abelian 2-groups of order 22; let A be one of

these groups. Finally define H := VA.

A simple computation shows that H ′
= V ⊳ G. Using GAP [3] we find that G

has a unique irreducible character χ of degree 16 and that χH = ψ1 +ψ2 +ψ3 +ψ4 +

2φ where the irreducible constituents ψ1, ψ2, ψ3, ψ4, φ are of degrees 2, 2, 2, 2 and 4,

respectively. Hence H is not degree homogeneous in G. GAP also shows that the

characters of H are all of degrees 1, 2 or 4 and that L2 = L4 = 1 (so all the necessary

conditions of Theorem 2 are satisfied). Note also that H is a product of two degree

homogeneous subgroups, namely, the normal abelian subgroup V and the abelian

subgroup A.

(An alternative proof that H is not degree homogeneous can be given using the

theorem below.)

We can characterize the pairs which lie in ∆ as follows.

Theorem 5 Let H be a subgroup of a finite group G. If (G,H) ∈ ∆, then for each

normal subgroup K of G with H ′ ≤ K ≤ H we have

(∗)
if α, β ∈ Irr(K) are G-conjugate, then all constituents of

αH and βH have the same degree.

(Recall that H ′
⊳ G by Theorem 2).

Conversely, if there exists at least one normal subgroup K of G with H ′ ≤ K ≤ H

such that (∗) is satisfied, then (G,H) ∈ ∆.

Proof First recall (see [6, Problem 6.2]) that, because H/K is abelian, the irre-

ducible constituents of αH all have the same degree (and, of course, similarly for

βH).

Since α, β ∈ Irr(K) are G-conjugate, therefore αG
= βG. Choose χ ∈ Irr(αG).

By Frobenius reciprocity, α and β are irreducible constituents of χK . Thus for some

ψ, φ ∈ Irr(χH) we have α ∈ Irr(ψK ) and β ∈ Irr(φK ). Equivalently, ψ ∈ Irr(αH)

and φ ∈ Irr(βH).

If (G,H) ∈ ∆, then ψ(1) = φ(1), and so all constituents of αH and βH have the

same degree by the remark at the beginning of this proof. Thus (∗) holds for every

normal subgroup K of G with H ′ ≤ K ≤ H. This proves the first part of the theorem.

Conversely, assume that (∗) holds for some normal subgroup K of G with H ′ ≤
K ≤ H, and χ is an arbitrary irreducible character of G. Suppose that ψ, φ ∈ Irr(χH)

and choose α ∈ Irr(ψK ) and β ∈ Irr(φK ). Since α and β are constituents of χK , they

are G-conjugate by Clifford’s theorem. Now the argument above and the condition

(∗) shows that ψ and φ have the same degree. Thus (G,H) ∈ ∆ as claimed.
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Corollary 6 Suppose that H is a subgroup of G and H ′
⊳ G. If every H-conjugacy

class lying in H ′ is mapped into itself under conjugation by G, then (G,H) ∈ ∆.

Proof A lemma of Brauer (see, [1] or [6, (6.32)]) applied to the character table of

H ′ shows that the number of G-orbits (respectively, H-orbits) on Irr(H ′) is equal

to the number of G-orbits (respectively, H-orbits) on the set of conjugacy classes of

H ′. Thus the hypothesis shows that the number of G-orbits on Irr(H ′) is equal to

the number of H-orbits on Irr(H ′). This implies that whenever α, β ∈ Irr(H ′) are

G-conjugate, then αx
= β for some x ∈ H, and hence αH

= βH . Hence the criterion

of the theorem is satisfied and (G,H) ∈ ∆.

Corollary 7 Suppose that H ≤ G with H ′
⊳ G and that, for each imprimitive irre-

ducible characterχ of G, all constituents of χH have the same degree. Then (G,H) ∈ ∆.

Proof By Theorem 5 we have to show that if α and β are distinct irreducible char-

acters of H ′ which are G-conjugate, then the degrees of the irreducible constituents

of αH and βH are the same. Since the characters are G-conjugate we can choose

χ ∈ Irr(G) such that α, β ∈ Irr(χH ′). The G-orbit for α has length > 1, so χ is

imprimitive (see [6, (6.11)]), and hence the degrees of the constituents of χH are all

equal by hypothesis. These constituents include some constituents of both αH and of

βH by Frobenius reciprocity. Since all constituents of αH have the same degree (and

similarly for βH), the result follows.

Corollary 8 Suppose that H ≤ G with H ′
⊳ G, and for each x ∈ G there exists

σ ∈ Aut(H) such that σ(u) = x−1ux for all u ∈ H ′. Then (G,H) ∈ ∆.

Proof Suppose that α = βx for α, β ∈ Irr(H ′) and x ∈ G. Then α ◦ σ = β
where σ ∈ Aut(H) is chosen as above. Now a straightforward computation shows

that βH
= (α ◦ σ)H

= αH ◦ σ. For each ψ ∈ Irr(H) we have ψ ◦ σ ∈ Irr(H) and

ψ(1) = (ψ ◦ σ)(1). Thus the irreducible constituents of αH and βH have the same

degree as required.

In the special case where the degree homogeneous subgroup is a maximal sub-

group, we can be more precise.

Theorem 9 Suppose that H is a maximal subgroup of the group G which is not normal

in G, and put K := coreG(H). Then (G,H) ∈ ∆ if and only if the following conditions

hold:

(i) G/K is a solvable Frobenius group in which H/K is an abelian Frobenius comple-

ment; and

(ii) if M/K is the Frobenius kernel for G/K then, for each α ∈ Irr(K), either IG(α) ≤
M or IG(α) ≥ M.
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Proof Suppose that properties (i) and (ii) hold. We shall show that (G,H) ∈ ∆.

Indeed, (i) shows that the normal subgroup K of G contains H ′ so it is sufficient

to verify that condition (∗) of Theorem 5 holds. Suppose that α, β ∈ Irr(K) are

G-conjugate. Then the inertia subgroups for α and β are conjugate in G. Thus, if

IG(α) ≤ M ⊳ G, then IG(β) ≤ M, and hence IH(α) = IH(β) = K. This implies that

αH and βH are irreducible. Since they have the same degree, (∗) is satisfied in this

case. On the other hand, G = MH and so, if IG(α) ≥ M, then every G-conjugate of

α is also an H-conjugate. Thus αH
= βH and so (∗) is satisfied in this case as well.

Conversely, suppose that (G,H) ∈ ∆. Then H ′
⊳ G and so H ′ ≤ coreG(H) = K.

For each subgroup L with K ≤ L ≤ G we denote L/K by L̄. Then H̄ is an abelian,

maximal, core-free subgroup of Ḡ, and hence Ḡ is a solvable, Frobenius group with

H̄ as a Frobenius complement (see [4] or [8, Theorem 13.4.6]). This proves (i).

Now consider (ii) and suppose that for some α ∈ Irr(K) we have IG(α) � M.

We have to show that IG(α) ≤ M. Since Ḡ is solvable, and H̄ is a Hall subgroup, we

may replace α by a G-conjugate character and assume that T := IG(α) = NS where

N = T ∩ M and S = T ∩ H. By our assumption, N 6= M. For each u ∈ N̄ we have

uS̄u−1 ≤ T̄ ∩ uH̄u−1. Since H̄ is a Frobenius complement, the trivial intersection

property shows that

∣

∣

∣

⋃

u∈N̄

uS̄u−1

∣

∣

∣
= |N̄|

(
∣

∣S̄
∣

∣ − 1
)

+ 1 =
∣

∣T̄
∣

∣ −
(

|N̄| − 1
)

Thus T̄ = N̄ ∪
⋃

u∈N̄ uS̄u−1. Again by the property of a Frobenius complement,

we conclude that T̄ ∩ vH̄v−1
= 1 whenever v ∈ M̄ \ N̄. Thus by our assumption

that M 6= N there exists v such that v−1Tv ∩ H = K. Since IG(αv) = v−1Tv, we

have IH(αv) = K and so (αv)H is irreducible (see [6, 6.11]). Since (G,H) ∈ ∆,

condition (∗) of Theorem 5 holds, and so αH must also be irreducible. This implies

that IH(α) = S = K, and so IG(α) ≤ M as required.

Remark 10 The kernel M/K of a solvable Frobenius group of the form described

in the theorem above must be a minimal normal subgroup of G/K and hence is

elementary abelian. The abelian complement H/K acts fixed point free on M/K and

so is cyclic (see, for example, [5, p. 499]).

This gives another necessary condition for a degree homogeneous subgroup.

Corollary 11 Suppose that (G,H) ∈ ∆ with H 6= G. Then, for each subgroup L of G

in which H is a maximal subgroup, L ′ ′ ≤ H and |L : H| is a prime power.

Proof Lemma 1 shows that (L,H) ∈ ∆. Since H is maximal in L, either H ⊳ L and

|L : H| is a prime, or Theorem 9 applies. In the latter case the remark above shows

that L ′ ′ ≤ H and that |L : H| is a prime power.
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3 Universally Degree Homogenous Groups

We shall call a finite group H universally degree homogeneous if, whenever H is embed-

ded as a subgroup in a finite group G with H ′
⊳ G, then (G,H) ∈ ∆. For example,

abelian groups and perfect groups are universally degree homogeneous. The class of

universal degree homogeneous groups can be characterized as follows.

We define an equivalence relation ∼ on Irr(H ′) by

α ∼ β if and only if α ◦ σ = β for some σ ∈ Aut(H ′).

Theorem 12 A finite group H is universally degree homogeneous if and only if α ∼ β
(for α, β ∈ Irr(H ′)) implies that the irreducible constituents of αH and βH are all of

the same degree.

Proof Suppose that α ∼ β (for α, β ∈ Irr(H ′)) implies that the irreducible con-

stituents of αH and βH are all of the same degree. If H is embedded as a subgroup

in G with H ′
⊳ G and two irreducible characters of α and β of H ′ are G-conjugate,

then α ◦ σ = β where σ is the automorphism of H ′ induced by conjugation by some

element of G, and therefore α ∼ β. Now (G,H) ∈ ∆ by Theorem 5. Thus H is

universally degree homogeneous.

Conversely, suppose that for some α ∼ β (for α, β ∈ Irr(H ′)) the irreducible

constituents of αH and βH are not of the same degree. By hypothesis α ◦ σ = β for

some σ ∈ Aut(H ′). Suppose that σ has order s and let K be the semidirect product

of H ′ by 〈σ〉. The permutational product construction of B. H. Neumann [7] of the

amalgam H and K with common subgroup H ′ gives a permutation group G of degree

|H| s in which H and K are embedded as subgroups with H ∩ K = H ′ (in general,

the construction does not give a unique G). Since α and β are K-conjugate, they are

also G-conjugate. Thus Theorem 5 shows that H is not degree homogeneous in G

and hence H is not universally degree homogeneous.

Example 13 Let H be a group whose irreducible characters all have degrees 1 or m

for some m > 1. Then H is universally degree homogeneous. Indeed, if α ∈ Irr(H ′)

is not the trivial character, then Frobenius reciprocity shows that no irreducible con-

stituent of αH can have degree 1 and hence the criterion of Theorem 12 is satisfied.

The class of groups whose characters have only two distinct degrees includes the di-

hedral groups, extraspecial p-groups (see, for example, [5, p. 562]) and A4. If m = p

is prime, then the class consists precisely of those groups H such that either H has an

abelian normal subgroup of index p or |H : Z(H)| = p3. For further information on

this class of groups see [6, Chapter 10].

Example 14 Let H be a Frobenius group with an abelian Frobenius complement.

Then H ′ is the Frobenius kernel, and αH is irreducible for every α ∈ Irr(H ′) with

α 6= 1H ′ (see [6, 6.34]). On the other hand, if α = 1H ′ , then αH is equal to the

sum of the characters of degree 1 for H since H/H ′ is abelian. Thus H is universally

degree homogeneous by Theorem 12.
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Example 15 If every automorphism of H ′ is induced by conjugation by an element

of H, then H is universally degree homogeneous. Indeed, in this case, if α, β ∈
Irr(H ′) and α ∼ β then αx

= β for some x ∈ H. Hence αH
= βH , and Theorem 12

applies. Similarly, if S is a nonabelian simple group whose outer automorphism

group is abelian, then any group H satisfying S ∼= Inn(S) ≤ H ≤ Aut(S) is uni-

versally degree homogeneous. Indeed, consider such an H and suppose that α ∼ β
for some α, β ∈ Irr(H ′). Since H ′ ∼= S, every automorphism of H ′ is induced by

conjugation by some element in Aut(S), and so α = βx for some x ∈ Aut(S). Since

the outer automorphism group of S is abelian, H ⊳ Aut(S) and so αH
= βxH

= βHx.

Thus the irreducible constituents of αH are images under x of the irreducible con-

stituents of βH . Now Theorem 12 applies to show that H is universally degree ho-

mogeneous. For example, all symmetric groups Sn and subgroups of the projective

general linear groups PGL(2, p) (where p > 3 is prime) which contain PSL(2, p) are

universally degree homogeneous.

4 L-Classes of Characters

If ψ is an irreducible character of degree d in the group H and λ is a linear character

of H then ψλ is also an irreducible character of degree d. We define the L-class of ψ
to be {ψλ | λ ∈ Lin(H)} and note that the L-classes partition Irr(H) into subsets of

characters of the same degree.

Lemma 16 C ⊆ Irr(H) is an L-class of characters if and only if C = Irr(αH) for some

α ∈ Irr(H ′).

Proof If α ∈ Irr(H ′), then [6, Problem 6.2] shows that αH
= f

∑t
i=1

ψi for some

integer f where the distinct characters ψ1, . . . , ψt form an L-class in Irr(H). Thus

Irr(αH) is an L-class. Conversely, if an L-class C contains an irreducible character

ψ, say, of H, and we choose α ∈ Irr(ψH ′), then Frobenius reciprocity shows that

ψ ∈ Irr(αH). Since the L-classes partition Irr(H), this shows that C = Irr(αH).

Let H be a subgroup of G. Then we define (G,H) ∈ ∆
∗ if for each χ ∈ Irr(G) the

irreducible constituents of χH are contained in a single L-class. Clearly ∆
∗ ⊆ ∆, and

we have the following criterion.

Theorem 17 Let H be a subgroup of G. The following conditions are equivalent:

(a) (G,H) ∈ ∆
∗;

(b) every H-conjugacy class in H ′ is also a G-conjugacy class;

(c) H ′
⊳ G and if α, β ∈ Irr(H ′) are G-conjugate then they are also H-conjugate.

Proof The lemma of Brauer quoted in the proof of Corollary 6 proves the equiva-

lence of (b) and (c).

We next prove that (a) implies (c). The property H ′
⊳ G follows from Theorem 5

since ∆
∗ ⊆ ∆. Let α, β ∈ Irr(H ′) be G-conjugate. Then αG

= βG. Choose χ ∈
Irr(αG). Then Frobenius reciprocity shows that [χH , α

H] = [χH , β
H] = [χ, αG] >
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0. Now (G,H) ∈ ∆
∗ and Lemma 16 imply that Irr(αH) = Irr(βH), and indeed

αH
= βH since they have the same degree. On the other hand, (αH)H ′ is a sum of

characters which are H-conjugate to α while (βH)H ′ is a sum of characters which are

H-conjugate to β. Thus α is H-conjugate to β.

Finally we prove that (c) implies (a). Assume that (c) holds. Let χ ∈ Irr(G)

and let α ∈ Irr(χH ′). Since χ ∈ Irr(αG), in proving (a) it is enough to show that

Irr((αG)H) ⊆ Irr(αH) (where the latter is a single L-class by Lemma 16). By hypoth-

esis, the characters α = α1, . . . , αt of H ′ which are G-conjugate to α are the same as

those which are H-conjugate. Therefore there exist integers e and f such that

(αG)H ′ = e(α1 + · · · + αt ) and (αH)H ′ = f (α1 + · · · + αt )

On the other hand, since H ′
⊳ G, the induced characters αG and αH are both 0

outside of H ′. Thus (αG)H = (e/ f )αH , and so (a) follows.

In the following we shall use Irr(G,H ′) to denote the set of characters χ ∈ Irr(G)

for which H ′ � kerχ.

Theorem 18 Suppose that H is a subgroup of G with H ′
⊳ G. Then the following are

equivalent:

(a) The sets Irr(χH) (χ ∈ Irr(G,H ′)) are pairwise disjoint and each of these sets is a

union of complete L-classes.

(b) For each χ ∈ Irr(G,H ′) there exists α ∈ Irr(H ′) and an integer m such that

αG
= mχ.

(c) For each χ ∈ Irr(G,H ′) we have χ = 0 on G \ H ′.

Proof Assume that (a) holds; we shall prove (b). Let χ ∈ Irr(G,H ′) and take

α ∈ Irr(χH ′). Note that α 6= 1H ′ since H ′ � kerχ, and Lemma 16 shows that

C := Irr(αH) is an L-class with Irr(χH) ∩ C 6= ∅. By Frobenius reciprocity χ ∈
Irr(αG), so in order to prove (b) it is enough to show that Irr(αG) contains no other

character. However, ψ ∈ Irr(αG) implies that α ∈ Irr(ψH ′) (so ψ ∈ Irr(G,H ′) ) and

Irr(ψH) ∩ C 6= ∅. Thus (a) implies ψ = χ as required.

Clearly, (b) implies (c) because any character αG induced from the normal sub-

group H ′ is 0 outside of H ′.

Finally, assuming that (c) holds, we shall prove (a). Fix χ ∈ Irr(G,H ′) and let

ψ ∈ Irr(G). Then (c) shows that

|G| [χ, ψ] =

∑

x∈H ′

χ(x)ψ(x) = |H ′| [χH ′ , ψH ′]

and so Irr(χH ′)∩ Irr(ψH ′) = ∅ wheneverψ 6= χ. In particular, Irr(χH) and Irr(ψH)

are disjoint when ψ 6= χ. On the other hand, Lemma 16 shows that if C is an L-class

such that C ∩ Irr(ψH) 6= ∅ then C = Irr(αH) for some α ∈ Irr(ψH ′). Thus C ∩
Irr(χH) 6= ∅ implies that C∩ Irr(ψH) = ∅ wheneverψ 6= χ, and so Irr(χH) consists

of complete L-classes. This proves that (c) implies (a).
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Corollary 19 Whenever H and G satisfy the (equivalent) conditions of Theorem 18

and G 6= H ′ then:

(i) H ′ is solvable and p-nilpotent for all primes p
∣

∣ |G : H ′|;
(ii) for each x ∈ G \ H ′ and each u ∈ H ′, x is conjugate to xu in G; and

(iii) if H ′ is a Hall subgroup of G, then G is a Frobenius group with Frobenius kernel H ′.

Proof (i) Let χ ∈ Irr(G) with H ′ � kerχ. Then by part (b) we have mχ = αG

for some integer m and some α ∈ Irr(H ′). By Frobenius reciprocity and Clifford’s

theorem, χH ′ = m(α1 + · · ·+αs) whereα1, . . . , αs are the distinct G-conjugates of α.

Thus m | χ(1) and mχ(1) = αG(1) = α(1) |G : H ′|. Let p be a prime which divides

|G : H ′|. Then p | χ(1) whenever H ′ � kerχ. Now it is proved in [2, p. 21] (for a

general finite group G) that if X is the set of all χ ∈ Irr(G) such that χ(1) > 1 and

p ∤ χ(1), then G(p ′) :=
⋂

χ∈X kerχ is a solvable p-nilpotent subgroup of G. In our

case G(p ′) ≥ H ′, and so H ′ is solvable and p-nilpotent for all p
∣

∣ |G : H ′|.
(ii) It is enough to show that χ(x) = χ(xu) for all χ ∈ Irr(G). If H ′ � kerχ, then

this follows from part (c) of the theorem (both sides are 0). On the other hand, if

H ′ ≤ kerχ, then a representation affording χ maps u onto the identity and so again

we have χ(x) = χ(xu) as required.

(iii) If H ′ is a Hall subgroup then by the Schur-Zassenhaus theorem H ′ has a

complement, K say, in G. Now (ii) shows that every x ∈ G \ H ′ is conjugate in G to

some element of K. This is sufficient to show that G is a Frobenius group with kernel

H ′ (see, for example, [6, Problem 7.1])

Acknowledgement The authors wish to thank an anonymous referee for making

several useful suggestions and, in particular, pointing out an omission in an earlier

version of Theorem 18.

References

[1] R. Brauer, On the connection between ordinary and modular characters of groups of finite order. Ann.
of Math. 42(1941), 926–935.

[2] Ya. G. Berkovich and E. M. Zhmud’, Characters of Finite Groups II. Translations of Mathematical
Monographs, 181, Amer. Math. Soc., Providence, RI, 1999.

[3] The GAP Group, GAP—Groups, Algorithms, and Programming. Version 4.3 (2002)
(http://www.gap-system.org).

[4] I. N. Herstein, A remark on finite groups. Proc. Amer. Math. Soc. 9(1958), 255–257.
[5] B. Huppert, Endliche Gruppen I. Springer-Verlag, Berlin, 1967.
[6] I. M. Isaacs, Character Theory of Finite Groups. Academic Press, New York, 1976.
[7] B. H. Neumann, Permutational products of groups. J. Austral. Math. Soc. 1(1959/60), 299–310.
[8] W. R. Scott, Group Theory. Prentice-Hall, Englewood Cliffs, NJ, 1964.

School of Mathematics and Statistics

Carleton University

Ottawa, ON

K1S 5B6

e-mail: jdixon@math.carleton.ca

Institute for Advanced Studies in Basic Sciences

P.O. Box 45195-159

Zanjan, Iran

e-mail: rahnama@iasbs.ac.ir

https://doi.org/10.4153/CMB-2005-004-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2005-004-2

