
SIP (2016), vol. 5, e7, page 1 of 22 © The Authors, 2016.
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited.
The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
doi:10.1017/ATSIP.2016.9

overview paper

Deep neural networks – a developmental
perspective

biing hwang juang

There is a recent surge in research activities around “deep neural networks” (DNN). While the notion of neural networks have
enjoyed cycles of enthusiasm, which may continue its ebb and flow, concrete advances now abound. Significant performance
improvements have been shown in a number of pattern recognition tasks. As a technical topic, DNN is important in classes and
tutorial articles and related learning resources are available. Streams of questions, nonetheless, never subside from students or
researchers and there appears to be a frustrating tendency among the learners to treat DNN simply as a black box. This is an
awkward and alarming situation in education. This paper thus has the intent to help the reader to properly understand DNN,
not just its mechanism (what and how) but its motivation and justification (why). It is written from a developmental perspective
with a comprehensive view, from the very basic but oft-forgotten principle of statistical pattern recognition and decision theory,
through the problem stages that may be encountered during system design, to key ideas that led to the new advance. This paper
can serve as a learning guide with historical reviews and important references, helpful in reaching an insightful understanding
of the subject.

Keywords: Deep neural networks, Pattern recognition, Machine learning, Restrictive Boltzmann machine, Feed-forward networks

Received 13 November 2015; Accepted 8 March 2016

I . I NTRODUCT ION

There is a recent surge in research activities around the idea
of the so-called “deep neural networks” or simply DNN.
This is in part triggered by the paper “dimensionality reduc-
tion” published in Science by Hinton and Salakhutdinov [1]
and subsequent applications of the related ideas in various
problems (e.g. [2, 3]). Many impressive results have been
reported in various areas. Inmany classes of machine learn-
ing, this is considered a topic of crucial importance, not to
mention its popularity.

While neural networks have enjoyed cycles of interest
(this most recent wave may be the third or the fourth), con-
crete and impressive advances now abound indeed. As a
technical item, DNN therefore without a doubt is an impor-
tant classroom topic and several tutorial articles and related
learning resources are available ([1–8] and online informa-
tion at http://deeplearning.net/). Nevertheless, streams of
questions never subside from students or researchers and
there appears to be a frustrating tendency among the learn-
ers to treat DNN simply as a black box (since computer
code from various sources is openly available). This is an
awkward and alarming situation in education.

School of Electrical and Computer Engineering, Georgia Institute of Technology,
Atlanta, Georgia, USA. Phone: +1 404 894 6618

Corresponding author:
B.H. Juang
Email: juang@gatech.edu

This paper is thus written with the attempt to help stu-
dents or readers better understand DNN so as to be able to
take advantage of the advances in their problems in a proper
manner. In particular, it is written from a developmental
perspective with a comprehensive view, from the very basic
but oft-neglected principle of statistical pattern recognition
and decision theory, through the stages of problems that
may be encountered during system design, to key ideas that
led to the new advance. Individual topics in this paper may
be well known, but our attempt is to thread and position
them to form a landscape, which brings out the develop-
mental logic. This paper also aims to serve as a learning
guide with important references that are deemed helpful in
reaching an insightful understanding of the subject.

This paper compiles materials and concepts related to
DNN, starting with the foundation of statistical pattern
recognition. The material in the paper about DNN is
not meant to be exhaustive but pedagogical. Moreover, it
addresses deep neural networks but not deep learning; the
latter may be broader than neural networks. Such a distinc-
tion is necessary in placing the right focus on the subject
matter although toward the end (Section VIII) we do pro-
vide an example that makes suggestions on the possible
extent of deep learning that may go beyond statistical pat-
tern recognition.

A deep neural net obviously has its root in artificial neu-
ral networks (ANN) and to understand DNN, it is very
helpful to understand ANN first, at least the relevant parts.

1https://doi.org/10.1017/ATSIP.2016.9 Published online by Cambridge University Press

http://deeplearning.net/
mailto:juang@gatech.edu
https://doi.org/10.1017/ATSIP.2016.9

2 biing hwang juang

Therefore, a brief exposition of ANN relevant to the devel-
opment of DNN is provided as an important review of the
background knowledge.

The paper is organized as follows. In Section II, the foun-
dation of statistical pattern recognition based on Bayes’
optimal decision theory is reviewed, to establish the core
problems in designing a pattern recognition system.We dis-
cuss how these core problems are traditionally dealt with
and the shortcomings thereof. The reinforced insights from
the review will bring out the often-overlooked key prin-
ciples that underlie the development of DNN. In Section
III, we review relevant models of the ANNs and point out
the traditional hindrance that had prevented ANN from
being widely adopted for pattern recognition tasks, in spite
of themassive amount of research in the late 1980s and early
1990s. The discussion is particularly important as a back-
drop for the development of DNN in explaining how ideas
behind DNN attempt to overcome these past hindrances.
We then come back to the issue of statistical modeling in
Section IV with a focus placed on modeling of data of large
dimensionality. We relate the concept of a Markov random
field (MRF) to the mechanism of a restricted Boltzmann
machine (RBM) and point out what an RBM can achieve
as a statistical model for binary data of large dimensions.
In Section V, we explore the capabilities and properties of
an RBM in its original design. We then explain why it is a
good idea to stack up several RBMs in reference to the revis-
ited design principles of statistical pattern recognition. In
SectionVI, we provide further supporting views on the roles
of dimensionality reduction algorithms, and howRBMs can
also serve to produce the so-called distributive representa-
tions of the input,moving a step closer to satisfying the need
in statistical pattern recognition, namely matching statisti-
cal models to the representations of the input. We reach the
idea ofDeepBeliefNetworks (DBN) in SectionVII, which is
the focal point in the aforementioned developmental land-
scape of DNN for pattern recognition. In Section VIII, we
make an excursion to problems that may be beyond the
approach of statistical pattern recognition, in hopes of stim-
ulating more thoughts on the so-called data science, partic-
ularly to raise the question if statistics equals data science.
In Section IX, we examine reported experimental results of
DNN and offer interpretations as to what DNN’s strengths
and weaknesses may be. We summarize the key points in
this commentary and pedagogical article in Section X.

I I . STAT IST ICAL PATTERN
RECOGN IT ION

We first establish the foundation of pattern recognition as a
technical area for the development of algorithms, such as
DNN, which have attracted attention in pattern recogni-
tion applications. Although pattern recognition techniques
have been used in a wide range of problems, we review its
elementary formulation here for generality.

Pattern recognition problems share a common theme:
Given a set of observed data, {xi }N

i=1, with known

corresponding class labels {ci }N
i=1 as reference (sometimes

called the ground truth), ci ∈ {1, 2, . . . , M} = NM , deter-
mine the class label of an unlabeled observation, x, so as
to satisfy a certain performance criterion. (Note that the
dimensionality of x is arbitrary here; when necessary, a
boldface will mean a vector.) In most applications, one
wants to see if the determined class label is identical to
the ground truth, which is assumed available during formal
system evaluation.

Beyond the above shared theme, variations exist among
various problem formulations and approaches, primarily
around the implied statistical rigor. In some problems, the
evaluation set consists of a collection of the so-called test
tokens and the system evaluation is based on the error
rate, defined as the ratio of wrong decisions over the size
of the evaluation set. Many evaluation competitions, such
as those sponsored by National Institute of Standards and
Technology (NIST), are of this nature. Although the evalu-
ation may involve validation in some statistical sense, this
type of problem formulation does not directly address the
“expected performance” of the system; systems are com-
pared pretty much on the reported (empirical) error rate
calculated on the provided evaluation set, without explic-
itly involving data distributions or assumptions thereof. In
other words, the predicted performance of the system upon
all future observations is beyond the scope of these most
prevalent practices.

Statistical pattern recognition is motivated by the pursuit
of “expected performance” and is based on Bayes’ optimal
decision theory. Assume that each class of the observed
data is governed by a probability density (or mass) func-
tion, denoted by p(X|C = c), c ∈ NM , where X denotes
the random observation as a variable with the associated
class variable C , which has a prior probability mass func-
tion of P (C = c), c ∈ NM . Suppose we are given a cost
matrix E, E = [ei j] i , j∈NM , where ei j is the cost of labeling
a class i observation as class j . The a posteriori probabil-
ity P (C = c|X = x) is the probability that the (realized)
observation x is a class c event. (We shall at times use a short
hand notation, P (C = c|X = x) = P (c|x).) Then, the cost
of making a decision C = i is given as [9],

R(C = i |x) =
M∑

j=1

ei j P (C = j |x) (1)

and the expected performance, in terms of the incurred
decision cost, is

L =
∫

x
R(C = i |x)p(x) dx

=
∫

x
dx p(x)

M∑
j=1

ei j P (C = j |x). (2)

L is thus called the expected cost. If the cost function is of
the usual 0–1 type, i.e. eii = 0 and ei j = 1, ∀i �= j , then the

https://doi.org/10.1017/ATSIP.2016.9 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2016.9

deep neural networks 3

individual cost of (1) becomes

R(C = i |x) =
M∑

j=1, j �=i

P (C = j |x) = 1 − P (C = i |x)

(3)
and the expected cost is reduced to

L =
∫

x
dx p(x)

M∑
j=1, j �=i

P (C = j |x)

=
∫

x
dx p(x)[1 − P (C = i |x)]. (4)

The expected cost is minimized by instituting the decision
policy of labeling x to accomplish

arg min
i

R(C = i |x) = arg min
i

(1 − P (C = i |x))

= arg max
i

P (C = i |x).

This is the well-known maximum a posteriori (MAP) deci-
sion and the achieved minimum cost is also called Bayes
minimum cost (or risk) [9]. This is the foundation of
statistical pattern recognition.

Note that in Bayes’ optimal decision theory, the distribu-
tions that govern the observed data, the class conditional
as well as the class prior, are all assumed to be available
to the system designer to implement the decision rule. In
practice, this is far from reality and all knowledge about the
probabilistic behavior of the data must be learned from the
given data and the corresponding labels, i.e. both {xi }N

i=1
and {ci }N

i=1. This is why the pattern recognition problem
is often viewed as a distribution estimation problem. There
are a number of issues with this age-old practice that need
to be re-brought to light as we venture into new advances
if we want to adhere to the rigor of statistical pattern
recognition.

The first issue is the choice of the distribution for the
given data, before the required parameters are estimated
from the data. Most of the time, a functional form of the
data distribution is assumed, e.g. a multivariate Gaussian
or other distributions that the system designer feels com-
fortable with. With the assumed distribution, then, all the

required parameters that define the distribution function
are then estimated from the given data using various criteria
and techniques. The validity of the form of the distribu-
tion function (typically the same form is chosen and shared
among all classes of data, perhaps to simplify the imple-
mentation) is rarely rigorously examined. One must note
that if the chosen form deviates from the true one, the
aforementioned Bayes minimum cost becomes unattain-
able, although it is very difficult to obtain an expression
or a bound for the degradation from the optimal perfor-
mance. The second issue is somewhat related to the first
but is spawned by the explicit concern of the functional
expressions of the class boundaries. In the case of MAP,
the recognition system is specified by the parameters that
define the distributions (to implement the MAP policy),
which in turn define the class boundaries (through compar-
ison of a posteriori probabilities). In light of the potential
mismatch between the true data distribution and the cho-
sen distribution, some researchers have advocated for the
use of explicit class boundaries, particularly when the class
confusion is being examined at a locality of the data space.
The third issue, rarely addressed in pattern recognition, is
the potential sampling bias or contamination in the given
data set. Sampling bias is a topic very much in the minds
of statisticians, but it is not, conventionally, in those of the
practitioners in computational pattern recognition. Most
of the data-related attention from practitioners of pattern
recognition focuses on the quantity, rather than quality,
of the data; data are given by the authority or clientele
who wants the problem solved. All these issues, and more,
have made the problem of pattern recognition worthy of
intensive research.

While all of these are important, although sometimes
illusive, issues, it is helpful in the current discussion to con-
struct some controlled experiments to demonstrate Bayes’
optimal decision theory as applied to pattern recognition.
A toy problem involving two classes of data is constructed
as follows. First, the probability density functions of the two
classes are specified, respectively, as two-mixture bivariate
Gaussians, the contours of which are plotted in Fig. 1(a),
where each class is signified by the color of the label
located near the means. Specifically, the probability density

(a) (b) (c)

Fig. 1. A two-class toy problem of pattern recognition in a 2D. (a) Contour of pdf of the two classes of data. (b) A scatter plot of the data, overlaid by support vectors
and the class boundary selected by a linear SVM. (c) A scatter plot of the data, overlaid by support vectors and the class boundary selected by an RBF SVM.

https://doi.org/10.1017/ATSIP.2016.9 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2016.9

4 biing hwang juang

function (pdf) for each class takes the form

pk(x) = 1
2

[
N(x; μk1, σ

2
k1) + N(x; μk2, σ

2
k2)
]

,

k = 1, 2,

where we have used the shorthand notation N(x; μ, σ 2) for
a Gaussian pdf and k is the class identity. This two-class
problem is obviously linearly inseparable. In each run of
the experiment, random observations, 1000 for each class,
are generated according to the specified distributions. One
quarter of the data are retained for test and evaluation
purposes and the rest are used for training.

A number of recognizers are evaluated, as characterized
by the implied models:

(1) the original pdf;
(2) the original pdf but only the maximum of the mixture

components is used in decision;
(3) the k-nearest neighbor (k-NN) non-parametric model

with k = 1;
(4) a generic linear support vector machine (SVM);
(5) an SVM with radial basis function (RBF) kernels;
(6) two-mixture bivariate Gaussian pdfs estimated from the

training data; and
(7) the estimated Gaussian mixture pdfs as in (6) but only

the maximum of the mixture component is used in the
decision.

Obviously, other than the SVM recognizers (4 and 5), these
are differentiated by the probability models that are used in
the system. Probability models used in (6) offer an oppor-
tunity for us to see how a minor deviation in the model
parameters would affect the recognition performance. For
(2) and (7), we mean instead of summing the two calcu-
lated pdf values on an observation, the larger of the two
is used in the decision process. Figures 2(b) and 2(c) show
an example of the dataset in color scatter plots during one
run of the experiment, together with the class boundaries
as obtained by a linear SVM (4) and an SVM with RBF (5),
respectively. The black circles in the scatter plots represent
the support vectors selected by the corresponding SVMs as
a result of the supervised training. The SVM recognizer can
be considered as using non-parametric models represented
by the support vectors, which are optimized with the aim
of defining the class boundaries to minimize the structured
error (see [10]), while the k-NN recognizer also makes use
of non-parametricmodels defined by the given labeled data,
focusing on local discrimination, although without opti-
mization with respect to some explicit form of recognition
error measure.

The recognition error rates of the above recognizers
are tabulated in Table 1 for comparison. These error rates
are obtained by averaging the evaluation results over 600
runs of the same experiment. Also listed in the table is
the number of parameters used in each recognizer. For
the SVM-linear recognizer, the separating line, defined
by two parameters, is obtained with about 600 (varies in
different runs) two-dimensional (2D) vectors (due to the
linear-inseparability) and thus we include “∼1200” in the

(a)

(b)

Fig. 2. A conventional pattern recognition system versus an alternative. (a) A
conventional pattern recognition system. (b) An alternative pattern recognition
system; boundaries between blocks may not be clearly defined.

Table 1. Comparison of performance for the toy two-class problem.

Model No. of param Mean error rate

Original pdf 20 0.0950
Max of mix pdf 20 0.0958
k-NN (k = 1) 1500 0.1316
SVM-linear Train 2 (∼1200) 0.3784

Test 2 0.3893
SVM–RBF Train ∼ 500 0.0955

Test ∼ 500 0.0988
Mix model pdf 20 0.0960
Max Mix-model pdf 20 0.0965

parentheses under “# param”. The number of support vec-
tors in “SVM–RBF” is in the vicinity of 250 and thus roughly
500parameters.We also experimentedwith estimatedmod-
els (similar to 6 above) with four-mixture components and
the results are very close to those reported above for (6).

The above controlled experiment clearly shows that if
the chosen distributions are as close to the true distribu-
tions as possible, even with estimated parameter values
(rather than the true values), a distribution based recogni-
tion usually proves best-performing and most efficient in
terms of the required number of parameters. The results
pertaining to (2) and (7) using the local maximum likeli-
hood are surprisingly competitive. This, while a reflection
of the scatter of mixture means, i.e. μiks of each class,
may have a positive implication in the development of
distributed representations that will be discussed in later
sections.

However, in real problems, the match between the sta-
tistical behavior of the data and the chosen model form
is usually not readily guaranteed. To overcome this issue,
some transformation of the data becomes necessary. In
other words, one tries to take advantage of a transformation
function, x ′ = f (x), such that p(X ′|C) ∼= p(X ′|C , θc); that
is, the distribution of X ′ can be quite accurately repre-
sented by p(X ′|C , θc), parameterized by θc . More specifi-
cally, we may not be able to model p(X|C) accurately, but
we hope to do a good job inmodeling p(X ′|C), even though
p(X ′|C) can be derived (in theory but not in practice)
from p(X ′|C). This is a very important pattern recogni-
tion system design principle. This principle is also upheld
in other extensions and further improvements of pattern

https://doi.org/10.1017/ATSIP.2016.9 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2016.9

deep neural networks 5

recognition techniques, such as discriminative training [11].
The core question is what this function looks like and how
to find it. We shall call this the “bridge function”. In some
cases, a multiplicity of functions may be needed and used.

In the traditional pattern recognition paradigm, the pro-
cess which transforms the raw observation data into a repre-
sentation to be followed by the implementation of a decision
policy is called “feature extraction.” Figure 2(a) illustrates
the process in a conventional pattern recognition system
design.

The objectives of feature extraction are multi-faceted.
One motivation comes from the empirical observation that
data, be it frommeasurement or survey, will inevitably con-
tain fluctuations or uncertainties that cannot be reasonably
or accurately accounted for and thus it is advantageous to
separate these components out if possible. This would be
in the realm of data reduction, dimension reduction, factor
analysis, or principal component analysis (PCA), to name
a few. Another objective of feature extraction is motivated
by the availability of independent knowledge (often from
the so-called domain experts) which foretells what matters
in discriminating one class from another. For example, to
distinguish a square from a triangle of an arbitrary size,
one should not be looking for the perimeter of the shape
because the perimeter length depends on the size; instead,
it is more effective to compare the number of line segments
(the feature), which is independent of the size. Traditionally,
the choice of feature is NOT determined by how appro-
priate it is for statistical modeling but by the judgment
of the system designer, who may try to follow the advice
of domain experts or simply use some tools expediently.
(Not often asked are important questions like: Is the sta-
tistical distribution of the feature easy to estimate? How
complete is the set of feature in describing the classes with-
out incurring additional ambiguity?) This is a loose-end
in most of the conventionally pattern recognition system
design.

Figure 2(b) depicts an alternative design philosophy,
in that it contemplates on the possibility of replacing the
conventional feature extraction by a data-driven transfor-
mation with the goal of producing a set of internal repre-
sentations that will ultimately contribute to the accuracy
in class identity retrieval in the final stage. In other words,
the alternative paradigm is to seek a bridge function, whose
sole purpose is to transform the observed data into a repre-
sentation that projects ease, consistency and accuracy when
it comes to statistical modeling for optimal decision. This
bridge function is data driven, both in terms of the com-
putational structure and the defining parameter values, to
avoid undue a priori constraints; this is particularly impor-
tant for patterns of high dimensionality as it is in general
difficult to determine the salient feature of the patterns by
human experts or the system designer. In the figure, the
blocks are adjoined to signify the possibility of a grad-
ual integration. As will be discussed later, this perspective
is considered to be responsible for the recent advances in
DNN. The unfulfilling side of this approach is that the data-
driven bridge function may turn the otherwise intuitive

observations into something hard to explain and interpret –
the bridge function becomes a blackbox.

Another often-hidden issue is worthy of mentioning
here. Bayes’ optimal decision theory is the foundation of
statistical pattern recognition, built upon the knowledge
of probability distributions of the information source and
the realized observations. It is nevertheless NOT the only
approach and in fact, it may not always lead to the best
result. A probability distribution is defined in a probability
space, which exists in a regular manifold where the obser-
vations are made. The theory of probability and probability
distribution sometimes fails to address the inner structure
of the data. Somedatamay look random inonemanifold but
otherwise highly structured in another. In Section VIII, we
will see an example that goes beyond the paradigm of statis-
tical pattern recognition. The term “deep learning” should
ideally encompass the notion of topology and manifold.

I I I . ART I F IC IAL NEURAL NETWORKS

Scientists have long been interested in understanding how
the brain works and in mimicking the functionality of the
brain with artificial means. The advent of electronic com-
puters and computational theory in the early to mid-20th
century brought in a new prospect of the interest in that
computational logic was introduced as a viable model of the
brain. Many models of neurons and their connections have
been proposed, some aiming at physiological/biological
mimicry and others focusing on the functionality. An entry
level introduction to neural models of the human brain can
be found, e.g. in [12–16]. Here we build our narrative toward
the so-called ANN.

A brain comprises a large number of neurons that are
interconnected. Figure 3(a) is a depiction of connected neu-
rons as a model of the brain. Each neuron receives neural
signals from other neurons that are connected to it via
the mechanism of synapse. Depending on the collective
strength of the incoming signals, the neuron may be “acti-
vated”, meaning it further sends out a signal (a neural pulse)
to other neurons, resulting in the transmission of neural
activities. A neuron can thus be considered as a compu-
tational unit, the most prevalent model of which is the
so-called McCulloch–Pitt neuron [14]. Figure 3(b) shows
a model of the McCulloch–Pitt neuron. The signals com-
ing from other connecting neurons are denoted by {xi }n

i=1,
each of which is multiplied by a synaptic weight wi to
aggregate at the receiving neuron as y = ∑n

i=1 wi xi . An
activation threshold, denoted as b, is applied at the neu-
ron, and when y > b, the neuron is activated to send out
a neural pulse. The threshold is usually not a hard one; it is
typically executed as a sigmoid function. Thus, the output y
of a McCullough–Pitt neuron is totally characterized by:

y = σ

(
n∑

i=1

wi xi − b

)
, where

σ(x) = sgm(x) = (1 + e−x)−1. (5)

https://doi.org/10.1017/ATSIP.2016.9 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2016.9

6 biing hwang juang

(a) (b)

Fig. 3. An illustration of basic neural networks consisting of interconnected neurons (a) Neural networks. (b) Computational model of a McCulloch–Pitts neuron.

(a) (b)

Fig. 4. Two equivalent depictions of a three-node Hopfield network. (a) A
three-node Hopfield net. (b) A three-node Hopfield net with explicit syn-
chronous delay and recurrence.

While it is possible to draw rough parallels between a
McCulloch–Pitts neuron and a true neuron, some may
choose to focus on its computational logic and call it
Threshold Logic Unit, or Linear Threshold Unit. (The
original 1943 paper of McCulloch and Pitts [14] has the title
of “A logical calculus of the ideas immanent in nervous
activity” with a clear emphasis on threshold logic.)

Among the many uses of the neural network model,
two most prevalent ones are emulations of the brain mem-
ory (retrieval of memory by association) and the cognitive
capability (decision making by weighing the provided evi-
dence). The first is related to the idea of associative memory
[17, 18] using recurrent neural networks (RNNs) and the
second gave rise to Perceptron [19], Adalines [20], and their
variants [16].

A) Recurrent neural networks
The Hopfield network proposed by John Hopfield in 1982
[17] is considered a pioneering model of a RNN. AHopfield
net consists of a number of, say n, binary McCulloch–Pitts
threshold units (or nodes), each assuming one of two val-
ues, say 0 and 1, and the interconnectivity between each pair
of neurons, defined by the corresponding synaptic weight.
Figure 4(a) depicts a three-node (3 units) Hopfield net.

The synaptic weight in a Hopfield net is symmetric; i.e.
the connectivity between unit i and j is undirected and
has the property that wi j = w j i . Furthermore, wi j = 0, if
i = j . The synaptic weights and the network configura-
tion do not change. The network operates as follows. At
the onset, t = 0, a bit pattern x(0) = [x(0)

1 , x(0)
2 , . . . , x(0)

n]
is applied as input, where the subscript of the element
denotes the index of the corresponding unit. At the next

time epoch (assuming synchronous update), the state of
network becomes x(t) → x(t+1) according to

x(t+1)
i = I

⎛
⎝ n∑

j=1

wi j x
(t)
j > bi

⎞
⎠ , (6)

where I denotes the indicator function, which produces a
value of 1 if the argument is true and 0 otherwise and bi is
the threshold for the i th neuron. Figure 4(b) includes a time
delay element to account for this temporal process. We also
call x(t) the network state at time t. Each network state has
an “energy” level, E :

E = − 1
2

n∑
i=1

n∑
j=1

wi j xi x j +
n∑

i=1

bi xi . (7)

The network state eventually converges to a bit pattern
which is determined by the input at onset and the set of
synaptic weights, W = [wi j]. The converged pattern corre-
sponds to a local minimum energy state and is considered
the retrieved memory in response to the input applied at
t = 0. The evolutionary nature of the operation gives the
network the name “recurrent neural networks”. In a study
by Posner co-workers [21], it is found that for an n-node
Hopfield net, the number of bit patterns that can be stored
and retrieved is about or below n(4 log n)−1 a, which, to be
noted, is not very efficient.

In the above, it is implied that the synaptic states of
all neurons in the network are synchronously processed
and updated; some call this “fully parallel” processing. The
opposite of the fully parallel case is the strictly sequen-
tial mode, in which one neuron is being updated at a
time sequentially. Other modes of the temporal response,
between the above two extremes, in terms of synchrony
in neural activation, are possible, leading to other forms
of recurrent nets. Furthermore, when RNNs are used for
time-varying input (as opposed to a fixed input applied only
once at the beginning as in the current discussion), the sys-
tem behaves differently (much like the transient versus the
steady-state analysis in system theory). The convergence
properties of a recurrent neural network depends on the
processingmode and [22] provides an introductory guide to
the analysis of convergence. Here, we focus on the general
behavior of an RNN as an associative memory.

The synaptic weights that “remember” the stored pat-
terns are typically trained by the Hebbian rule [15] aiming

https://doi.org/10.1017/ATSIP.2016.9 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2016.9

deep neural networks 7

(a) (b)

Fig. 5. BMs. (a) A BM. (b) A RBM.

at reducing the system energy (i.e. the minimum entropy
principle in thermodynamics). To explore more about the
Hopfield network, consult [17]. Other types of associative
memory using computational networks include Kohonen’s
self-organizing map and learning vector quantizers [18].

Another RNN very relevant to the current discussion is
the Boltzmann machine (BM) [23]. Like the Hopfield net, a
BM is also a recurrent network, although it differs from the
Hopfield net in its association with the statistical regularity
of the input patterns that are used to train the net (to obtain
the synaptic weights). It is also called a stochastic recurrent
neural network. It acquires this ability by incorporating in
the network system additional units or nodes that are sepa-
rate from those that accept external input. These additional
units are called “hidden units” as opposed to those visible
units which accept external input. Figure 5(a) depicts a BM.

The energy state of a BM has the same expression as a
Hopfield net, Equation (7). The name “Boltzmann” has its
origin in “Boltzmann probability distribution”which relates
the energy of a physical system with a probability measure
of the particles in the system, p ∝ e−E /kT , where k is the
Boltzmann constant and T the thermodynamic tempera-
ture of the system. Again, assume that the machine has n
nodes all together. We examine the energy change due to
the change of state of a single node, say changing the j th
node from 0 to 1. Obviously,

�E j =
n∑

i=1,i �= j

bi xi −
⎛
⎝− 1

2

n∑
i=1

wi j xi +
n∑

i=1,i �= j

bi xi + b j

⎞
⎠

= 1
2

n∑
i=1

wi j xi − b j . (8)

As a result,

p(x j = 0)

p(x j = 1)
= 1 − p j1

p j1
= e− E j /kT → p j1

= (
1 + e−�E j /kT

)−1
, (9)

which is also the sigmoidal output of neuron j subject to
the adjustment of the scale factors, 1/2, and kT. Equations
(8) and (9) validate the notion of a stochastic RNN and the
goal of decreasing the system energy during training is tan-
tamount to maximizing the likelihood (given the training
sample for the system to remember as the most likely pat-
terns). The states that have locally minimum energy in the

Hopfield net are now those with locallymaximumprobabil-
ities, which can be computed by the converged values of the
neurons. The hidden units can thus be viewed as provid-
ing interpolation for the data distribution estimate as well
as increasing the number of local probability peaks, akin to
increasing the capacity of the recurrent neural network (at
the expense of the addition of hidden units). Also, when the
input is only partial, meaning not all the input nodes receive
input, the machine would still produce an equilibrium out-
put after convergence. The output can be interpreted as the
most likely system state associated with the partial input.
This can be considered a form of imputation by correla-
tion or association – imputing themissing value in the input
by using the value that has the highest correlation with the
given available input.

There had been attempts to use RNNs to perform class
identification tasks. Consider a BM with an observation
vector x as input. The vector may be augmented as x′ =
[x, c], where c denotes the class that x belongs to. The
machine can be trainedwith these augmented (labeled) vec-
tors and when an observation without label is given as input
(as a partial input), the converged output will contain the
result at the node designated for the (estimated) class label.
In other words, this application is tantamount to treating
classification as a mere task of memory recall. While the
idea is as palatable as it appears, it was rarely shown to
be practically effective. One may thus suspect if indeed a
classification task calls for more than memory recall.

A variation of the BM, called RBM [24], turns out to
be more useful than the original BM in machine learning
applications. An RBM is a BM in which the interconnec-
tions between visible units and those between invisible units
are no longer allowed, as depicted in Fig. 5(b). The energy
function of an RBM has thus a reduced form from (7):

p(X = x) ∝

exp

⎧⎨
⎩−

⎛
⎝ nv∑

i=1

w
(v)
i vi +

nh∑
j

w
(h)
j h j +

nv∑
i=1

nh∑
j ,i �= j

wi jvi h j

⎞
⎠
⎫⎬
⎭,

(10)

where the nodes of the network have been explicitly sep-
arated into two distinct groups, one pertaining to those
nodes where external input is applied, the so-called visible
nodes denoted by {vi }nv

i=1, and the other the hidden nodes,
denoted by {hi }nh

i=1, which serve as internal latent variables.
The notation x thus encompasses both v and h.

What does this simple condition imply and what effects
does it bring to its applications? We shall postpone the dis-
cussion after we introduce the concept of MRF and the
Gibbs distribution. Keep in mind that a RBM is still an
RNN.

B) Feedforward Neural Networks (FNN)
As mentioned, RNNs are not effective in class identifica-
tion tasks. A more prevalent study of the cognitive capabil-
ity of an ANN is the Perceptron, which was proposed by

https://doi.org/10.1017/ATSIP.2016.9 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2016.9

8 biing hwang juang

Rosenblatt in 1957 [19, 25].1 A perceptron is a linear binary
classifier function g (x), x = [x1, x2, . . . , xn], defined as

g (x) =

⎧⎪⎨
⎪⎩

1, if
n∑

i=1

wi xi − b > 0,

0, otherwise.
(11)

This nonlinear function is basically identical to the
McCulloch–Pitts neuron as a computational element (with
a hard sigmoid function, just like the original threshold
logic of McCulloch and Pitts). While McCulloch and Pitts
focused on the calculus of threshold logic, Rosenblatt, more
than a decade after McCulloch and Pitts [14], described
ways to “learn” the synaptic weights and showed how to use
it in cognitive applications. Obviously, a binary classifier is
not particularly interesting and several ideas had been pro-
posed to generalize the Perceptron to deal with multi-class
problems. As said previously, we do not aim at exhaus-
tive exposition here; rather, we focus on one stream of
thought that is consistent with the subsequent development
of understanding around DNN.

Recall the pattern recognition problem, which is an
essential form of the cognitive function, where a set of
known class labels {ci }n

i=1 is provided along with the obser-
vation data {xi }n

i=1. The objective is thus to find a function
g : x → c ∈ NM that satisfies some performance judgment.
To take advantage of the Perceptron with binary output
(recall the McCulloch–Pitts neuron which can only fire or
not fire at the output), the most straightforward choice is
to stack up M of these two-class Perceptrons side by side,
each sharing the same input as depicted in Fig. 6, where
each x is a 4D vector and M = 3, since c ∈ N3. It is easy
to see the binary output mapping; e.g. c = 2 → (0 1 0), the
second output node would be activated.

This gave rise to the name FeedforwardNeural Networks
or simply FNN. One can interpret an FNN or a multi-
class Perceptron as a structure that learns the best synaptic
weights from examples to approximate a target function,
which in the example maps a vector to a discrete or natural
number. Note that although an FNN looks the same as an
RBM, it has directed synaptic weights and does not invoke
the concept of recurrence to converge over time to a locally
equilibrium low-energy state (or high probability state).

The function approximation capability of a single-layer
multi-class Perceptron was soon to be found rather limit-
ing and the development of Perceptron in the 1960s stalled

1An anecdote about perceptron is worth mentioning. In 1958, after a
press conference and some statements by Frank Rosenblatt, the New York
Times reported that the perceptron to be “the embryo of an electronic com-
puter that [the Navy] expects will be able to walk, talk, see, write, reproduce
itself and be conscious of its existence.” (Similar description can be found in
the May 13, 2015 issue of Economist.) Rosenblatt is often said to be a psy-
chologist. Nevertheless, since 2004, the IEEE Computational Intelligence
Society has been sponsoring a Field Award named after him, the IEEE
Frank Rosenblatt Award to honor contribution(s) to the advancement of
the design, practice, techniques, or theory in biologically and linguistically
motivated computational paradigms.

(a) (b)

Fig. 6. Multi-layer FNNs (a) A single-layer multi-class (M = 3) Perceptron (b)
Multi-layer FNN.

due to a number of reasons, which are beyond the scope of
the current discussion. The interest on FNNs was revived
in the late 1970s and early 1980s after the work of Paul
Werbos [26, 27] became better known in the pattern recog-
nition community. In his 1974 thesis, Werbos proposed the
so-called error backpropagation (often contracted to “back-
prop”) algorithm to adjust the parameters of a stacked sys-
tem that aims at approximating a function, of which the
aforementioned pattern recognition function is an example.
That led to the widespread adoption of multilayer FNNs as
the preferred form of the brain model to carry out cogni-
tive functions, particularly, in terms of identifying the class
membership of an observation or object. A large number
of works were published in the 1980s; notably, it was shown
[28, 29] that without constraint on the number of the hid-
den units, the structure can be “trained” to approximate any
function with arbitrary accuracy. Several further enhance-
ments of the backpropagation algorithmwere also proposed
(e.g. [30]).

Although the multi-layer FNN has received widespread
validation in terms of its cognitive capabilities, at least the-
oretically, it was rarely used in large problems, which may
demand a very large network. The determination of the
number of layers and the number of hidden units tomatch a
given problem is in general difficult and often compounded
by the required amount of labeled data; the larger the net-
work, the more data would be needed for reliable “training”
of the network. The backpropagation algorithm is slow in
convergence and for a large network trained on a large
dataset, its slowness becomes a limiting factor. A very seri-
ous drawback of the backpropagation algorithm was found
in the tradeoff consideration of the network depth (more
layers) versus the width (more hidden units). There is a
desire to use more layers to curtail the growth of hidden
units so as to keep the total number of units within reach
(to take advantage of the increasing coverage of nonlinear-
ity over the domain of the input). When the network is very
deep, nevertheless, the propagated error becomes less effec-
tive as itmoves away from the output layer, thereby reducing
its significance in changing the behavior (via the synaptic
weights) of the network. This drawback turns out to be the
bottleneck of FNN for it to be an effective recognizer. Inter-
preted in the context of the bridge function, the influence of the
output error is ineffective in transforming the input, during
the first few layers of processing, into a representation suitable
for classification function mapping, carried out in the last few
layers of the network.

https://doi.org/10.1017/ATSIP.2016.9 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2016.9

deep neural networks 9

C) Sectional remarks
Many studies about FNN and RNN in the 1980s and 1990s
were about the utility of these neural processing models
in search of their capability of emulating the human brain
for intelligent tasks, of which memory and decision are
the major two. After extensive explorations, a general con-
sensus emerges in that FNN is associated with the task
of making intelligent decisions while RNN with memory
retrieval. (Other proposals with much added sophistica-
tion and variation in network structures for unique tasks
do exist. For example, there are numerous investigations of
expanded structures of RNN [31, 32] to cope with a stream
of dynamic input, rather than responding to a static pattern.
The term “recurrence” thus has varying meanings which
are to be considered separately.) This empirical opinion of
dichotomizing the two tasks, memory retrieval and intelli-
gent decision making, is in retrospect limiting. It turns out,
if we are not bogged down to the far-fetched goal of emu-
lating the human brain, much is to be gained by staying on
finding the maximum utility of the neural nets as a power-
ful computational structure for constructing a data-driven
function. In pursuit of the latter, FNN and RNNneed not be
viewed as two entirely orthogonal constructs; the question
is if they can be built and combined to complement each
other toward a common objective.

The insights about Bayes optimal decision theory based
on statistical models and the need for some bridge function
suggest that the stochastic RNN, namely the BM, may have
something to offer because the state of BM carries some
information about the probabilistic behavior of the data, on
which the network is trained. Obviously, to materialize this
speculation, a more detailed analysis of BM and/or RBM
and how they may be used to represent statistical models
is necessary. This is done in the next section.

I V . MULT IVAR IATE D ISTR IBUT ION
AND MRF

Earlier in Section II, we state that the Bayes decision the-
ory to achieve minimum error probability requires us to
choose, as best aswe can, a probabilitymeasure thatmatches
the data. This of course imposes a demand on the system
designer (us) to have as many choices of the probability
measure as possible; even then, we cannot be sure if the
data indeed has a distribution that is a member of the set
of distributions we can work with. This is practically a lot
more difficult than one realizes – practitioners tend to only
work with easy ones, such as a multivariate Gaussian distri-
butions or a mixture of multivariate Gaussian distributions.
Often we fail to ascertain the appropriateness of the chosen
measure – rarely if any, we hear designers launch distribu-
tion tests before settling on the choice of distribution and
performing system training.

Another aspect of the difficulty in working with proba-
bility measures arises when the data dimensionality is very

high, as in image or speech recognition (dimension reduc-
tion notwithstanding). When the dimensionality is high,
even the simple ones like multivariate Gaussian become
hard to handle. Here, we bring in a limited expansion of the
choices, namely, the Gibbs measure or the MRF, to demon-
strate a possible direction of development to cope with the
difficulty. In spite of the different roots, the two are essen-
tially the same as is established by theHammersley–Clifford
theorem [33, 34] for strictly positivemeasures (zeromeasure
events are of little interest to us).

A MRF [35] consists of a set of (say n) multivariate
random variables, X = {Xi }n

i=1, whose joint probability
measure has a Markovian property, specified by an undi-
rected graph G = (S , U), where S is the set of vertices or
nodes, S = {si }n

i=1, each corresponding to a random vari-
able indexed from 1 to n, and U is the set of edges that spec-
ify the connections among the n nodes. An edge (i , j) that
exists in U means the i th node and the j th node are con-
nected in the graph G ; otherwise, the connection is broken.
Various Markovian properties can be invoked or assumed
in defining an MRF and the most common form is to fac-
torize themeasure based on a “clique” system, Q = {Qi }n

i=1,
where Qi denotes the set of nodes that are connected to the
i th node:

Qi = {s j , (i , j) ∈ Ui , i �= j}, (12)

p(Xi = xi |X j = x j , s j ∈ (S − si)) = p(xi |x j , s j ∈ Qi)

(13)

and

p(X = x) =
n∏

i=1

p(xi |x j , s j ∈ Qi). (14)

In many applications, the clique system is based on “vicin-
ity” or “neighborhood”, meaning only the adjacent random
variables, in time or in space, and affects the conditional
probability of (13). For example, Qi = {s j ; d(i , j) < du},
where d is the distance between two points (nodes) and du

defines the bound of neighborhood. (It is then easy to see
how this reduces to the usual Markov chain if the index
of the vertices corresponds to that of a sequence.) Another
way to represent the clique system is through a connected
graph, resulting in the so-called graphical model [36]. A
popularMRFmodel takes the following form for the “local”
probability

p(xi |x j , s j ∈ Qi) = Ai exp

⎧⎨
⎩wi xi +

∑
s j ∈Qi

wi j fi j (x j)

⎫⎬
⎭ ,

(15)

where Ai is the normalizing factor and in the simplest case,
fi j (x j) = xi x j , resulting in

p(X = x) = A
n∏

i=1

exp

⎧⎨
⎩wi fi (xi) +

∑
s j ∈Qi

wi j xi x j

⎫⎬
⎭. (16)

https://doi.org/10.1017/ATSIP.2016.9 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2016.9

10 biing hwang juang

It is illuminating to look at a Gauss-MRF in reference to the
regular multivariate Gaussian distribution. For ease in visu-
alization, we assume the Gaussian random variables have 0
mean and the joint pdf is thus

p(X = x) =
∣∣�−1

∣∣1/2

(2π)n/2
exp

{−xt�−1x
}

∝ exp

⎧⎨
⎩−

⎛
⎝ n∑

i=1

wi x
2
i +

n∑
i=1

n∑
j ,i �= j

wi j xi x j

⎞
⎠
⎫⎬
⎭ .

(17)

Comparing (16) and (17), we see fi (xi) = x2
i and the mul-

tipliers {wi j } are elements of the precision matrix W, i.e. the
inverse of the covariance matrix �. The clique or neighbor-
hood system specifies the existence of correlation between
any pair of random variables and reduces the double sum-
mation in (16) to only those correlated pairs. It can be shown
that if nodes i and j are not connected, i.e. (i , j) /∈ U ,wi j =
0 then [37].

For a binary system, X = {Xi }n
i=1 are multivariate

Bernoulli and [38] offers a rather rigorous treatment. Here, a
quick and dilettantish view is to use the fact that xi ∈ {0, 1}
and therefore fi (xi) = xi , which can be substituted back
into (16) resulting in

p(X = x) ∝ exp

⎧⎨
⎩−

⎛
⎝ n∑

i=1

wi xi +
n∑

i=1

n∑
j ,i �= j

wi j xi x j

⎞
⎠
⎫⎬
⎭.

(18)

It is seen that the exponent contains important terms that
are in the core of the McCulloch–Pitts neuron and the
energy functions of (10), (17), and (18) show a rather explicit
relationship between MRF and RBM. Hence, an MRF is a
general statistical model defined over a possibly arbitrary
clique system, while an RBM is capable of efficiently imple-
menting the model provided that the clique system is linear
(in parameter) as shown in (18). (The measure of (18) is
sometimes said to be log–linear.)

A network can involve mixed nodes, some operating
on real unbounded values such as Gaussian random vari-
ables while some on bounded values such as the Bernoulli
for binary variables. The energy function of (17) and (18)
can be combined to form the so-called Gaussian–Bernoulli
RBM [39]:

p(X = x) ∝

exp

⎧⎨
⎩−

⎛
⎝ nv∑

i=1

w
(v)
i v2

i +
nh∑
j

w
(h)
j h j +

nv∑
i=1

nh∑
j ,i �= j

wi j vi h j

⎞
⎠
⎫⎬
⎭,

(19)

where the randomvariable x = [v, h] = [{vi }, {h j }] encom-
passes the states of both the visible and the invisible nodes of
an RBM. The model of (19) is obviously very closely related
to the RBM energy function of (10), which was introduced
for a network of binary nodes.

It is important to note that the clique system helps
to reduce the complexity of the distribution and often is
assumed and instituted by the designer, much like assum-
ing a finite-order Markov chain to analyze the fluctuation
in the S&P500 stock index. No one can ascertain that the
index is indeed following a finite-order Markov chain; it is
just that a certain model is assumed to facilitate the analy-
sis, the results of which are always subject to interpretation.
Once a clique system is instituted, those inter-nodal rela-
tionships not included in U are forever lost. In the usual
neighborhood-based approach, the MRF model would not
be able to account for those so-called “long-span” (in time
or in space) relationships. Therefore, if one is concerned
about loss of modeling accuracy because of undue a pri-
ori constraints, an alternative is to include the connections
in U also as part of the learning process, i.e. a data-driven
approach (let the data determine). In this context, an MRF
(as a modeling tool) in conventional practices may have
a pre-specified set of connections among nodes, while an
RBM would learn the connections from data. This is an
important point to remember and will be elaborated in later
sections.

Equations (16)–(19) establish the equivalence between
minimization of the system energy (7) and (8) and the
usual maximum likelihood method in statistical estimation
theory. That is, given a set of data {xi }n

i=1, whose collec-
tive statistical properties are encapsulated in the probabil-
ity measure, p(X = x) = p(x; W), where W is chosen to
achieve

max
W

p(X = x; W)

= max
W

A
n∏

i=1

exp

⎧⎨
⎩wi fi (xi) +

∑
v j ∈Qi

wi j xi x j

⎫⎬
⎭ . (20)

Techniques such as the EM algorithm for maximum likeli-
hood and its various variants can be related or contrasted to
those (e.g. contrastive divergence [40]) used in training the
RBM. Papers that address the training techniques and their
statistical significance are widely available (e.g. [41] and ref-
erences therein). Readers are encouraged to establish these
relationships as exercises.

The upshot here is as follows. An RBM can be prop-
erly trained to produce a set of synaptic interconnection
weights for the recurrent neural networks to approximate an
unknown probability distribution (taking the form of (20)
which is related to an MRF and has its root in multivariate
Gaussian when the weights are properly related to the pre-
cision matrix), evaluation of which for an arbitrary input
can be computed directly from the state of the nodes of the
network. The hidden nodes thus contain pivotal values in
the computation of probability of an input and also can be
regarded as a transformed set of feature or parameters that
well represent the input by projecting its key probabilistic
characteristics into a form suitable for later processing.

https://doi.org/10.1017/ATSIP.2016.9 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2016.9

deep neural networks 11

(a) (b)

(c) (d) (e)

Fig. 7. Convergence of a (2 × 8) RBM trained to memorize a single point. (a) uniformly distributed random points used to test the RBM; (b) enlarged (c) to show
the output of the RBM after epoch 1 in response to (1) 0-mean 1-var noise (purple color) and (2) uniform-distributed random point set of (a); (c)–(e) RBM output
at epoch 1, 3, and 5.

V . WHAT DOES AN RBM DO?

We have explained the role of an RBM as a stochastic recur-
rent network, as opposed to the original Hopfield net which
functions as a deterministic associative memory. To fix the
idea of a stochastic recurrent neural net, we provide two
sets of actual computational examples here, one set show-
ing how an RBM functions as an RNN to retrieve the stored
memory and the other how an RBM functions as a genera-
tive probabilistic model. The latter is helpful in realizing the
potential of an RBM as an effective data-driven statistical
modeling tool.

Let (k + l) denote the configuration of an RBM, where k
is the number of visible nodes, i.e. nv in (19) (or the dimen-
sionality of the input vector) and l is that of hidden nodes,
i.e. nh . In the first set of examples, each RBM has a configu-
ration of (2 + 8) and is trained on a set of input vectors using
a generic contrastive divergence algorithm [40]. The first
RBM is a Gaussian–Bernoulli type with a model specified
by (19) and is trained on vectors drawn from an indepen-
dent 0-mean Gaussian bivariate with unity variance. This
can be considered as training a (2 + 8) RBM to remem-
ber a single point, namely (0, 0), in the 2D space, with
the possible contamination of 0-mean unit-variance noise
in the input. Once the RBM training converges, two sets
of vectors are applied as input to the network. The first
set has the same statistical property as the training set, i.e.
0-mean unit-variance independent Gaussian bivariate vec-
tors (purple color in Fig. 7(b)) and the second set consists of
independent uniformly distributed vector within the square
of ±5, a scatter plot of which is shown in Fig. 7(a). Fig-
ures 7(c)–7(e) show the converged state of the visible nodes
at the end of the 1st, 3rd, and 5th recurrent epoch. (Panel (b)
is a zoomed-in version of (c) to show the two colored sets.)
All these input vectors converge to a point extremely close
to the recorded location of (0, 0).

Another RBM is trained on random vectors drawn from
independent Gaussian bivariate N((2,2),(1,1)) and N((−2,
−2),(1,1)) as shown in Fig. 8(a). This is equivalent to a two-
point memory, targeting (2, 2) and (−2, −2) with 0-mean
1-variance additive noise contamination. Similar to the pre-
vious case, the trained network received two sets of inputs,
onewith the same distribution as that the network is trained
on (red) and the other the independent uniform bivari-
ate (purple) as before. Figure 8(b)–8(e) show the converged
state of the visible nodes at the endof the 1st, 3rd, 5th, and 7th
recurrent epoch. This time the converged memory points
are still clearly seen although they no longer coincide with
the original points of (2, 2) and (−2, −2). Furthermore,
some of the uniform bivariate vectors only produce, in the
converged visible nodes, points between the two “attractor”
states; these are considered spurious states of the network.
To see how individual vectors from the uniform bivariate
distribution converge to a point, we plot the trajectory of
movement from the initial input vector (starting point) to
the converged state (ending point) in Fig. 8(f). Points near
the line that separates the two original clusters (dotted line
in (a))may only converge to a point on the line that connects
the two cluster centers (in reference to those converged
points shown in (e), Epoch 7). If the two clusters repre-
sent two classes, the RBM is seen to perform some sort of
data/dimension reduction (from 2D to 1D) while retaining
a similar separability as the original 2D observations.

Now the number of clusters is increased to four as shown
in Fig. 9(a) and the same toy experiment is repeated result-
ing in plots shown in Figs 9(b)–9(d). A similar data reduc-
tion effect is seen, although the implied manifold on which
the converged points lie becomes more sophisticated.

In the second set of examples, the familiar hand-written
digit set of MNIST [42] is used. A hand-written digit in
MNIST is an image of 28 × 28 (784) pixels. The exam-
ple will demonstrate the ability of an RBM to function

https://doi.org/10.1017/ATSIP.2016.9 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2016.9

12 biing hwang juang

(a) (b) (c)

(d) (e) (f)

Fig. 8. Convergence of a (2 × 8) RBM trained to memorize two points (2, 2) and (−2, −2). (a) random points used to train the RBM; (b)–(e) RBM output at epoch
1, 3, 5, and 7 showing convergence in response to two sets of input; (f) trajectories of convergence for uniformly distributed points as input.

(a) (b) (c) (d)

Fig. 9. Convergence of a (2 × 8) RBM trained tomemorize four points. (a) randompoints from four bivariate Gaussian distributions used to train the RBM; (b)–(d)
RBM output at epoch 1, 3, and 5, showing convergence in response to two sets of input (uniform and Gaussian mixtures).

as an effective model for MRF for observations of high
dimensionality. Note that the data in this example has a
dimensionality of 784, while that it was 2 in the previous
example. Figure 10 shows a collection of 100 images of the
digit 2 (they are stacked together without separating grids in
the figure). An RBM is trained on 500 images of the digit 2.
The RBM is of type Bernoulli–Bernoulli and has the config-
uration (784, 2000). Figure 11 shows the effect of recurrent
processing by such an RBM upon presentation of various
inputs. First, part (a) of the figure shows the result of pro-
gressive epochs (from left, the original image, to right, 1st
to 6th epochs) of recurrence in response to different dig-
its, from 0 to 9. The RBM, as an RNN, is producing in
the converged result the pixel values according to the cor-
responding correlation between the input image and those
used in training the RBM. For the digit 2, the RBM retains
verywell the digit obviously. For digit 0which is a closed cir-
cle in the input, an opening appears in the converged result
due to the fact that a digit 2 would not normally show a
closed connection on the left of writing stroke (see Fig. 10
of example of the digit 2). Similar observations of retention
of the correlation (similar tomatched filtering) can bemade
for other digits. Part (b) of the figure shows the converged
state of the RBM in response to 36 random bit patterns of
size 28 × 28. It can be seen that these converged visible node
states share very similar values. At the bottom of parts (b)

and (c), the states of the visible nodes in sequence of pro-
gressive epochs in response to a random image pattern (the
leftmost) is shown.

Fig. 10. Examples of MNIST dataset, digit 2.

https://doi.org/10.1017/ATSIP.2016.9 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2016.9

deep neural networks 13

(a) (c)

(b)

Fig. 11. (a) Output of an RBM trained on digit 2, in response to all digits (0–9) as input; progressive epochs toward convergence are shown from left to right; (b)
converged output of the same RBM in response to random patterns as input; (c) a random pattern as input and outputs at six successive epochs.

(a) (b)

Fig. 12. RBM trained on digit 2 responds to noisy input from all digits: (a) low noise (high signal-to-noise ratio (SNR)); (b) high noise (low SNR).

It is interesting to further probe the effect of the RBM
in response to “noisy” input. This time, random Gaussian
noise of two different variance values, 0.04 and 1, respec-
tively, are added to those image pixels of various digits.
Figure 12(a) (low-noise) and (b) (high-noise) display the
corresponding results in progressive epochs from left to
right as in Fig. 12(a). The rightmost in each row is the
converged output. As expected, noise has caused change,
commensurate with the level of noise, in the output. How-
ever, it is important to take note of the changes, particularly
for the high-noise case part (b), during the first few epochs.
The effect of noise suppression of some sort by the RBM
is clearly seen; this is typical of an associative memory that
an RNN like the Hopfield net would behave. At the end
of 2nd or 3rd epoch, the resultant images seem to have a
good tradeoff between the amount of noise suppression and
the introduced distortion (due to correlation with the RBM,
which was trained on the digit 2). For recognition purposes,
the original images seem to be too noisy for reliable iden-
tification but after a couple of recurrent epochs before the

final convergence, the representation of the original image
appears to be more appropriate as they retain more of the
characteristics of the inputs. This may have spawned some
innovative ideas behind DNN, namely, turning an RNN
into an FNN before convergence and taking advantage of
its noise suppression capability. We shall elaborate the idea
in a later section.

V I . LATENT VAR IABLE MODEL AND
MIXTURE MODEL

In Section IV, we discuss how an RBM is related to a MRF
and has the potential of fulfilling the role of a data-driven
statistical modeling structure. In Section V, we show how
an RBM as an RNN can regularize an input vector/pattern,
which may inherently contain uncertainties, noise or only
partial information, and produce a converged output, which
presents itself as the most likely vector/pattern behind the
raw input according to the network weights.

https://doi.org/10.1017/ATSIP.2016.9 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2016.9

14 biing hwang juang

In this section, we elaborate on the potential of an RBM
in coping with modeling difficulties that may arise when
the data dimensionality is high. In relating the RBM model
to an MRF, the states of all visible and invisible nodes col-
lectively define the distribution model; the implied dimen-
sionality of data is the sum of the number of visible nodes
and that of the invisible ones. The introduction of hid-
den nodes, with the conditional independent assumption,
provides a data-driven selection of the correlation struc-
ture, i.e. the network connections or the equivalent of the
clique system of an MRF. That circumvents the undesir-
able and undue constraints, often resulted from an arbitrary
a priori definition of what the clique system should look
like. The introduction of hidden nodes also contributes to
the functionality of an RBM as a ready candidate for the
aforementioned bridge function (Section II) in many appli-
cations, image recognition in particular. In this section, we
discuss additional relevant problems that the RBM and its
implied statistical models may be configured to address,
eventually toward the possibility of serving as an effec-
tive “bridge function” for the problem of statistical pattern
recognition.

Expressions (17)–(19) show the possibility ofmultivariate
Gaussian models with reduced complexity. When the data
are of high dimensionality, such reductions are necessary
although care must be taken to ensure the effectiveness of
the resulting models. Take the handwritten digit data as an
example. Each image is of dimension 28 × 28 or 784 when
put in a vector form. A 784-dimensional Gaussian multi-
variate has a covariance matrix with 785 × 392 = 307 720
second moment terms. How many such 784-dimensional
vectors (i.e. the number of samples of a handwritten digit)
must be available for a reasonable estimation of this many
parameters? It is exorbitant if we go with traditional rules
of thumb in setting up an estimation task. (It is interesting
to note that the MNIST dataset widely used in evaluating
many pattern recognition systems contains no more than
100K patterns for each digit. A sample size of 100K sounds
a lot. But is it sufficient for the estimation of a covariance
matrix with over 307K terms?)

Formost applications, fortunately, it can be argued that in
real world randomobservations of large dimensionality, not
all pairs of dimensions are significantly correlated.However,
we may not be able to prejudge which pairs of the vari-
ables have significant correlations that must be accounted
for. Resorting to the independence assumption (using a
diagonal covariance matrix) would quickly lead to over-
simplification of the data model and will not solve the
problem at hand. For imagery data, use of an MRF model
with its clique system defined by proximity and neighbor-
hood appears to make a lot of sense. The clique system
certainly makes the correlation structure easier to handle
as it reduces the correlation structure to an often small sub-
set, implied in the clique (or neighborhood) system. One
nevertheless may argue that complexity reduction with the
neighborhood clique system may fail to account for impor-
tant correlations that span over some distances. Keep in
mind that we need a probabilistic model that characterizes

the statistical behavior of the data well for the purpose of
pattern recognition.

A technique that has often been suggested for “dimen-
sionality reduction” (and for probability density function
approximation) is the so-called latent variable model

p(v) =
∑
h

p(v|h)p(h) (21)

and assume that

p(v|h) =
∏

i

p(vi |h), (22)

meaning the data are conditionally independent given h.
We also assume that same is true for h given v. Conditional
independence does simplify themodel as explain below.We
suggest that readers keep the clique system in the back-
drop and contemplate on other alternatives for reducing the
complexity.

Here we are interested in a particular form of the latent
variable model, in which the latent variables are introduced
with the following assumed relationships:

vi = σ

⎛
⎝∑

j

wi j h j

⎞
⎠ and h j = σ

(∑
i

wi jvi

)
, (23)

where the function σ is the usual sigmoid to be consistent
with the notion of an RBM, although the function is not
essential in visualizing the multivariate relationship here.
Let us interpret this latent variable model in the context
of a Gaussian multivariate. Suppose the data dimensional-
ity is N and the number of latent variables is M. This is
equivalent to a multivariate model involving N + M ran-
dom variables. For a Gaussian multivariate model, there
would be (N + M)(N + M − 1)/2 second moment coef-
ficients. With the conditional independence assumptions
(both ways) and the relationship of (23), only NM param-
eters are necessary, eliminating (N2 + M2 − N − M)/2
parameters. Again with the concatenated data of v and h
envisioned as Gaussianmultivariate, these parameters {wi j }
can be interpreted as the non-zero elements of the precision
matrix, which is the inverse of the covariance matrix.

Let us refocus on the modeling of the original data v
of dimensionality N . It is interesting to discuss the data
modeling scenario in reference to two extremes: (a) the
full multivariate model with N(N − 1)/2 covariance coef-
ficients, and (b) the independent model with only N vari-
ance parameters. The full model of (a) does not have an
inherently imposed limitation in structure and is certainly
capable of achieving good modeling quality, PROVIDED
there is sufficient data to support parameter estimation, a
very tall order given the large dimensionality. The model
with the independence assumption does not take statisti-
cal relationship among data dimensions into account and
will not be able to achieve highly accurate data modeling in
general. Two popular choices can be employed in between
the two extremes: a mixture of independent models and the

https://doi.org/10.1017/ATSIP.2016.9 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2016.9

deep neural networks 15

Fig. 13. Fitting mixture densities to data distribution.

latent variable model. The two share some common mix-
ture roots as seen in equation (21). The difference is often in
the interpretation and the customary practice. In the tra-
ditional mixture model, the constituent models are often
chosen, although not required, to be independent models.
If M is interpreted as the number of latent variables, usu-
ally M 	 N , the model can be seen as somewhere between
the aforementioned two extremes; it has a better model-
ing power than the single independent model but does not
naively incur the level of complexity as the full covariance
model. If we associate h with the hidden nodes of an RBM,
then the RBM implements a mixture density model with
p(h) being the mixture weights. If h is Bernoulli, then p(h)
can be computed by (9) and is equal to the activation state
of the node itself.

What happens if M > N? Certainly, the situation would
deviate from the original motivation behind the latent vari-
able model, but the interpretation of a mixture model can
continue. A simple illustration is helpful in visualizing the
situation. Let X be a 1D random variable with pdf as
depicted in Fig. 13 (black line). As shown, p(X = x) can be
decomposed in variousways, two of which are shown in dif-
ferent color (blue and red) in the figure. The blue one with
more (i.e. larger M) mixture components obviously places
more emphasis on local distributions (i.e. mean values of
the components spread out distributively); the relationship
between the mixture weights and the data locality would
grow stronger, although the concern of insufficient data
support for estimating the local mixture parameters also
deepens (e.g. in the case of a large number ofmixtures, some
may not be supported by any data). The concern notwith-
standing (see below on imputation) the idea of using h
(the states of the hidden nodes or the mixture weights) as
a transformed and distributed representation of the data,
effectively as a result of the “bridge function,” emerges
promisingly. In Section II, we have also observed the sur-
prising effectiveness of local likelihood for class decisions.
In this section, we stay in the realm of statistical modeling;
we discuss transformed representation in the next section.

V I I . DEEP BEL I EF NETWORK

We have suggested the idea of taking advantage of the
behavior of an RNN, in that a noisy input or a partial input

will converge to a “stored” memory state with an intended
and desired regularity, and coupling it with a FNN for its
functional approximation capability (e.g. mapping an arbi-
trary input into a discrete class label). How can this be best
accomplished? Earlier we have stated that the best recogni-
tion performance is to be achieved when the observation
can be transformed into a representation (hopefully with-
out loss of discriminability), the distribution of which can
be accurately established (both in form and in value of
the defining parameters). Given these two structures, RNN
and FNN (or MLP, used interchangeably here), what design
choices are available?

If an RNN is used in its traditional manner, meaning
an RNN is trained to perform a transformation from an
input to the converged state as output, then the coupling
with the latter MLP may be “abrupt”; i.e. an RNN hands the
converged result as new feature over to theMLP, which per-
forms the decision function. This “hand-over” lays all the
decision performance responsibilities on the MLP, whose
pros and cons (such as the diminishing gradient problem
[43, 44]) would remain the same as usual. The feature pro-
duced by the (single) RNN might already be better than the
original input, but one may not be sure if the new feature is
going to lead to the best result (modeling and recognition
decision) possible. A natural contemplation is then: if an
RNN has the ability to reduce noise, which interferes with
statistical modeling, and to impute possibly missing infor-
mation, would not a stack of RNNs perform even better?
Such a contemplation gives rise to the so-called DBN.

A DBN has the same structure of an MLP. Neverthe-
less, each pair of layers, from the input layer up, are first
trained like an RBM without supervision. These RBMs aim
at capturing the relevant statistical models for the interme-
diate input at each layer and are successively trained one
pair at a time and stacked together afterwards. Once stacked
up, a final layer is added to interface with the “desired out-
put” and additional training, the so-called “fine-tuning”,
is conducted in a supervised manner with the usual error
back-propagation method, instead of the contrastive diver-
gence algorithm for estimating the implied statistical model
for the data. In essence, thus, those layers of pre-trained
RBMs are used to implement the aforementioned “bridge
function” to produce a representation for function approx-
imation, which is by definition a supervised process, by the
later FNNs. It is interesting that the principle of statistical
pattern recognition, namely matching the data representation
with probabilistic models as reviewed in Section II, is age-
old, but its realization in layers of neural networks through a
soft division between the task of representation transforma-
tion and that of statistical modeling for optimal decision is
surprisingly new.

Depending on the supply of the “desired output” in the
supervised training, a DBN can be trained as, for example,
an autoencoder [45, 46], where the desired output is in the
same domain as the input (e.g. a clean, noise-free version of
the noisy observation), or as an MLP for a classification or
recognition task with the true class labels as the target out-
puts. Recently, a number of attempts have been reported in

https://doi.org/10.1017/ATSIP.2016.9 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2016.9

16 biing hwang juang

Fig. 14. Unrolling of an RBM.

using a DBN/autoencoder for speech signal enhancements
(e.g. [47, 48]).

A DBN is thus essentially an MLP with the following
properties. Layers that are close to the input layer have con-
nection weights that retain the original behaviors of the
corresponding RBMs, meaning to produce output that con-
tains fewer irrelevant or less likely components, and are less
affected by the supervised training because of the dimin-
ishing gradient phenomenon of the back-prop algorithm.
In other words, they attempt to reduce extraneous uncer-
tainty such as noise contamination in the observation and
regularize the input by producing themost likely (probable)
representation according to the generative model embed-
ded in the trained networks, so as to match the function
approximation design in those layers close to the output.

Another developmental paradigm behind the DBN
design is to unroll an RBM, as a traditional RNN, into an
MLP, and train the resultantMLPwith back-prop in a super-
vised manner after setting up the desired output. Note that
the original RBM is an RNN, which takes a few process-
ing epochs (assuming a full parallel mode) to converge to
its proper memory state. Each epoch thus involves a pair of
layers and Fig. 14 shows an example of the unrolled MLP
from the corresponding RBM. The weight matrices, W and
its transpose W′, are alternately used in successive layers
of the unrolled MLP. Without further supervised training,
the output would be the converged memory state. The acti-
vation patterns of those neurons in the intermediate layers
would be the result of the corresponding recurrence at cer-
tain epochs. Once a new desired output is supplied and the
back-prop is employed to complete the supervised train-
ing, the resultant multilayer structure can be considered
as a gradual merging, layer by layer, of a stack of RBMs
with an MLP. The intermediate representations, or feature,
would gradually emerge in preparation for the last (possible
a few) layers of the feed-forward networks to accomplish the
assigned recognition task.

This explains the key difference between a DNN and an
MLP, even though their structures may look identical at a
superficial glance.

Unrolling an RBM from an RNN to a FNN also unravels
a number of possibilities in terms of how such a struc-
ture can be used in some tasks. There are two sets of such

possibilities, one being in the complexity and the other in
the objective for the final supervised training. For the for-
mer, we can consider each pair of visible and hidden layers
as an RBM, which is trained as such. Then, the hidden layer
can be treated as the visible layer in the next pair of visible
and hidden layers, and so on until one exhausts its capacity
for handling the complexity (e.g. due to computational as
well as data constraints). The width (size) of the next hid-
den layer is up to the designer and it does not have to fall
back to the width of the previous visible layer. This stacking
of RBMs is the basis of the notion of a DBN. The latter, the
objective of the final supervised training, gives rise to the
notion of a deep autoencoder, which is discussed below.

A) Deep autoencoder and PCA
An autoencoder is an MLP that is trained with the input
itself as the desired output. Consider an MLP with one sin-
gle hidden (intermediate) layer as shown in Fig. 5(b). Let
M be the number of neurons of the hidden layer. Typically,
an autoencoder has M < N , the dimension of the input
vector (and the output vector). The weight matrix W is
then of dimension N × M. When trained with the back-
propagation algorithm, the optimization objective can be
written as:

E = 1
N

∥∥x − σ(σ(xW)W′)
∥∥2

. (24)

If we take away the nonlinearity function, σ , the objective
function is minimized when the weight matrix is associated
with the top M eigenvalues of the system, M < N . One thus
can envision an autoencoder as one that performs a func-
tion closely related to PCA. With the flexibility that there
could be many layers, those synaptic units of the layer with
the least number of units then hold the (generalized) prin-
cipal components or forms an encoded representation. This
layer divides the whole stack into two parts. In the terminol-
ogy of data compression, the part on the input side can be
considered as the encoder and the part on the output side
is then the decoder, which uses the coded representation to
reconstruct the output.

Recognizing the usual weaknesses of the error backprop-
agation algorithm, Hinton suggests building an autoen-
coder by stacking a number of RBMs together, with the
same motivation as discussed in the previous section,
each trained first as a generative model with the con-
trastive divergence algorithm, followed by the back-prop
algorithm. A new term called deep autoencoder thus
emerges. In [1], Hinton demonstrate the performance of a
DBN autoencoder in terms of its ability to reduce the data
dimensionality in comparison with a traditional PCA. This
comparison can also be viewed as a comparison between an
MLP-autoencoder and a DBN-autoencoder, the nonlinear-
ity notwithstanding.

The upshot of a deep autoencoder, as claimed by Hin-
ton in [1], is that it implements a form of PCA better
than a traditional PCA because its construct (and how it is
trained) can circumvent the shortcomings of anMLP-based
autoencoder which has been studied in the 1990s [45].

https://doi.org/10.1017/ATSIP.2016.9 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2016.9

deep neural networks 17

B) Distributive representation
The interpretation of an autoencoder constructed from a
stack of RBMs, i.e. a DBN, as a means for data reduction
closely related to PCA, is justified only when the size of the
intermediate representation has a reduced dimension (i.e.
M < N). When this is not true, the view of data reduction
needs to be generalized to the so-called distributive repre-
sentation. This is similar to the previous discussion of the
latent variable model versus the general mixture model. An
input vector can be transformed into another representation
with increased dimensionality to aid statisticalmodeling for
pattern recognition.

In Section VI, we discussed the role of RBM in terms of
the statistical model that it projects itself into. Such a model
can be interpreted as a latent variable model or as a mix-
ture model. In the former, an input to an RBM is projected
onto those directions along the principal components (of
reduced dimensionality), while in the mixture model, an
input is projected onto a space, in which the coordinates are
measured as the probabilities evaluated along the mixture
components. The resultant probability vector can be consid-
ered a distributed representation of the input, with respect
to the mixture model embedded in the RBM. Studies of this
type of representation as well as other popular kernel trans-
formations are abundant and not particularly elaborated in
this paper. As pointed out, the one with more (i.e. larger
M) mixture components obviously places more emphasis
on local distributions with the concern of insufficient data
support for estimating the local mixture parameters during
model training. We address this issue from the perspectives
of imputation and interpolation.

In statistics, imputation refers to the process of replac-
ingmissing data values with properly justified substitutes so
as to avoid complicated inconsistencies in the overall data
analysis. Imputation can be viewed as a form of interpo-
lation. If x = {xi }n

i=1 is a sequence and say xk is missing,
one can seek a proper interpolation technique to find x̃k as
the substitute. The substitute is required to possess some
properties consistent with the rest of the data. For exam-
ple, if the sequence is a sampled version of a bandlimited
signal with a sample missing (say erroneously set to the
value zero), a reasonable proposal would be to use an ideal
lowpass filter (equivalent to using a sinc function for inter-
polation) to find the output and then use the output at the
missing instance as the substitute value. There are advan-
tages in doing so. For one, the quality of the autocorrelation
estimate would certainly be improved. Thus, in the same
vein, imputation augments the dataset according to some
prior constraints and can potentially lead to a better char-
acterization of the data statistics. Gibbs sampling [40, 49], a
crucial component in the contrastive divergence algorithm,
or similar variations of the Metropolis–Hastings algorithm
[50], offer a formof imputation and alleviates the concern of
insufficient data support mentioned above. The general dis-
cussion on learning with missing data is beyond the scope
of this article.

Another interpretation of distributed representation can
be borrowed from the technique of Kriging, which is a

technique used in spatial prediction. It attempts to predict
the value of a spatial function at a point of interest by a
weighted average of the known values of the function in
the area, most likely and conveniently in the vicinity of the
point. The problem stems from geo explorations. Suppose
in an area of interest, several boreholes have been dug and
ores are found in some of them. Let these known results be
denoted by {p(xi)}i , where p is the value of the function
(e.g. density of the ore deposit) and {xi } are the locations
of the boreholes. Kriging aims at predicting the value of p
at new locations x before digging new boreholes. Classical
Kriging involves the assumption of a Gaussian process and
is also known as Wiener–Kolmogorov prediction. Details
of the technique and the properties of the predictor can
be found in [51]. Here, we draw an analogy with the RBM
to explain the idea of distributed representation. Suppose
instead of predicting the distribution of the ore, the known
values are binary, representing the simple result whether
the ore finding is positive or negative at each known loca-
tion. Then, it is possible to use these known binary values
to “optimally” predict if it is likely to find ore at an arbi-
trary location in the area, based on the technique and the
assumed statistical model. These new values, calculated as
properly interpolated and smoothed results from the known
values, can be viewed as a distributed representation of the
ore distribution in the area, with reduced statistical fluctua-
tions (similar to model-based smoothing). Indeed, this has
been observed in the digit pattern examples in Section V.

A summarizing remark with the interpretation of the
core distribution associated with an area is that the bore-
hole results, realized at known locations, can be reasonably
replaced by a new set of interpolated values, possibly denser
and more in quantity without actual digging, to character-
ize or identify the area with the potential benefits of reduced
inconsistencies (in the context of the assumed model).

V I I I . MAN IFOLDS AND PROBAB IL I TY
SPACE

Earlier in Section II, we have alerted readers that the statis-
tical approach to pattern recognition, namely the optimality
of the underpinning Bayes decision theory, has exceptions
where it fails to deliver the best performance. In particu-
lar, as alluded to in the introduction on the differentiation
between DNN and deep learning, the inherent structure
of data and the manifold that the data resides in are not
yet within the learning capability of DNN. The following
example, although contrived, is one such case that offers a
glimpse intowhatmay be construed as the potential of “deep
learning”, something that is beyond the current “DNN.”

Consider the following dataset c ∈ C = {C1, C2} : C1 =
{.04, 0.10, 0.16, 0.25, 0.31, 0.46, 0.61} and C2 = {.05, 0.09,
0.15, 0.18, 0.35, 0.45, 0.6}, each constituting a class. These
are obviously 1D data. If we look at their individual means
and variances, they are very close, implying a large over-
lapping area under the (assumed) distribution functions.
Figure 15(a) shows some possible distribution fits (some
bad ones!) to the given data. A simple statistical pattern

https://doi.org/10.1017/ATSIP.2016.9 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2016.9

18 biing hwang juang

(a) (b)

Fig. 15. Illustration of data in a manifold. (a) Two classes of data fitted by two Gaussian pdfs. (b) Scatter plot of the transformed representations.

recognizer will have a hard time recognizing the two classes.
And since they are 1D data, no dimensional correlation can
be exploited as in PCA. Now suppose we transform the data
into a 2D representation according to the following:

c → r = (n1, n2) where n1 = mod(100c , 2) and n2

= mod(100c , 3).

Then C1 becomes R1 = {(0, 1), (0, 1), (0, 1), (1, 1), (1, 1), (0, 1),
(0, 1)} and C2 becomes R2 = {(1, 2), (1, 0), (1, 0), (0, 0), (1, 2),
(1, 0), (0, 0)}. The transformed dataset now has five clusters
in a 2D space, {(0, 1), (1, 1)} from R1 and {(0, 0), (1, 0), and
(1, 2)} from R2. This is shown in Fig. 15(b).

If one continues to follow the statistical model approach
for making classification decisions, the transformed repre-
sentation in R would be quite appropriate. As a matter of
fact, the first class of data consists of integers that satisfy
c = (3n + 1)/100, and the second class, c = (2n + 1)/100
or c = 3n/100, where n is an arbitrary positive integer.
(The factor 100 is only to produce the appearance of dec-
imal numbers, here in the range of 0 < c < 1. If larger n is
involved, this factor can be scaled up accordingly to main-
tain the range of the decimal numbers. The data are scat-
tered with a Gaussian looking distribution due to normal,
rather than uniform, sampling.) In the transformed space,
the same five clusters remain for any extended datasets,
although overlaps do exist, amounting to 1/8 in probability.
That is far less than a statistical pattern recognition system
using naïve 1D distribution models as implied in Fig. 15(a).

It is often difficult to foresee if the data should be exam-
ined with a particularmanifold inmind.We often start with
a space in which Riemann and Lebesgue integrals are easily
interpreted. The interesting problem area ofmanifold learn-
ing at the moment is still in its infancy. While the caution
stated in this section is well warranted, we shall defer further
discussion on the subject of manifold learning.

I X . WHAT SOME EXPER IMENTAL
RESULTS MAY TELL US

DNN has been shown successful in a number of pattern
recognition tasks, of which automatic speech recognition is
an important one. In [2], a series of experiments have been

reported with the conclusion that DNN offers substantial
performance improvements over the prevalent method of
hidden Markov modeling (HMM) with mixture densities
[52, 53]. While the overall progress is in general impressive,
some careful discussion of the results may be also helpful in
truly evaluating what the DNN has to offer.

The speech recognition system described in [2] is
what may be called a hybrid HMM–DNN. (For the
general background of a speech recognition system, the
reader is referred to [54].) With the HMM, the sequen-
tial relationship between successive speech signals/frames
is modeled as an N-state Markov chain and the signal
observation in each state is then governed by a probabil-
ity density function, briefly called “in-state probability.” The
DNN in an HMM–DNN according to [2] is trained to
compute the in-state probability, which is conventionally
computed with a (Gaussian) mixture density model. Tra-
ditionally with mixture density models, the evaluation of
probability is carried out on a single frame basis. Let X =
(x1, x2, . . . , xt , . . . , xT) be a sequence of observation vec-
tors/frames that represent a speech signal. The probability
of the sequence evaluated on a hiddenMarkovmodel, under
the hypothesis that it is generated in association of the state
sequence of q = (q0, q1, . . ., qT), is given as

p(X|q) =
T∏

t=1

p(qt |qt−1)p(xt |qt), (25)

where p(xt |qt) is a mixture density and p(qt |qt−1) is the
transition probability from state qt−1 to qt . In an HMM–
DNN, such an in-state probability is calculated by the
trained DNN, in lieu of the mixture model.

Table 2, taken from [2], provides a comparison of the
system performance measured in “word error rate” (WER)
for various systems and training conditions. Readers should
consult [2] for detailed conditions underwhich awide range
of evaluations were conducted. We summarize here the key
points in the result for discussion. They are: (a) speaker
independent HMM–GMM (Gaussian mixture) model with
40 independent Gaussianmultivariate (39 dimensions) pdfs
within each state trained on 309 h of speech; (b)HMMusing
FNN with one hidden layer of 4634 units in lieu of the
GMMs, with likelihood computed on each single frame of
input; (c) same as (b) but with an expanded input consisting

https://doi.org/10.1017/ATSIP.2016.9 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2016.9

deep neural networks 19

Table 2. Performance evaluation for various modeling techniques and systems [2].

WER ()
Modeling technique No. of parameters (×106)

Dataset A Dataset B

(a) HMM–GMM 40-MIX SI, Train on 309H 29.4 23.6 27.4
(b) FNN 1-hid Layer ×4634 Units, 1 fr 43.6 26.0 29.4
(c) FNN 1-hid Layer ×4634 Units, 11 frs 45.1 22.4 25.7
(d) DBN–DNN 6-hid Layer ×2048 Units, 11 frs 45.1 17.1 19.6
(e) HMM–GMM 72-MIX SA, Train on 2000H 102.4 17.1 18.6

Fig. 16. An illustration of simultaneous processing of K frames of speech.

of additional five frames on each side of the “current” frame,
i.e. each input vector being a block of 11 frames/vectors
in model training as well as in likelihood evaluation; (d)
similar to (c) but with seven hidden layers, each having
2048 units; and (e) HMM–GMM as in (a) except now with
72 mixture components (increased from 40), trained on
2000 h of speech, and with speaker adaption. (We have
left out two original rows of results as they contain addi-
tional level of sophistication, non-essential to the present
discussion.)

Much of the interpretation of the results can be found
in [2]. We point out three observations here. First, a major
improvement in performance comes from the expanded
input dimensions (from (b) to (c)). That advantage is car-
ried through and further realized when DNN with many
additional hidden layers are used (from (c) to (d)). Sec-
ond, themodeling performance of neural networksmay not
be competitive with traditional mixture models (compare
(a) and (b)), but neural networks with a data-driven cor-
relation structure, as discussed earlier, are readily employ-
able when the input dimensionality is large (compare (a)
and (c)). When many adjacent frames of speech vectors
are considered simultaneously for modeling and likelihood
calculation, it is like treating the speech modeling prob-
lem as an imagemodeling problem (recall theMRFmodel).
Third, when there is sufficient data to match the complexity
of the traditional HMM–GMMmodel, its performance can
be tuned up competitively (compare (d) and (e)). Figure 16
illustrates the difference in processing a single frame at a
time using a simple FNN versus many frames at a time with
a DNN.

The crux of these insights is further confirmed by other
researchers, e.g. [55]. Table 3 below, duplicated from Table 2

Table 3. (a) WER for three systems with single frame modeling; (b) WER
of DNN-6 as a function of the size (K) of the processing block in no. of

frames [55].

(a)

Block size NN-1 DNN-6 GMM–HMM
1 18.0 17.0 16.7

(b)

Block size 1 3 5 7 9 11 13

DNN-6 17.0 14.2 13.7 13.5 13.5 13.4 13.6

of [55], shows the relevant results. The task in the experi-
ment is pertaining toMandarin speech transcription (called
the Mandarin PSC). In Table 3(a), the WERs for three sys-
tems, all based on the conventional single frame processing,
are listed. NN-1 refers to an FNNwith a single hidden layer,
equivalent to (b) of Table 2 and DNN-6 has six hidden
layers, similar to (d). Adding hidden layers does substan-
tially improve theWER, and the traditional system is rather
competitive, best among the three compared. The WERs of
DNN-6 as a function of the number of simultaneous frames
in a processing block are given in Table 3(b). It appears to
indicate a saddle point at K = 11, which is consistent with
the result of [2].

Some check on the dimensionality issue is warranted. A
typical frame-level speech feature vector has a dimension-
ality of 39. When K frames are modeled simultaneously,
each observation vector consists of 39K dimensions. For
K = 11, this is equal to 429. A Gaussianmultivariate of this
dimensionality has 91 806 second-ordermoment terms. It is

https://doi.org/10.1017/ATSIP.2016.9 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2016.9

20 biing hwang juang

prohibitively exorbitant to produce reliable estimates of the
model parameters. (See Section VI for discussion of model
complexity.)

The result suggests a few important insights:

• A DNN is an effective modeling tool for data of high
dimensionality due to its ability to capture the dimen-
sional correlations through the automatically learned
precision matrix structure; it is considered a useful solu-
tion to problemswhere conventionalmodelsmay fail due
to complexity concerns (in terms of reliable statistical
estimation);

• A DNN, when used as a probability model, is neverthe-
less only an approximation, accuracy of which may not
compete with traditional models in problems where the
data distribution can be reasonably observed and tested.

A pattern recognition system designer may use these sug-
gested insights as guidelines in their system development.

X . OVERALL REMARKS &
SUMMARY

A DNN has the structure of a conventional multilayer per-
ceptron (MLP) or multi-layer FNN, which has long existed
for decades. An MLP/FNN was proposed as a computa-
tional structure to solve problems in function approxima-
tion, of which an obvious application is in the area of pattern
recognition and intelligent decision. While promising, an
MLP/FNN also has been known to have difficulties in deal-
ing with real-world problems, particularly those of a large
scale. A DNN, nevertheless, embraces several clever engi-
neering practices to overcome the issues of an FNN, which
the conventional MLP was overtrusted to handle. A key
developmental differentiation is the explicit intent of using
statistical models (sometimes called generative models) in
DNN to regularize the input, a task that can be well handled
by one or a multiplicity of restrictive BMs. Regularization
here casually means reducing the noise of interference that
cannot be accounted for with the implied network struc-
ture (or model), or reducing the dimensionality of the input
data to retain the saliency of the representation in order to
ease the later task of functional approximation. A conven-
tional MLP trained with the popular error backpropagation
algorithm does not automatically come with these goals or
benefits.

A DNN design starts with the training of an RBM, which
is a stochastic recurrent network and aims at capturing the
statistical regularities in the data (e.g. pairs of dimensions
that have significant correlation). It can accomplish this
because the statistical model represented by an RBM can
(and most often do) take the form of an MRF and it “finds”
the clique system of an MRF directly from data rather than
pre-specified by the designer. When the number of hidden
nodes is smaller than the input dimensionality, anRBMper-
forms data/dimensionality reduction and regularization as
noted above. When the number of hidden nodes exceeds
that of the input dimensionality, an additional benefit of

the RBM is the possibility of a transformed representation,
the so-called distributive representation, of the data, which
combines the notions of probability and geometric local-
ity in a new manifold projected from the mixture density
model implied by the hidden nodes in various layers.

A DNN has typically several such layers of RBM, trained
one after another (thus deep), which are then stacked up to
form a multilayer FNN. This multilayer network can then
be further “fine-tuned” in a supervised fashion according
to the supplied desired output to perform various tasks.
When such a network is trained to approximate the input
itself at the final output, after layers of processing, reduc-
tion, regularization, and possibly expansion, one obtains
an autoencoder, in which the states of nodes at a certain
intermediate layer can be considered an encoded (and com-
pressed if reduction is involved) representation of the input.
If the desired output is the class label of the input (through
direct index mapping or after a final softmax operation to
identify the node associated with the maximum output), it
becomes an MLP although it differs from the traditional
MLP in that those layers close to the input perform sta-
tistical regularization and transformation according to the
RBM model. Use of MLP, particularly those layers close to
the (decision) output, as an effective implementation of the
decision function, remains as usual.

As noted in the very beginning, the Bayes optimal deci-
sion theory is at the core of pattern recognition system
design, the issue of manifold notwithstanding (Section
VIII). It teaches the principle of matching the data rep-
resentation with probabilistic models for decision making
in pattern identification. It is somewhat surprising that its
realization in the context of ANNs through a soft division
(or rather a soft integration) between the task of repre-
sentation transformation (i.e. use of RBMs as the “bridge
function” to prepare the data for identification) and that
of statistical modeling for decision function implementa-
tion is only recent. It bespeaks the importance of cross-
fertilization.

ACKNOWLEDGEMENT

The author would like to thank Prof. Mark Clements of
Georgia Institute of Technology and Prof. Jiang Hui of York
University for their reading of an earlier manuscript of this
article.

REFERENCES

[1] Hinton, G.E.; Salakhutdinov, R.R.: Reducing the dimensionality of
data with neural networks. Science, 313 (5786) (2006), 504–507.

[2] Hinton, G.E. et al.: Deep neural networks for acoustic modeling in
speech recognition – The shared views of four research groups. IEEE
Signal Process. Mag., 29 (6) (2012), 82–97.

[3] Krizhevsky, A.; Sutskever, I.; Hinton, G.E.: ImageNet classification
with deep convolutional neural networks, in Advances in Neural
Information Processing Systems, vol. 25, NIPS, 2012.

[4] Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach.
Learn., 2 (1) (2009), 1–127.

https://doi.org/10.1017/ATSIP.2016.9 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2016.9

deep neural networks 21

[5] Deng, L.; Yu, D.: Deep learning: methods and applications. Found.
Trends Signal Process., 7 (2014), 3–4.

[6] Hinton, G.E.: Learningmultiple layers of representation. TrendsCog-
nit. Sci., 11 (2007), 428–434.

[7] Hinton, G.E.; Osindero, S.; Teh, Y.-W.: A fast learning algorithm for
deep belief nets. Neural Comput., 18 (2006), 1527–1554.

[8] LeCun, Y.; Bengio, Y.; Hinton, G.E.: Deep learning. Nature, 521 (2015),
436–444.

[9] Duda, R.O.; Hart, P.E.; Stork, D.G.: Pattern Classification, 2nd ed.,
Wiley, New York, 2001, ISBN: 978-0-471-05669-0.

[10] Cortes, C.; Vapnik, V.: Support-vector networks. Mach. Learn., 20 (3)
(1995), 273.

[11] Juang, B.H.; Katagiri, S.: discriminative learning for minimum error
classification. IEEE Trans. Signal Process., 40 (12) (1992), 3043–3054.

[12] Rumelhart, D.E.; McClelland, J.: Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, MIT Press, Cam-
bridge, 1986.

[13] Koch, C.; Segev, I.: Methods in Neuronal Modeling: From Ions to
Networks, 2nd ed., MIT Press, Cambridge, Massachusetts, 1999.

[14] McCulloch, W.; Pitts, W.: A logical calculus of ideas immanent in
nervous activity. Bull. Math. Biophys., 5 (4) (1943), 115–133.

[15] Hebb, D.: The Organization of Behavior, Wiley, New York, 1949.

[16] Haykin, S.: Neural Networks: A Comprehensive Foundation, 2 ed.,
Prentice-Hall, New Jersey, 1998.

[17] Hopfield, J.J.: Neural networks and physical systems with emergent
collective computational abilities. Proc. Natl. Acad. Sci. USA, 79
(1982), 2554–2558.

[18] Kohonen, T.: Adaptive, associative, and self-organizing functions in
neural computing. Appl. Opt., 26 (23) (1987), 4910–4918.

[19] Rosenblatt, F.: The perceptron: a probabilistic model for information
storage and organization in the brain. Psychol. Rev., 65 (6) (1958),
386. Also, The Perceptron – a perceiving and recognizing automaton,
Report 85–460–1, Cornell Aeronautical Laboratory, 1957.

[20] Widrow, B.; Hoff, Jr., M.E.: Adaptive Switching Circuits. IRE
WESCOM Convention Record, Part.4, IRE, New York, 1960,
96–104.

[21] McEliece, R.J.; Posner, E.C.; Rodemich, E.R.; Venkatesh, S.S.: The
capacity of theHopfield associativememory. IEEETrans. Inf. Theory,
33 (4) (1987), 461–482.

[22] Bruck, J.: On the convergence properties of the Hopfieldmodel. Proc.
IEEE, 78 (10) (1990), 1579–1585.

[23] Ackley, D.; Hinton, G.; Sejnowski, T.: A learning algorithm for Boltz-
mann machines. Cognit. Sci., 9 (1) (1985), 147–169.

[24] Smolensky, P.: Chapter 6: information processing in dynamical sys-
tems: foundations of harmony theory, in Parallel Distributed Process-
ing: Explorations in the Microstructure of Cognition, vol. 1: Founda-
tions. D. Rumelhart; J. McLelland (ed.), MIT Press, Cambridge, MA,
1986, 194–281.

[25] Olazaran, M.: A sociological study of the official history of the per-
ceptrons controversy. Soc. Stud. Sci., 26 (3) (1996), 611–659.

[26] Werbos, P.: Beyond Regression: New Tools for Prediction and Anal-
ysis in the Behavioral Sciences, Ph.D. thesis, Harvard University,
1974.

[27] Werbos, P.: Backpropagation through time: what it does and how to
do it. Proc. IEEE, 78 (10) (1990), 1550–1560.

[28] Funahashi, K-I.: On the approximate realization of continuous map-
pings by neural networks. Neural Netw., 2 (3) (1989), 183–192.

[29] Hornik, K.; Stinchcombe, M.; White, H.: Multilayer feedforward
networks are universal approximators. Neural Netw., 2 (5) (1989),
359–366.

[30] Juang, B.H.; Katagiri, S.: Discriminative learning for minimum error
classification pattern recognition. IEEE Trans. Signal Process., 40 (12)
(1992), 3043–3054.

[31] Kosko, B.; Bidirectional associative memories. IEEE Trans. Syst. Man
Cybern. 18 (1) (1988), 49–60.

[32] Giles, C.L.; Miller, C.B.; Chen, D.; Chen, H.H.; Sun, G.Z.; Lee,
Y.C.: Learning and extracting finite state automata with second-
order recurrent neural networks. Neural Comput., 4 (3) (1992),
393.

[33] Hammersley, J.M.; Clifford, P.: Markov fields on finite graphs and
lattices, 1971, available online at http://www.statslab.cam.ac.uk/∼grg/
books/hammfest/hamm-cliff.pdf

[34] Frank Spitzer: Markov random fields and Gibbs ensembles. Am.
Math. Mont., 78 (2) (1971), 142–154. doi: 10.2307/2317621, JSTOR
2317621.

[35] Lafferty, J.D.; Mccallum, A.: Conditional random fields: probabilistic
models for segmenting and labeling sequence data, in Proc. Int. Conf.
on Machine Learning (ICML), Williams College, Williamstown, MA,
2001.

[36] Jordan, M.I.: Graphical models. Stat. Sci., 19 (1) (2004), 140–155.

[37] Rue, H.; Held, L.: Gaussian Markov Random Fields: Theory and
Applications, CRC Press, Boca Raton, FL, 2005.

[38] Dai, B.; Ding, S.; Wahba, G.: Multivariate Bernoulli Distribution,
TECHNICAL REPORT NO. 1170, Department of Statistics, Univer-
sity of Wisconsin, June 6, 2012.

[39] Cho, K.H.; Raiko, T.; Ilin, A.: Improved learning of Gaussian–
Bernoulli restricted Boltzmannmachines, Master’s thesis, Aalto Uni-
versity, 2011.

[40] Hinton, G.E.: Training products of experts byminimizing contrastive
divergence. Neural Comput., 14 (2002), 1771–1800.

[41] Carreira-Perpinan, M.A.; Hinton, G.E.: On contrastive divergence
learning, in Proc. AISTATS 2005, 10th Inter. Workshop on Artificial
Intelligence and Statistics, Barbados, Jan. 2005.

[42] The MNIST Digit Dataset. Available at http://yann.lecun.com/exdb/
mnist/

[43] Hochreiter, S.: Untersuchungen zu dynamischen neuronalen Netzen.
Diploma thesis, Institut f. Informatik, TechnischeUniv.Munich, 1991.

[44] Bengio, Y.: Artificial Neural Networks and their Application to
Speech/Sequence Recognition. Ph.D. thesis, McGill University,
Canada, 1991.

[45] Bourlard, H.; Kamp, Y.: Auto-association by multilayer perceptrons
and singular value decomposition. Biol. Cybern., 59 (4–5) (1988),
291–294.

[46] Bengio, Y.: Learning Deep Architectures for AI, Foundations and
Trends in Machine Learning, 2009, available at http://www.iro.
umontreal.ca/∼lisa/pointeurs/TR1312.pdf

[47] Xu, Y.; Du, J.; Dai, L.-R.; Lee, C.-H.: A regression approach to speech
enhancement based on deep neural networks. IEEE/ACM Trans.
Audio Speech Lang. Process. (TASLP), 23 (1) (2015), 7–19.

[48] Seltzer, M.L.; Yu, D.; Wang, Y.: An investigation of deep neural net-
works for noise robust speech recognition, in 2013 IEEE Int. Conf. on
Acoustics, Speech and Signal Processing (ICASSP),Vancouver, Canada,
May 2013, 7398–7402.

[49] Geman, S.; Geman,D.: Stochastic relaxation, Gibbs distributions, and
the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach.
Intell., 6 (6) (1984), 721–741.

https://doi.org/10.1017/ATSIP.2016.9 Published online by Cambridge University Press

http://www.statslab.cam.ac.uk/$\sim $grg/books/hammfest/hamm-cliff.pdf
http://www.statslab.cam.ac.uk/$\sim $grg/books/hammfest/hamm-cliff.pdf
http://www.iro.umontreal.ca/$\sim $lisa/pointeurs/TR1312.pdf
http://www.iro.umontreal.ca/$\sim $lisa/pointeurs/TR1312.pdf
https://doi.org/10.1017/ATSIP.2016.9

22 biing hwang juang

[50] Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.;
Teller, E.: Equations of state calculations by fast computingmachines.
J. Chem. Phys., 21 (6) (1953), 1087–1092.

[51] Cressie, N.: The origins of kriging. Math. Geol., 22 (3) (1990).

[52] Rabiner, L.R.; Juang, B.H.: An introduction to hidden Markov mod-
els. IEEE ASSP Mag., 3 (1) (1986), 4–16.

[53] Rabiner, L.R.: A tutorial on hidden Markov models and selected
applications in speech recognition. IEEE Proc., (1989) 217–286.

[54] Rabiner, L.R.; Juang, B.H.: Fundamental of Speech Recognition,
ISBN-13: 978-0130151575, Prentice-Hall, New Jersey, 1993.

[55] Pan, J.; Liu, C.; Wang, Z.; Hu, Y.; Jiang, H.: Investigations of deep
neural networks for large vocabulary continuous speech recognition:
whyDNNSurpasses GMMs in acousticmodelling, in Proc. Int. Symp.
on Chinese Spoken Language Processing (ISCSLP’2012), Hong Kong,
2012.

Biing-Hwang (Fred) Juang is the Motorola Foundation Chair
Professor and a Georgia Research Alliance Eminent Scholar
at Georgia Institute of Technology, which he joined in 2002.
He received a Ph.D. degree from the University of California,

Santa Barbara. He had conducted research work at Speech
Communications Research Laboratory (SCRL) and Signal
Technology, Inc. (STI) in the late 1970s on a number of
Government-sponsored research projects. He joined Bell Lab-
oratories (Bell Labs) in 1982 as a Member of Technical Staff
and was the Director of Acoustics and Speech Research (1996–
2001). He became the Director of Multimedia Technologies
Research at Avaya Labs (a spin-off of Bell Labs) in 2001. Pro-
fessor Juang has published extensively, including the book
“Fundamentals of Speech Recognition”, co-authored with L.R.
Rabiner, and holds nearly two dozen patents. He received the
Technical Achievement Award from the IEEE Signal Process-
ing Society in 1998. He served as the Editor-in-Chief of the
IEEE Transactions on Speech and Audio Processing from 1996
to 2002. He was elected an IEEE Fellow (1991), a Bell Labs
Fellow (1999), a member of the US National Academy of Engi-
neering (2004), and an Academician of the Academia Sinica
(2006). He was named recipient of the IEEE Field Award in
Audio, Speech, and Acoustics, the J.L. Flanagan Medal, and a
Charter Fellow of the National Academy of Inventors (NAI), in
2014.

https://doi.org/10.1017/ATSIP.2016.9 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2016.9

	I INTRODUCTION
	II STATISTICAL PATTERN RECOGNITION
	III ARTIFICIAL NEURAL NETWORKS
	A Recurrent neural networks
	B Feedforward Neural Networks (FNN)
	C Sectional remarks

	IV MULTIVARIATE DISTRIBUTION AND MRF
	V WHAT DOES AN RBM DO?
	VI LATENT VARIABLE MODEL AND MIXTURE MODEL
	VII DEEP BELIEF NETWORK
	A Deep autoencoder and PCA
	B Distributive representation

	VIII MANIFOLDS AND PROBABILITY SPACE
	IX WHAT SOME EXPERIMENTAL RESULTS MAY TELL US
	X OVERALL REMARKS & SUMMARY

