QUASIHOMOGENEOUS TOEPLITZ OPERATORS WITH INTEGRABLE SYMBOLS ON THE HARMONIC BERGMAN SPACE

XING-TANG DONG, CONGWEN LIU and ZE-HUA ZHOU[∞]

(Received 2 March 2014; accepted 25 April 2014; first published online 13 June 2014)

Abstract

In this paper, we completely determine the commutativity of two Toeplitz operators on the harmonic Bergman space with integrable quasihomogeneous symbols, one of which is of the form $e^{ik\theta}r^m$. As an application, the problem of when their product is again a Toeplitz operator is solved. In particular, Toeplitz operators with bounded symbols on the harmonic Bergman space commute with $T_{e^{ik\theta}r^m}$ only in trivial cases, which appears quite different from results on analytic Bergman space in Čučković and Rao ['Mellin transform, monomial symbols, and commuting Toeplitz operators', *J. Funct. Anal.* **154** (1998), 195–214].

2010 Mathematics subject classification: primary 47B35.

Keywords and phrases: Toeplitz operators, harmonic Bergman space, quasihomogeneous symbols.

1. Introduction

Let dA denote the Lebesgue area measure on the unit disc D, normalised so that the measure of D equals 1. $L^2(D, dA)$ is the Hilbert space of Lebesgue square integrable functions on D with the inner product

$$\langle f,g\rangle = \int_D f(z)\overline{g(z)} \, dA(z).$$

The harmonic Bergman space L_h^2 is the closed subspace of $L^2(D, dA)$ consisting of all complex-valued L^2 -harmonic functions on D. We will write Q for the orthogonal projection from $L^2(D, dA)$ onto L_h^2 . It can be expressed as an integral operator:

$$Qf(z) = \int_D \left(\frac{1}{(1 - z\bar{w})^2} + \frac{1}{(1 - \bar{z}w)^2} - 1 \right) f(w) \, dA(w) \quad (z \in D)$$

for $f \in L^2(D, dA)$. For $u \in L^1(D, dA)$, we define an operator T_u with symbol u on L_h^2 by

$$T_u f = Q(uf) \tag{1.1}$$

This research was partly supported by NSFC (grant nos. 11171318, 11201331 and 11371276) and TianYuan Funds of China (grant no. 11126164).

^{© 2014} Australian Mathematical Publishing Association Inc. 0004-9727/2014 \$16.00

for $f \in L_h^2$. This operator is always densely defined on the polynomials and not bounded in general.

We are concerned with the problem of characterising symbols of commuting Toeplitz operators acting on L_h^2 . The corresponding problem has been well studied for many years on the classical Hardy space and the analytic Bergman space; for example, see [2–4, 7, 10, 13, 14, 17, 20]. Recently, there has been an increasing interest in the present harmonic Bergman space case; see [5, 6, 8, 18, 19] and the references therein.

To state our main results we recall the following definitions, following [16].

DEFINITION 1.1. Let $F \in L^1(D, dA)$.

- (i) We say that F is a T-function if the equation (1.1), with u = F, defines a bounded operator on L_h^2 .
- (ii) If F is a T-function, we write T_F for the continuous extension of the operator defined by (1.1). We say that T_F is a Toeplitz operator if and only if T_F is defined in this way.
- (iii) If there is an $r \in (0, 1)$ such that F is (essentially) bounded on the annulus $\{z : r < |z| < 1\}$, then we say that F is 'nearly bounded'.

Generally, the T-functions form a proper subset of $L^1(D, dA)$ which contains all bounded and 'nearly bounded' functions.

A function *f* is said to be quasihomogeneous of degree $k \in \mathbb{Z}$ if

$$f(re^{i\theta}) = e^{ik\theta}\varphi(r),$$

where φ is a radial function. In this case the associated Toeplitz operator T_f is called a quasihomogeneous Toeplitz operator of degree k. By a straightforward deduction, one can see that $e^{ik\theta}\varphi(r)$ is a T-function if and only if $\varphi(r)$ is a T-function.

In this note, we will investigate the commutativity of $T_{e^{ik_1\theta}r^m}$ and $T_{e^{ik_2\theta}\varphi(r)}$ on L_h^2 , with both $e^{ik_1\theta}r^m$ and $e^{ik_2\theta}\varphi(r)$ being T-functions. Our first main result is the following theorem.

THEOREM 1.2. Let $k_1, k_2 \in \mathbb{Z}$ and let m be a real number greater than or equal to -1. Then for a *T*-function $e^{ik_2\theta}\varphi(r)$ on D, $T_{e^{ik_1\theta}r^m}$ commutes with $T_{e^{ik_2\theta}\varphi}$ if and only if one of the following conditions holds:

- (1) either $e^{ik_1\theta}r^m$ or $e^{ik_2\theta}\varphi$ is constant;
- (2) both $e^{ik_1\theta}r^m$ and $e^{ik_2\theta}\varphi$ are radial;
- (3) $e^{ik_1\theta}r^m$ and $e^{ik_2\theta}\varphi$ are linearly dependent;
- (4) $k_1k_2 = -1$ and $\varphi = C(((m+1)/2)r^{-1} ((m-1)/2)r)$ for some constant C.

This has been partially proved in [11, Theorem 3.8], in the case when $|k_1| \le |k_2|$. Also, with the additional hypothesis that the symbols are bounded, Louhichi and Zakariasy [18] proved some special cases of the above theorem, in the case when $0 < k_1 \le k_2$. The remaining case, that is, when $|k_1| > |k_2|$, was left open. In this note, with extra effort, we shall prove the following statement.

With the same assumption as in Theorem 1.2, if $|k_1| > |k_2|$, then $T_{e^{ik_1\theta_r m}}$ and $T_{e^{ik_2\theta_{\omega}(r)}}$ commute only when $\varphi(r) = 0$.

This, together with [11, Theorem 3.8], completes Theorem 1.2. In [12], we proved a quite unexpected result: if the product of two quasihomogeneous Toeplitz operators on L_h^2 is equal to a Toeplitz operator, then they must be commutative. So, as an application of Theorem 1.2, we can discuss when $T_{e^{ik_1\theta_{rm}}}T_{e^{ik_2\theta_{\varphi}(r)}}$ is a Toeplitz operator. In fact, this problem, in some special cases, for example: $|k_1| \le |k_2|$, or $k_1k_2 > 0$ or both their symbols are bounded, has been discussed in [12]. But, now, we can solve this problem in all cases.

THEOREM 1.3. Let $k_1, k_2 \in \mathbb{Z}$ and let *m* be a real number greater than or equal to -1. Then, for a T-function $e^{ik_2\theta}\varphi(r)$ on *D*, there exists a T-function ψ such that $T_{e^{ik_1\theta}r^m}T_{e^{ik_2\theta}\varphi} = T_{\psi}$ if and only if one of the following conditions holds:

- (1) either $e^{ik_1\theta}r^m$ or $e^{ik_2\theta}\varphi$ is constant;
- (2) both $e^{ik_1\theta}r^m$ and $e^{ik_2\theta}\varphi$ are radial. In this case, ψ also is a radial T-function and such that

$$\psi(r) = \varphi(r) - mr^m \int_r^1 \frac{\varphi(t)}{t^{m+1}} dt;$$

(3) $k_1k_2 = -1$ and $\varphi = C(((m+1)/2)r^{-1} - ((m-1)/2)r)$ for some constant C. In this case $\psi = C$.

Čučković and Rao [7] characterised all Toeplitz operators on an analytic Bergman space which commute with $T_{e^{ik\theta_r m}}$ for $(k, m) \in \mathbb{N} \times \mathbb{N}$. Thinking of analytic functions being placed on the real axis, conjugate analytic functions on the imaginary axis and the radial functions on the diagonal y = x in the first quadrant, then they showed for a fixed symbol $z^s \overline{z}^t$ there will be many lines parallel to the diagonal, 'holding' a symbol that gives a Toeplitz operator commuting with $T_{z^s \overline{z}^t}$. Each of these lines will hold no more than one such symbol. The following theorem will discuss the same problem on L_h^2 , but for $(k, m) \in \mathbb{Z} \times \mathbb{R}^+ \cup \{0\}$. However, unlike results in [7], Toeplitz operators commute with $T_{e^{ik\theta_r m}}$ on L_h^2 only in certain trivial cases.

THEOREM 1.4. Let $k \in \mathbb{Z}$ and let *m* be a real number greater than or equal to 0. Then, for any bounded function *f* on *D*,

$$T_f T_{e^{ik\theta}r^m} = T_{e^{ik\theta}r^m} T_f$$

if and only if one of the following conditions holds:

- (1) either f or $e^{ik\theta}r^m$ is constant;
- (2) both f and $e^{ik\theta}r^m$ are radial;
- (3) *f* is a linear combination of 1 and $e^{ik\theta}r^m$.

Quasihomogeneous Toeplitz operators

2. Some preliminary results

We start this section with the concept of the Mellin transform. For a function $f \in L^1([0, 1], rdr)$, the Mellin transform of f is the function \hat{f} defined by

$$\widehat{f}(z) = \int_0^1 f(s) s^{z-1} \, ds.$$

It is known that \widehat{f} is well defined on the right half-plane $\{z : \operatorname{Re} z \ge 2\}$ and analytic on $\{z : \operatorname{Re} z > 2\}$.

When considering the product of two Toeplitz operators, we need a known fact about the Mellin convolution of their symbols. If f and g are defined on [0, 1), then their Mellin convolution is defined by

$$(f *_M g)(r) = \int_r^1 f\left(\frac{r}{t}\right)g(t)\frac{dt}{t}, \quad 0 \le r < 1.$$

It is known that if f and g are in $L^1([0, 1], r dr)$, then so is $f *_M g$.

In [9], we proved the following results, which we shall use frequently in this paper.

LEMMA 2.1. Let $k \in \mathbb{Z}$ and let φ be a radial *T*-function. Then, for each $n \in \mathbb{N}$,

$$\begin{split} T_{e^{ik\theta}\varphi}(z^n) &= \begin{cases} 2(n+k+1)\,\widehat{\varphi}(2n+k+2)z^{n+k} & \text{if } n \geq -k, \\ 2(-n-k+1)\,\widehat{\varphi}(-k+2)\overline{z}^{-n-k} & \text{if } n < -k, \end{cases} \\ T_{e^{ik\theta}\varphi}(\overline{z}^n) &= \begin{cases} 2(n-k+1)\,\widehat{\varphi}(2n-k+2)\overline{z}^{n-k} & \text{if } n \geq k, \\ 2(k-n+1)\,\widehat{\varphi}(k+2)z^{k-n} & \text{if } n < k. \end{cases} \end{split}$$

The next lemma will much simplify our arguments in the proof of Theorem 1.2.

LEMMA 2.2. Let $k_1, k_2 \in \mathbb{Z}$ be such that $k_1 > |k_2|$ and let $m \in \mathbb{R}$, $m \ge -1$. Then, for a radial function $\varphi \in L^1(D, dA)$,

$$\widehat{\varphi}(2n+2k_1+k_2+2) = \widehat{\varphi}(2n+k_2+2) \frac{(2n+2k_2+2)(2n+k_1+m+2)}{(2n+2k_1+2)(2n+k_1+2k_2+m+2)} \quad (2.1)$$

holds for any $n \in \mathbb{N}$ *such that* $n \ge -k_2$ *if and only if*

$$\widehat{\varphi}(z) = C \frac{\Gamma(\frac{z+k_2}{2k_1})\Gamma(\frac{z+m+k_1-k_2}{2k_1})}{\Gamma(\frac{z+2k_1-k_2}{2k_1})\Gamma(\frac{z+m+k_1+k_2}{2k_1})}, \qquad Re \, z > 2$$

for some constant C.

PROOF. It is well known that a bounded analytic function is uniquely determined by its value on an arithmetic sequence of integers, so (2.1) implies that

$$\widehat{\varphi}(z+2k_1) = \widehat{\varphi}(z) \frac{(z+k_2)(z+m+k_1-k_2)}{(z+2k_1-k_2)(z+m+k_1+k_2)}$$
(2.2)

for $\operatorname{Re} z > 2$. Denote

$$F(z) = \frac{\Gamma(\frac{z+k_2}{2k_1})\Gamma(\frac{z+m+k_1-k_2}{2k_1})}{\Gamma(\frac{z+2k_1-k_2}{2k_1})\Gamma(\frac{z+m+k_1+k_2}{2k_1})}.$$

Using the well-known identity $\Gamma(z + 1) = z \Gamma(z)$, we can easily see that

$$F(z+2k_1) = F(z) \frac{\left(\frac{z+k_2}{2k_1}\right)\left(\frac{z+m+k_1-k_2}{2k_1}\right)}{\left(\frac{z+2k_1-k_2}{2k_1}\right)\left(\frac{z+m+k_1+k_2}{2k_1}\right)}.$$

Then it follows from (2.2) that

$$\widehat{\varphi}(z+2k_1)F(z) = \widehat{\varphi}(z)F(z+2k_1)$$

and by [15, Lemma 6], we get $\widehat{\varphi}(z) = CF(z)$ for some constant *C*. This completes the proof.

In fact, (2.1) is the same as (2.4) of [7], the only difference is the range of *m*, and here we only simplify the proof of [7].

The next lemma plays the key role in proving Theorem 1.2.

LEMMA 2.3. For each $a \in (0, 1)$, the function

$$x \mapsto \frac{\Gamma(x+1-a)\Gamma(x+a)}{\Gamma(x+1)\Gamma(x)}$$

is strictly monotone increasing on $(0, +\infty)$.

PROOF. Define

$$g(x, y) := \psi(x + 1 - y) + \psi(x + y) - \psi(x + 1) - \psi(x)$$

for $x \in (0, +\infty)$ and $y \in [0, 1]$, where ψ is defined by

$$\psi(x) = \frac{d}{dx} \log \Gamma(x) = \frac{\Gamma'(x)}{\Gamma(x)}$$

known in the literature as the psi or digamma function. The derivatives $\psi', \psi'', \psi''', \dots$ are known as the tri-, tetra- or pentagamma functions or, generally, the polygamma functions. We refer the reader to [1, page 260] for the properties of these functions.

Now, we fix x and denote h(y) = g(x, y). Note that

$$h''(y) = \psi''(x+1-y) + \psi''(x+y) < 0$$

for all $y \in [0, 1]$. Here we used the formula [1, page 260, 6.4.6]

$$\psi''(s) = -\int_0^{+\infty} \frac{t^2 e^{-st}}{1 - e^{-t}} dt, \qquad s \in (0, \infty).$$

Note also that

$$h(0) = h(1) = 0.$$

Hence,

$$h(a) > 0$$
 for all $a \in (0, 1)$.

It follows that g(x, a) > 0 for all $x \in (0, +\infty)$ and all $a \in (0, 1)$. But note that

$$g(x, a) = (\log G(x))' = \frac{G'(x)}{G(x)}$$

where

$$G(x) := \frac{\Gamma(x+1-a)\Gamma(x+a)}{\Gamma(x+1)\Gamma(x)}$$

This implies that G(x) is strictly monotone increasing on $(0, +\infty)$, as desired.

3. Proofs of the theorems

In this section we will prove our main theorems.

PROOF OF THEOREM 1.2. Assume $T_{e^{ik_1\theta_{r^m}}}$ commutes with $T_{e^{ik_2\theta_{\varphi}}}$. If $|k_1| \le |k_2|$, then it follows from [11, Theorem 3.8] that one of conditions (1)–(4) holds. If $|k_1| > |k_2| = 0$, then it follows from [11, Lemma 3.5] that φ is constant and hence condition (1) holds.

Now we assume $|k_1| > |k_2| > 0$. Without loss of generality, we can also assume $k_1 > 0$, for otherwise we could take the adjoints. Then for each $n \in \mathbb{N}$ such that $n \ge -k_2$, the equality

$$T_{e^{ik_1\theta}r^m}T_{e^{ik_2\theta}\varphi}(z^n) = T_{e^{ik_2\theta}\varphi}T_{e^{ik_1\theta}r^m}(z^n)$$

together with Lemma 2.1 gives

$$\widehat{\varphi}(2n+2k_1+k_2+2) = \widehat{\varphi}(2n+k_2+2) \frac{(2n+2k_2+2)(2n+k_1+m+2)}{(2n+2k_1+2)(2n+k_1+2k_2+m+2)}$$

Thus, Lemma 2.2 implies

$$\widehat{\varphi}(z) = C \frac{\Gamma(\frac{z+k_2}{2k_1})\Gamma(\frac{z+m+k_1-k_2}{2k_1})}{\Gamma(\frac{z+2k_1-k_2}{2k_1})\Gamma(\frac{z+m+k_1+k_2}{2k_1})}$$

for some constant C. In what follows, we will show C = 0 and hence condition (1) holds.

So, assume $C \neq 0$. We split the proof into two cases.

Case 1. Suppose $k_2 < 0$. Noting that $k_1 > 0$, $k_2 < 0$ and $|k_1| > |k_2|$, by Lemma 2.1,

$$T_{e^{ik_1\theta}r^m}T_{e^{ik_2\theta}\varphi}(z^0) = T_{e^{ik_2\theta}\varphi}T_{e^{ik_1\theta}r^m}(z^0)$$

gives

$$(-k_2+1)\widehat{\varphi}(-k_2+2) = (k_1+1)\widehat{\varphi}(2k_1+k_2+2).$$

Then it follows that

$$(-k_2+1)\frac{\Gamma(\frac{2}{2k_1})\Gamma(\frac{m+k_1-2k_2+2}{2k_1})}{\Gamma(\frac{2k_1-2k_2+2}{2k_1})\Gamma(\frac{m+k_1+2}{2k_1})} = (k_1+1)\frac{\Gamma(\frac{2k_1+2k_2+2}{2k_1})\Gamma(\frac{m+3k_1+2}{2k_1})}{\Gamma(\frac{4k_1+2}{2k_1})\Gamma(\frac{m+3k_1+2k_2+2}{2k_1})}.$$

Denote

$$x = \frac{m+k_1+2}{2k_1}$$
 and $a = \frac{-k_2}{k_1}$;

499

then, from the above equation,

$$\left(\frac{1}{k_1} + a\right) \frac{\Gamma(\frac{1}{k_1})\Gamma(x+a)}{\Gamma(\frac{1}{k_1} + a + 1)\Gamma(x)} = \left(\frac{1}{k_1} + 1\right) \frac{\Gamma(\frac{1}{k_1} + 1 - a)\Gamma(x+1)}{\Gamma(\frac{1}{k_1} + 2)\Gamma(x+1-a)}$$

and using the identity $\Gamma(z + 1) = z\Gamma(z)$, we get

$$\frac{\Gamma(x+1-a)\Gamma(x+a)}{\Gamma(x+1)\Gamma(x)} = \frac{\Gamma(\frac{1}{k_1}+1-a)\Gamma(\frac{1}{k_1}+a)}{\Gamma(\frac{1}{k_1}+1)\Gamma(\frac{1}{k_1})}.$$
(3.1)

Since $k_1 > -k_2 > 0$, $k_1 \in \mathbb{Z}$ and $m \ge -1$,

$$a \in (0, 1)$$
 and $x > \frac{1}{k_1} > 0$

Therefore, (3.1) contradicts Lemma 2.3 and hence C = 0. *Case 2*. Suppose $k_2 > 0$. So, $k_1 > k_2 > 0$. Similarly, by Lemma 2.1,

$$T_{e^{ik_1\theta}r^m}T_{e^{ik_2\theta}\varphi}(\overline{z}^{k_2}) = T_{e^{ik_2\theta}\varphi}T_{e^{ik_1\theta}r^m}(\overline{z}^{k_2})$$

gives

$$\widehat{\varphi}(k_2+2) = (k_1 - k_2 + 1)\widehat{\varphi}(2k_1 - k_2 + 2).$$

Then it follows that

$$\frac{\Gamma(\frac{2k_2+2}{2k_1})\Gamma(\frac{m+k_1+2}{2k_1})}{\Gamma(\frac{2k_1+2}{2k_1})\Gamma(\frac{m+k_1+2k_2+2}{2k_1})} = (k_1 - k_2 + 1)\frac{\Gamma(\frac{2k_1+2}{2k_1})\Gamma(\frac{m+3k_1-2k_2+2}{2k_1})}{\Gamma(\frac{4k_1-2k_2+2}{2k_1})\Gamma(\frac{m+3k_1+2k_2+2}{2k_1})}.$$

Denote

$$x = \frac{m+k_1+2}{2k_1}$$
 and $a = \frac{k_2}{k_1} \in (0,1);$

then the above equation implies that

$$\frac{\Gamma(x+1-a)\Gamma(x+a)}{\Gamma(x+1)\Gamma(x)} = \frac{\Gamma(\frac{1}{k_1}+1-a)\Gamma(\frac{1}{k_1}+a)}{\Gamma(\frac{1}{k_1}+1)\Gamma(\frac{1}{k_1})},$$

which contradicts Lemma 2.3 since $x > 1/k_1 > 0$ and hence C = 0.

The converse implication is clear. This completes the proof.

PROOF OF THEOREM 1.3. First we suppose $T_{e^{ik_1\theta}r^m}T_{e^{ik_2\theta}\varphi}$ is equal to a Toeplitz operator; then [12, Theorem 1.2] implies that $T_{e^{ik_1\theta}r^m}$ commutes with $T_{e^{ik_2\theta}\varphi}$. In view of Theorem 1.2, we only need to discuss the case where $e^{ik_1\theta}r^m$ and $e^{ik_2\theta}\varphi$ are linearly dependent. However, in this case [12, Corollary 3.3] implies either $k_1 = k_2 = 0$ or $\varphi = 0$ and hence one of conditions (1) or (2) holds.

Conversely, if condition (1) holds, then the desired result is obvious.

Now assume (2) holds. Then, by [12, Corollary 3.1], we need to show that ψ is a solution of the equation

$$\mathbb{I} *_M \psi = r^m *_M \varphi,$$

500

which is equivalent to

$$\int_r^1 \frac{\psi(t)}{t} dt = r^m \int_r^1 \frac{\varphi(t)}{t^{m+1}} dt.$$

By differentiating both sides,

$$\psi(r) = \varphi(r) - mr^m \int_r^1 \frac{\varphi(t)}{t^{m+1}} dt.$$

Since φ is a radial T-function, it follows that

$$\|\varphi\|_{L^1} = \int_0^1 |\varphi(t)|t\,dt < \infty.$$

Thus,

$$\begin{split} \int_{0}^{1} \left| r^{m} \int_{r}^{1} \frac{\varphi(t)}{t^{m+1}} dt \right| r dr &\leq \int_{0}^{1} r^{m+1} dr \int_{r}^{1} \frac{|\varphi(t)|}{t^{m+1}} dt \\ &= \int_{0}^{1} \frac{|\varphi(t)|}{t^{m+1}} dt \int_{0}^{t} r^{m+1} dr \\ &= \frac{1}{m+2} ||\varphi||_{L^{1}} < \infty. \end{split}$$

Moreover,

$$\left| r^m \int_r^1 \frac{\varphi(t)}{t^{m+1}} \, dt \right| \le \int_r^1 |\varphi(t)| \frac{dt}{t} \le \frac{1}{r^2} ||\varphi||_{L^1}.$$

Therefore, the radial function

$$r^m \int_r^1 \frac{\varphi(t)}{t^{m+1}} \, dt$$

is 'nearly bounded' on D and hence ψ is a T-function.

If condition (3) holds, a direct calculation shows that

$$(r^m) *_M \left(\frac{m+1}{2}r^{-1} - \frac{m-1}{2}r\right) = \frac{1}{2}\left(\frac{1}{r} - r\right) = r *_M r^{-1}.$$

Hence, by [12, Corollary 3.1], the desired result is obvious.

PROOF OF THEOREM 1.4. Assume T_f and $T_{e^{ik\theta}r^m}$ commute. If k = 0, then [11, Theorem 4.3] shows that either r^m is constant or f is radial and hence one of conditions (1) or (2) holds. Now we suppose $k \neq 0$. Let

$$f(re^{i\theta}) = \sum_{l\in\mathbb{Z}} e^{il\theta} f_l(r);$$

then [11, Lemma 4.1] implies $T_{e^{il\theta}f_l}$ and $T_{e^{ik\theta}r^m}$ commute for any $l \in \mathbb{Z}$. Then, by Theorem 1.2, one can easily get that:

(a) if l = 0, then $f_l = C_1$ for some constant C_1 ;

- (b) if l = k, then $f_l = C_2 r^m$ for some constant C_2 ;
- (c) if $l \neq 0$ and $l \neq k$, then $f_l = 0$.

In summary,

$$f(re^{i\theta}) = C_1 + C_2 e^{ik\theta} r^m$$

and hence condition (3) holds.

The converse implication is clear. This completes the proof.

References

- M. Abramowitz and I. A. Stegun (eds.) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Applied Mathematics Series, 55 (National Bureau of Standards, Washington, 1965), 4th printing with corrections.
- [2] P. Ahern and Ž. Čučković, 'A theorem of Brown–Halmos type for Bergman space Toeplitz operators', J. Funct. Anal. 187 (2001), 200–210.
- [3] S. Axler and Ž. Čučković, 'Commuting Toeplitz operators with harmonic symbols', *Integral Equations Operator Theory* **14** (1991), 1–12.
- [4] A. Brown and P. R. Halmos, 'Algebraic properties of Toeplitz operators', *J. reine angew. Math.* **213** (1964), 89–102.
- [5] B. R. Choe and Y. J. Lee, 'Commuting Toeplitz operators on the harmonic Bergman spaces', *Michigan Math. J.* 46 (1999), 163–174.
- [6] B. R. Choe and Y. J. Lee, 'Commutants of analytic Toeplitz operators on the harmonic Bergman space', *Integral Equations Operator Theory* 50 (2004), 559–564.
- [7] Ž. Čučković and N. V. Rao, 'Mellin transform, monomial symbols, and commuting Toeplitz operators', J. Funct. Anal. 154 (1998), 195–214.
- [8] X. H. Ding, 'A question of Toeplitz operators on the harmonic Bergman space', J. Math. Anal. Appl. **344** (2008), 367–372.
- [9] X.-T. Dong and Z.-H. Zhou, 'Products of Toeplitz operators on the harmonic Bergman space', *Proc. Amer. Math. Soc.* 138 (2010), 1765–1773.
- [10] X.-T. Dong and Z.-H. Zhou, 'Algebraic properties of Toeplitz operators with separately quasihomogeneous symbols on the Bergman space of the unit ball', *J. Operator Theory* 66 (2011), 193–207.
- [11] X.-T. Dong and Z.-H. Zhou, 'Commuting quasihomogeneous Toeplitz operators on the harmonic Bergman space', *Complex Anal. Oper. Theory* 7 (2013), 1267–1285.
- [12] X.-T. Dong and Z.-H. Zhou, 'Product equivalence of quasihomogeneous Toeplitz operators on the harmonic Bergman space', *Studia Math.* 219 (2013), 163–175.
- P. Gorkin and D. Zheng, 'Essentially commuting Toeplitz operators', *Pacific J. Math.* 190 (1999), 87–109.
- [14] K. Guo and D. Zheng, 'Essentially commuting Hankel and Toeplitz operators', J. Funct. Anal. 201 (2003), 121–147.
- [15] I. Louhichi, 'Powers and roots of Toeplitz operators', Proc. Amer. Math. Soc. 135 (2007), 1465–1475.
- [16] I. Louhichi, E. Strouse and L. Zakariasy, 'Products of Toeplitz operators on the Bergman space', Integral Equations Operator Theory 54 (2006), 525–539.
- [17] I. Louhichi and L. Zakariasy, 'On Toeplitz operators with quasihomogeneous symbols', Arch. Math. 85 (2005), 248–257.
- [18] I. Louhichi and L. Zakariasy, 'Quasihomogeneous Toeplitz operators on the harmonic Bergman space', Arch. Math. 98 (2012), 49–60.
- [19] S. Ohno, 'Toeplitz and Hankel operators on the harmonic Bergman spaces', *RIMS Kôkyûroku Bessatsu* 946 (1996), 25–34.
- [20] Z. H. Zhou and X. T. Dong, 'Algebraic properties of Toeplitz operators with radial symbols on the Bergman space of the unit ball', *Integral Equations Operator Theory* 64 (2009), 137–154.

502

XING-TANG DONG, Department of Mathematics, Tianjin University, Tianjin 300072, PR China e-mail: dongxingtang@163.com

CONGWEN LIU, School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, Anhui, PR China and Wu Wen-Tsun Key Laboratory of Mathematics, USTC, Chinese Academy of Science, Beijing 100864, PR China e-mail: cwliu@ustc.edu.cn

ZE-HUA ZHOU, Department of Mathematics, Tianjin University, Tianjin 300072, PR China and Center for Applied Mathematics, Tianjin University, Tianjin 300072, PR China e-mail: zehuazhoumath@aliyun.com, zhzhou@tju.edu.cn

[10]