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Abstract

In this paper, we completely determine the commutativity of two Toeplitz operators on the harmonic
Bergman space with integrable quasihomogeneous symbols, one of which is of the form eikθr m. As
an application, the problem of when their product is again a Toeplitz operator is solved. In particular,
Toeplitz operators with bounded symbols on the harmonic Bergman space commute with Teikθr m only in
trivial cases, which appears quite different from results on analytic Bergman space in Čučković and Rao
[‘Mellin transform, monomial symbols, and commuting Toeplitz operators’, J. Funct. Anal. 154 (1998),
195–214].
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1. Introduction

Let dA denote the Lebesgue area measure on the unit disc D, normalised so that the
measure of D equals 1. L2(D, dA) is the Hilbert space of Lebesgue square integrable
functions on D with the inner product

〈 f , g〉 =

∫
D

f (z)g(z) dA(z).

The harmonic Bergman space L2
h is the closed subspace of L2(D, dA) consisting of

all complex-valued L2-harmonic functions on D. We will write Q for the orthogonal
projection from L2(D, dA) onto L2

h. It can be expressed as an integral operator:

Q f (z) =

∫
D

( 1
(1 − zw̄)2 +

1
(1 − z̄w)2 − 1

)
f (w) dA(w) (z ∈ D)

for f ∈ L2(D, dA). For u ∈ L1(D, dA), we define an operator Tu with symbol u on L2
h by

Tu f = Q(u f ) (1.1)
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for f ∈ L2
h. This operator is always densely defined on the polynomials and not

bounded in general.
We are concerned with the problem of characterising symbols of commuting

Toeplitz operators acting on L2
h. The corresponding problem has been well studied for

many years on the classical Hardy space and the analytic Bergman space; for example,
see [2–4, 7, 10, 13, 14, 17, 20]. Recently, there has been an increasing interest in the
present harmonic Bergman space case; see [5, 6, 8, 18, 19] and the references therein.

To state our main results we recall the following definitions, following [16].

Definition 1.1. Let F ∈ L1(D, dA).

(i) We say that F is a T-function if the equation (1.1), with u = F, defines a bounded
operator on L2

h.
(ii) If F is a T-function, we write TF for the continuous extension of the operator

defined by (1.1). We say that TF is a Toeplitz operator if and only if TF is
defined in this way.

(iii) If there is an r ∈ (0, 1) such that F is (essentially) bounded on the annulus
{z : r < |z| < 1}, then we say that F is ‘nearly bounded’.

Generally, the T-functions form a proper subset of L1(D, dA) which contains all
bounded and ‘nearly bounded’ functions.

A function f is said to be quasihomogeneous of degree k ∈ Z if

f (reiθ) = eikθϕ(r),

where ϕ is a radial function. In this case the associated Toeplitz operator T f is called a
quasihomogeneous Toeplitz operator of degree k. By a straightforward deduction, one
can see that eikθϕ(r) is a T-function if and only if ϕ(r) is a T-function.

In this note, we will investigate the commutativity of Teik1θr m and Teik2θϕ(r) on L2
h,

with both eik1θr m and eik2θϕ(r) being T-functions. Our first main result is the following
theorem.

Theorem 1.2. Let k1, k2 ∈ Z and let m be a real number greater than or equal to −1.
Then for a T-function eik2θϕ(r) on D, Teik1θr m commutes with Teik2θϕ if and only if one of
the following conditions holds:

(1) either eik1θr m or eik2θϕ is constant;
(2) both eik1θr m and eik2θϕ are radial;
(3) eik1θr m and eik2θϕ are linearly dependent;
(4) k1k2 = −1 and ϕ = C(((m + 1)/2)r−1 − ((m − 1)/2)r) for some constant C.

This has been partially proved in [11, Theorem 3.8], in the case when |k1| ≤ |k2|.
Also, with the additional hypothesis that the symbols are bounded, Louhichi and
Zakariasy [18] proved some special cases of the above theorem, in the case when
0 < k1 ≤ k2. The remaining case, that is, when |k1| > |k2|, was left open.
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In this note, with extra effort, we shall prove the following statement.

With the same assumption as in Theorem 1.2, if |k1| > |k2|, then Teik1θr m

and Teik2θϕ(r) commute only when ϕ(r) = 0.

This, together with [11, Theorem 3.8], completes Theorem 1.2. In [12], we proved a
quite unexpected result: if the product of two quasihomogeneous Toeplitz operators on
L2

h is equal to a Toeplitz operator, then they must be commutative. So, as an application
of Theorem 1.2, we can discuss when Teik1θr m Teik2θϕ(r) is a Toeplitz operator. In fact,
this problem, in some special cases, for example: |k1| ≤ |k2|, or k1k2 > 0 or both their
symbols are bounded, has been discussed in [12]. But, now, we can solve this problem
in all cases.

Theorem 1.3. Let k1, k2 ∈ Z and let m be a real number greater than or equal
to −1. Then, for a T-function eik2θϕ(r) on D, there exists a T-function ψ such that
Teik1θr m Teik2θϕ = Tψ if and only if one of the following conditions holds:

(1) either eik1θr m or eik2θϕ is constant;
(2) both eik1θr m and eik2θϕ are radial. In this case, ψ also is a radial T-function and

such that

ψ(r) = ϕ(r) − mr m
∫ 1

r

ϕ(t)
tm+1 dt;

(3) k1k2 = −1 and ϕ = C(((m + 1)/2)r−1 − ((m − 1)/2)r) for some constant C. In this
case ψ = C.

Čučković and Rao [7] characterised all Toeplitz operators on an analytic Bergman
space which commute with Teikθr m for (k,m) ∈ N × N. Thinking of analytic functions
being placed on the real axis, conjugate analytic functions on the imaginary axis and
the radial functions on the diagonal y = x in the first quadrant, then they showed for a
fixed symbol zszt there will be many lines parallel to the diagonal, ‘holding’ a symbol
that gives a Toeplitz operator commuting with Tzszt . Each of these lines will hold no
more than one such symbol. The following theorem will discuss the same problem
on L2

h, but for (k,m) ∈ Z × R+ ∪ {0}. However, unlike results in [7], Toeplitz operators
commute with Teikθr m on L2

h only in certain trivial cases.

Theorem 1.4. Let k ∈ Z and let m be a real number greater than or equal to 0. Then,
for any bounded function f on D,

T f Teikθrm = Teikθrm T f

if and only if one of the following conditions holds:

(1) either f or eikθrm is constant;
(2) both f and eikθrm are radial;
(3) f is a linear combination of 1 and eikθrm.
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2. Some preliminary results

We start this section with the concept of the Mellin transform. For a function
f ∈ L1([0, 1], rdr), the Mellin transform of f is the function f̂ defined by

f̂ (z) =

∫ 1

0
f (s)sz−1 ds.

It is known that f̂ is well defined on the right half-plane {z : Re z ≥ 2} and analytic on
{z : Re z > 2}.

When considering the product of two Toeplitz operators, we need a known fact
about the Mellin convolution of their symbols. If f and g are defined on [0, 1), then
their Mellin convolution is defined by

( f ∗M g)(r) =

∫ 1

r
f
(r

t

)
g(t)

dt
t
, 0 ≤ r < 1.

It is known that if f and g are in L1([0, 1], r dr), then so is f ∗M g.
In [9], we proved the following results, which we shall use frequently in this paper.

Lemma 2.1. Let k ∈ Z and let ϕ be a radial T-function. Then, for each n ∈ N,

Teikθϕ(zn) =

2(n + k + 1) ϕ̂(2n + k + 2)zn+k if n ≥ −k,
2(−n − k + 1) ϕ̂(−k + 2)z −n−k if n < −k;

Teikθϕ(zn) =

2(n − k + 1) ϕ̂(2n − k + 2)z n−k if n ≥ k,
2(k − n + 1) ϕ̂(k + 2)zk−n if n < k.

The next lemma will much simplify our arguments in the proof of Theorem 1.2.

Lemma 2.2. Let k1, k2 ∈ Z be such that k1 > |k2| and let m ∈ R, m ≥ −1. Then, for a
radial function ϕ ∈ L1(D, dA),

ϕ̂(2n + 2k1 + k2 + 2) = ϕ̂(2n + k2 + 2)
(2n + 2k2 + 2)(2n + k1 + m + 2)

(2n + 2k1 + 2)(2n + k1 + 2k2 + m + 2)
(2.1)

holds for any n ∈ N such that n ≥ −k2 if and only if

ϕ̂(z) = C
Γ( z+k2

2k1
)Γ( z+m+k1−k2

2k1
)

Γ( z+2k1−k2
2k1

)Γ( z+m+k1+k2
2k1

)
, Re z > 2

for some constant C.

Proof. It is well known that a bounded analytic function is uniquely determined by its
value on an arithmetic sequence of integers, so (2.1) implies that

ϕ̂(z + 2k1) = ϕ̂(z)
(z + k2)(z + m + k1 − k2)

(z + 2k1 − k2)(z + m + k1 + k2)
(2.2)
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for Re z > 2. Denote

F(z) =
Γ( z+k2

2k1
)Γ( z+m+k1−k2

2k1
)

Γ( z+2k1−k2
2k1

)Γ( z+m+k1+k2
2k1

)
.

Using the well-known identity Γ(z + 1) = z Γ(z), we can easily see that

F(z + 2k1) = F(z)
( z+k2

2k1
)( z+m+k1−k2

2k1
)

( z+2k1−k2
2k1

)( z+m+k1+k2
2k1

)
.

Then it follows from (2.2) that

ϕ̂(z + 2k1)F(z) = ϕ̂(z)F(z + 2k1)

and by [15, Lemma 6], we get ϕ̂(z) = CF(z) for some constant C. This completes the
proof. �

In fact, (2.1) is the same as (2.4) of [7], the only difference is the range of m, and
here we only simplify the proof of [7].

The next lemma plays the key role in proving Theorem 1.2.

Lemma 2.3. For each a ∈ (0, 1), the function

x 7−→
Γ(x + 1 − a)Γ(x + a)

Γ(x + 1)Γ(x)

is strictly monotone increasing on (0,+∞).

Proof. Define

g(x, y) := ψ(x + 1 − y) + ψ(x + y) − ψ(x + 1) − ψ(x)

for x ∈ (0,+∞) and y ∈ [0, 1], where ψ is defined by

ψ(x) =
d
dx

log Γ(x) =
Γ′(x)
Γ(x)

,

known in the literature as the psi or digamma function. The derivatives ψ′, ψ′′, ψ′′′, . . .
are known as the tri-, tetra- or pentagamma functions or, generally, the polygamma
functions. We refer the reader to [1, page 260] for the properties of these functions.

Now, we fix x and denote h(y) = g(x, y). Note that

h′′(y) = ψ′′(x + 1 − y) + ψ′′(x + y) < 0

for all y ∈ [0, 1]. Here we used the formula [1, page 260, 6.4.6]

ψ′′(s) = −

∫ +∞

0

t2e−st

1 − e−t dt, s ∈ (0,∞).

Note also that
h(0) = h(1) = 0.

Hence,
h(a) > 0 for all a ∈ (0, 1).
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It follows that g(x, a) > 0 for all x ∈ (0,+∞) and all a ∈ (0, 1). But note that

g(x, a) = (log G(x))′ =
G′(x)
G(x)

,

where
G(x) :=

Γ(x + 1 − a)Γ(x + a)
Γ(x + 1)Γ(x)

.

This implies that G(x) is strictly monotone increasing on (0,+∞), as desired. �

3. Proofs of the theorems

In this section we will prove our main theorems.

Proof of Theorem 1.2. Assume Teik1θr m commutes with Teik2θϕ. If |k1| ≤ |k2|, then it
follows from [11, Theorem 3.8] that one of conditions (1)–(4) holds. If |k1| > |k2| = 0,
then it follows from [11, Lemma 3.5] that ϕ is constant and hence condition (1) holds.

Now we assume |k1| > |k2| > 0. Without loss of generality, we can also assume
k1 > 0, for otherwise we could take the adjoints. Then for each n ∈ N such that n ≥ −k2,
the equality

Teik1θr m Teik2θϕ(zn) = Teik2θϕTeik1θr m (zn)

together with Lemma 2.1 gives

ϕ̂(2n + 2k1 + k2 + 2) = ϕ̂(2n + k2 + 2)
(2n + 2k2 + 2)(2n + k1 + m + 2)

(2n + 2k1 + 2)(2n + k1 + 2k2 + m + 2)
.

Thus, Lemma 2.2 implies

ϕ̂(z) = C
Γ( z+k2

2k1
)Γ( z+m+k1−k2

2k1
)

Γ( z+2k1−k2
2k1

)Γ( z+m+k1+k2
2k1

)

for some constant C. In what follows, we will show C = 0 and hence condition (1)
holds.

So, assume C , 0. We split the proof into two cases.

Case 1. Suppose k2 < 0. Noting that k1 > 0, k2 < 0 and |k1| > |k2|, by Lemma 2.1,

Teik1θr m Teik2θϕ(z0) = Teik2θϕTeik1θr m (z0)

gives
(−k2 + 1)ϕ̂(−k2 + 2) = (k1 + 1)ϕ̂(2k1 + k2 + 2).

Then it follows that

(−k2 + 1)
Γ( 2

2k1
)Γ( m+k1−2k2+2

2k1
)

Γ( 2k1−2k2+2
2k1

)Γ( m+k1+2
2k1

)
= (k1 + 1)

Γ( 2k1+2k2+2
2k1

)Γ( m+3k1+2
2k1

)

Γ( 4k1+2
2k1

)Γ( m+3k1+2k2+2
2k1

)
.

Denote
x =

m + k1 + 2
2k1

and a =
−k2

k1
;
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then, from the above equation,( 1
k1

+ a
) Γ( 1

k1
)Γ(x + a)

Γ( 1
k1

+ a + 1)Γ(x)
=

( 1
k1

+ 1
)Γ( 1

k1
+ 1 − a)Γ(x + 1)

Γ( 1
k1

+ 2)Γ(x + 1 − a)

and using the identity Γ(z + 1) = zΓ(z), we get

Γ(x + 1 − a)Γ(x + a)
Γ(x + 1)Γ(x)

=
Γ( 1

k1
+ 1 − a)Γ( 1

k1
+ a)

Γ( 1
k1

+ 1)Γ( 1
k1

)
. (3.1)

Since k1 > −k2 > 0, k1 ∈ Z and m ≥ −1,

a ∈ (0, 1) and x >
1
k1
> 0.

Therefore, (3.1) contradicts Lemma 2.3 and hence C = 0.
Case 2. Suppose k2 > 0. So, k1 > k2 > 0. Similarly, by Lemma 2.1,

Teik1θr m Teik2θϕ(z k2 ) = Teik2θϕTeik1θr m (z k2 )

gives
ϕ̂(k2 + 2) = (k1 − k2 + 1)ϕ̂(2k1 − k2 + 2).

Then it follows that

Γ( 2k2+2
2k1

)Γ( m+k1+2
2k1

)

Γ( 2k1+2
2k1

)Γ( m+k1+2k2+2
2k1

)
= (k1 − k2 + 1)

Γ( 2k1+2
2k1

)Γ( m+3k1−2k2+2
2k1

)

Γ( 4k1−2k2+2
2k1

)Γ( m+3k1+2
2k1

)
.

Denote
x =

m + k1 + 2
2k1

and a =
k2

k1
∈ (0, 1);

then the above equation implies that

Γ(x + 1 − a)Γ(x + a)
Γ(x + 1)Γ(x)

=
Γ( 1

k1
+ 1 − a)Γ( 1

k1
+ a)

Γ( 1
k1

+ 1)Γ( 1
k1

)
,

which contradicts Lemma 2.3 since x > 1/k1 > 0 and hence C = 0.
The converse implication is clear. This completes the proof. �

Proof of Theorem 1.3. First we suppose Teik1θr m Teik2θϕ is equal to a Toeplitz operator;
then [12, Theorem 1.2] implies that Teik1θr m commutes with Teik2θϕ. In view of
Theorem 1.2, we only need to discuss the case where eik1θr m and eik2θϕ are linearly
dependent. However, in this case [12, Corollary 3.3] implies either k1 = k2 = 0 or
ϕ = 0 and hence one of conditions (1) or (2) holds.

Conversely, if condition (1) holds, then the desired result is obvious.
Now assume (2) holds. Then, by [12, Corollary 3.1], we need to show that ψ is a

solution of the equation
I ∗M ψ = r m ∗M ϕ,
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which is equivalent to ∫ 1

r

ψ(t)
t

dt = r m
∫ 1

r

ϕ(t)
tm+1 dt.

By differentiating both sides,

ψ(r) = ϕ(r) − mr m
∫ 1

r

ϕ(t)
tm+1 dt.

Since ϕ is a radial T-function, it follows that

‖ϕ‖L1 =

∫ 1

0
|ϕ(t)|t dt <∞.

Thus, ∫ 1

0

∣∣∣∣∣r m
∫ 1

r

ϕ(t)
tm+1 dt

∣∣∣∣∣r dr ≤
∫ 1

0
rm+1 dr

∫ 1

r

|ϕ(t)|
tm+1 dt

=

∫ 1

0

|ϕ(t)|
tm+1 dt

∫ t

0
rm+1 dr

=
1

m + 2
‖ϕ‖L1 <∞.

Moreover, ∣∣∣∣∣r m
∫ 1

r

ϕ(t)
tm+1 dt

∣∣∣∣∣ ≤ ∫ 1

r
|ϕ(t)|

dt
t
≤

1
r2 ‖ϕ‖L1 .

Therefore, the radial function

r m
∫ 1

r

ϕ(t)
tm+1 dt

is ‘nearly bounded’ on D and hence ψ is a T-function.
If condition (3) holds, a direct calculation shows that

(r m) ∗M

(m + 1
2

r−1 −
m − 1

2
r
)

=
1
2

(1
r
− r

)
= r ∗M r−1.

Hence, by [12, Corollary 3.1], the desired result is obvious. �

Proof of Theorem 1.4. Assume T f and Teikθrm commute. If k = 0, then [11,
Theorem 4.3] shows that either r m is constant or f is radial and hence one of
conditions (1) or (2) holds. Now we suppose k , 0. Let

f (reiθ) =
∑
l∈Z

eilθ fl(r);

then [11, Lemma 4.1] implies Teilθ fl and Teikθrm commute for any l ∈ Z. Then, by
Theorem 1.2, one can easily get that:

(a) if l = 0, then fl = C1 for some constant C1;
(b) if l = k, then fl = C2rm for some constant C2;
(c) if l , 0 and l , k, then fl = 0.
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In summary,

f (reiθ) = C1 + C2eikθrm

and hence condition (3) holds.
The converse implication is clear. This completes the proof. �
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