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A NEW APPROACH TO OPERATOR SPACES 

EDWARD G. EFFROS AND ZHONG-JIN RUAN 

ABSTRACT. The authors previously observed that the space of completely bounded 
maps between two operator spaces can be realized as an operator space. In particular, 
with the appropriate matricial norms the dual V^ of an operator space V is completely 
isometric to a linear space of operators. This approach to duality enables one to for­
mulate new analogues of Banach space concepts and results. In particular, there is an 
operator space version ®M of the Banach space projective tensor product <g>, which sat­
isfies the expected functorial properties. As is the case for Banach spaces, given an 
operator space V, the functor W \—• V (g)̂  W preserves inclusions if and only if V^ is an 
injective operator space. 

1. Introduction. The theory of operator spaces and their completely bounded maps 
has provided an unexpectedly powerful tool for studying operator algebras. In particular, 
the Christensen-Sinclair theory of completely bounded multilinear maps [5] (see also 
[14]) has played a vital role in the study of Hochschild cohomology for operator algebras 
(see [4],[6]), completely bounded harmonic analysis (see [12],[10]), and most recently, 
the abstract characterization of the non-self adjoint unital operator algebras [2]. In this 
category, the Haagerup tensor product <ĝ  may be used to linearize the multivariable 
maps, and in this sense it is analogous to the projective tensor product <& for normed 
spaces. 

Despite its great utility, the category of operator spaces has some puzzling aspects 
which have frustrated attempts to generalize the classical theory of normed spaces (see, 
e.g., [13]). The most important of these is that the dual of an operator space is no longer 
an operator space. A related difficulty is that one does not have an analogue of the adjoint 
functor equation for the projective tensor product <g> of Banach spaces: 

(1.1) $(V<ê>W,X) = <8(V, <B(W,X)). 

In this note we suggest a modified category that avoids these problems. It was pointed 
out in [9], p. 140, that given operator spaces V and W, the space of completely bounded 
maps 9vC(V, W) may be provided with a natural operator space structure. In particular, 
letting VÎ denote V* = fW(V,C) with this matricial structure, we show that the em­
bedding V <—• 0 Î is completely isometric. In this modified context, the completely 
bounded multilinear maps of Christensen and Sinclair [5] are no longer sufficiently gen­
eral. Instead one must use a notion suggested by Choi [3]: we say that a bilinear map 
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(p:V x W —-> X is matricially bounded if one has that ||[<^(vy, w*/)]|| < c||v|| ||w|| for 
all v G MP(V), w G M^(W) (see below). This is distinct from Christensen and Sinclair's 
notion of complete boundedness since both the product {a, b) —• ab and the reverse 
product (a, fr) —• fra in a C*-algebra are matricially bounded. This aspect of the theory is 
especially interesting since it would appear that matricially bounded cyclic cohomology 
makes sense. 

In § 2 we introduce the operator space structure on mapping spaces, we prove the 
double dual result, and using the subscript /x to indicate the matricially bounded bilinear 
maps, we show that 

(1.2) %(Vx W,X) = 94(V,94(W,X)) 

In § 3 we define the relevant matricial tensor product, which we denote by ®M. We prove 
that such tensor products of operator spaces are again operator spaces, and that they may 
be used to linearize matricially bounded multilinear maps. It then follows from ( 1.2) that 
we have an analogue of (1.1): 

fW(V(gv W>X) = 94(V,94(W,X)). 

We show that in contrast to the Haagerup product (see [14]), the matricial product is not 
injective. In fact we show that the functor V0^ preserves inclusions if and only if V^ is 
injective, the analogue of a result of Grothendieck [11]. 

Finally in § 4 we show that reverse multiplication is matricially bounded, and we con­
sider the possibility of representation theorems for such maps into *B(H). 

Shortly after the first draft of this paper was completed, we received a preliminary ver­
sion of [1], in which David Blecher and Vern Paulsen have independently considered the 
operator structure on mapping spaces. In addition to verifying its functorial properties, 
they have also found a number of far-reaching results regarding other tensor products, 
some of which we shall explore in a subsequent paper. 

2. Matricially bounded multilinear maps. We will use the standard terminology 
for operator spaces (see [15],[7]). Given operator spaces V and W we let 94 ( V, W) denote 
the vector space of completely bounded linear maps (p: V —• W, on which we place the 
completely bounded norm || ||c&. We regard a n n x n matrix ip = [(ptj] of such maps as 
a map <p\ V —* Mn(W) by letting ip(y) = [</?/,(v)]. We use the resulting identification 

M„(fW(V,W)) ^ fW(V,Mn(W)) 

to define norms on the matrix spaces over 94(V, W). As was remarked in [9], 94( V, W) 
is obviously an L°°-matricially normed space, and thus it is (completely isometric to) an 
operator space [15]. In particular, noting that 94{V, C) coincides with the dual Banach 
space V* = (8( V, C ) we let 0 = 94{V, C ) denote V* with this matricial structure. From 
[17] (see also [8]) we have that if 

if e Mn(VÎ) = 94(V, Mn), 

then || y? ||d> = || Vn|| • We let r : V —-> V** denote the usual injection, i.e., r (v)(f) = f(v). 
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LEMMA 2.1 ([16], PROP. 1.2.6). Suppose that V is an operator space, and that vo G 
Mn(V). Then 

||vo|| = sup{||^(vo)|| : <p € M(V,Mn),\\<P\\cb < 1}. 

PROOF. We may assume that V is acting on a Hilbert space H and thus Mn(V) acts 
on IP, and that || vo|| = 1. Given e > 0, we may choose unit vectors £ = (£i , . . . , £„), 
r; = (rjj,...,r7„) e IP such that |v0£ • r/| > 1 - e. We let # i Ç H (resp., H2 Ç H) 
be the linear span of £ i , . . . , £„ (resp., 771,..., r]n). Enlarging H\ and H2, if necessary, we 
may assume that dim//*: = n. We let Wk be an isometry of Cn onto Hk, and we define 
a complete contraction ip: V —» M„ = ®(CW) by <p(v) = W\vW\. We then have that 
Wk <8> / is an isometry of (Cn)n onto IPk, and 

II ^(v 0 ) | | > I <Pn(yo)(Wi ® /)*£ • (W2 <g> 7)*iy I 

= \(W2pWÎ)n(v0)t - rj\ 

= | v o € - f ? | > l - e , 

and we are done. • 

THEOREM 2.2. 77ie map r\V —• is a complete isometry. 

PROOF. Given v e M„(V), we have that 

r„(v) = [r(v,y)] e M„(VTT) = M{V\ M„) 

and thus 

| |TB(V)|U = ||T»(V)„|| 

= sup{||r„(v)„(f)|| : / € M„(VT), ||/|| = 1} 

= sup{||[r„(v)(fw)ki]|l : / e M„(VT), ||/|| = 1} 

= MW^M^UilJ =/e M„(VÎ), 11/11 = 1} 
= s u p f l t r ^ ) ^ ) ] ^ , ] ^ , ! : / € MB(VT), ||/|| = l} 

= supl l fKKv^LitJI : / 6 M„(VT), ||/|| - 1} 

= sup{||[f(viy)];.=I|| :feM(V,Mn), 11/11 = 1} 

= sup{ ||/„(v)|| : / 6 Uiy, Mn), 11/11 = 1} 

= NU 
where the last equality follows from Lemma 2.1. • 

Given positive integers p\,...,pr, (resp., q\,...,qr), we order the r-tuples i — 
(ii,...,ir), 1 < ik < pk, (resp., j = (ju---Jr), 1 < jk < qù lexicographically. We 
may then regard an array [wy] with i and y such r-tuples and wy G W as an element of 
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MpjiW), where p = p\ • • -pr, q = q\ • - -qr. Given operator spaces Vi , . . . , Vr, and a 
multilinear map y? : Vi x • • • x Vr —> W, we define 

^ ^ H M r : H W ^ ) x • • • x MPr,qr(Vr) - • Mp«(W) 

by letting (pPl,qi\-\pr,qr(
vi' • • •, vr) be the/? x q matrix with entries 

^ l ^ l l - I P r , ^ " - " ^ ) ! / = ^(Vl , / W l , . - . ,V r , W V ) . 

Following Choi [3], we say that tp is matricially bounded (resp., matricially contractive) 
if there exists a constant K (resp., with £ < 1) such that for all subscripts 

HYWHMJI ^ 

where we use the usual multilinear norm, i.e., || (Pp\q\\-\prq)\ < ^ if and only if 

I I ^ H ^ i , . . . , ^ <^ | |v i | | - - . | |vr | | , ( for all v, e MPk(Vk)). 

We define the matricial norm of cp by 

Ikll/i = s uP{lkpi^ , | -b^l l :Ps»?A € N(l <g,h<r) arbitrary}, 

and we let M^{V\ x • • • x Vr, W) denote the corresponding normed space of matricially 

bounded maps. We define an L°°-matricial structure on fM (̂Vi x • • • x Vr9 W) by using 

the identification 

MnM^Vx x • • • x Vr, W) ^ %(VX x • • • x Vr, Mn(W)). 

For r = 1 it is evident that 5^(V, W) = M(V, W). 
Given a matricially bounded bilinear map <p : V x W —• X, we define 7^ : V —• 

fW(W,X) by letting r^OXw) = < (̂v, w). This determines a map 

T: %(V x W,X) —• fAf(v, fW(W,X)). 

THEOREM 2.3. 77i£ map 7 w « completely isometric surjection. 

PROOF. It suffices to prove that T is isometric, since we then have a commutative 
diagram of isometries 

Mn%(V x W,X) -^-> M„fW(V, fW(W,X)) 

I I 
5^(VxW,M n X) - ^ fW(v,fW(W,M„X)). 

We have that 
| | r„IU = sup{||(rv)p(v)|U : v € M,(V), ||v|| < l , p € N} 

= suP{IKr^vVw)!!^ : v e MP(V), W e M,(W), ||V||, H I < i,P>9 G N} 

= sup{||[^(vy,ww)]|| : v € Mp(V), w G Mq(W\ ||v||, H I < l , p , 9 € N} 

= HvlU 
i.e., T is isometric. It is a simple matter to verify that if 6 : V —• fW(W,X) is completely 
bounded, then 9 — T^, where < (̂v, w) = 0(v)(w) is matricially bounded, and thus T is 
surjective. • 
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3. The matricial tensor product. Given operator spaces V, W and elements v G 
Mptf(V), H> £ Mr^(W), then we define 

by 

(see the matrix convention in § 2). Given integers p, q, r and v G MPj(V), w G M^r(W), 
we define 

v 0 w € Mp,r(V®W) 

by 
(v 0 w)y = Ivtjc 0 wkJ. 

We note that if v G Mp,q( V), and w G M v ( W), then Tr(v) = [v# 0 • • • 0 v,y] G Mpr^r( V), 
and \ ( w ) = w 0 • • • 0 w G M^ w ( W) satisfy 

v 0 w = rr(v) 0 A^(w). 

Given scalar matrices a G M^ and /? G Mlr,M 

a(v 0 w)/3 = (av) 0 (w/3) 

whereas for a G Mt,pr and /? G M^M we have 

a(v®w)/3 ^(av)®(w/3) 

since the right side does not make sense. 
We define the matricial norm on Mm,n(V 0 W) by 

(3.1) H , , = inf{ ||or|| ||v|| KHI 11/?II : " = <*(v® *)/?}. 

where we select a G Mm,pr, v G MM(V), w G Mr^(W), 0 G Mqs/l. We let V ®^ W be 
the vector space tensor product together with these norms. 

THEOREM 3.1. Given operator spaces V and W, V®M W is again an operator space. 

PROOF. Let us suppose that Uk = cr*(v* ® w&)Ab ih= 1,2) where 

l|at||IN||M|||/3t||<|kL+e. 
We may assume that || vk \ | = ||w*|| = 1, and that ||afjt|| = \\Pk\\ < (||w*H/* + e)1^2-
We let 

7 fr­
ee = [ ai 0 0 a2 ] , 0 

0 
0 

/32J 

It follows that 
wi + u2 = a(vi 0 v2) 0 (wi 0 w2)/3, 
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and thus, 
||«1+«2|U<II«IIII/?II 

<5[||«H2 + II/3||2] 

= i [ | | aa* | | + | r /? | | ] 

< 5 ( | | « l | | 2 + ll«2||2 + | |Al|2 + ll/32||2) 

< i [2( | |« I | | „ + e) + 2(||H2||M+e)] 

= ||«i||M + ||M2||M+2e, 

and since e is arbitrary, || ||M is subadditive. That \\cu\\ = \c\ \\u\\ for c £ C follows 
from the more general inequality proved for matrix scalars below. 

We recall that the Haagerup norm is denned by 

|| M|U = inf{ || v|| H w|| : W = v O w}. 

Given u = a(v®w)(3 with ||or|| ||v|| ||w|| ||/3|| < ||i*||M + e, it follows that 

u= a r r ( v ) 0 ^ W ^ , 

and thus \\u\\h < \\uWp + e for all e > 0, i.e., \\u\\h < \\u\\^. It follows that || ||^ is 
non-degenerate, and thus is a norm. 

Given scalar matrices 7 and 8, we have that 

lue = 7 a ( v 0 w)f36y 

and thus \\luS\\, < \\la\\ \\v\\ \\w\\ \\06\\ < ||71| \\S ||(||u\\, + e). Finally given uk = 
&k{vk ®Wj0/3jfc as above, we may assume that || v*|| = ||w*|| = ||/?*|| = 1, and thus that 
II(Xk\\ < \\uk\\ + £. We have that 

ux e u2 = a ((vi e v2) ® (wi e w2))p, 

where 
[jSi On 

0 0 
o o r 
0 (32\ 

and thus since the other factors have norm equal to 1, 

||"i e« 2 |U ^ II «II = m a x {l l a * | |} <max{ 11̂ 11} +e . 

It follows from [15] that with these matrix norms, V <g)M W is an operator space. • 
Given operator space V, W, X and a map (f : V x W —-• X, we define L((/?):V(g)W—>X 

by L(< )̂(v 0 w) = </?(v, w). We thus obtain the linearization map 

ai 0 0 0 
0 0 0 a2 
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THEOREM 3.2. Linearization provides a complete isometry 

%(V x W,X) 9* MiV®^ W,X). 

PROOF. It suffices to show that 

L: %(V x W,X) -+ M(V®^ W,X) 

is isometric, since we then have a diagram of isometries 

Mn%(V x W,X) -^-> MnfW(V®^ W,X). 

1 i 
Hi (V x W, MnX) - ^ fW(V ®M W, M„X). 

Given u = a(v ® w)/3 G Mlm,„(V ®^ W) (see (3.1)), we have that 

| | ^ k „ ( a ( v ® w)/?)|| = | |a^M |M(v f W) /3 | | < | |a | | \\<pp/A„\\ ||v|| H I | |/3| | , 

and thus ||L(<^)||C£ < || (^||^. On the other hand 

l k M | r > , H 0 | | = | | ^ W , ( V ® W ) | | < ||L(^)|U||V|| || HI, 

and thus || cp ||M < ||L(<^)||C^. It is a trivial matter to see that L is surjective. • 

Given linear maps ipti V* —> Wfc(& = 1,2), it is immediate that the linear map 

<pi ® <pr. Vi ® y2 —> Wi ^ w2 

satisfies ||< î ® </?2||c£ < H îHcfcH^Hcfc- However, in contrast to the Haagerup tensor 
product [13], the matricial product is not injective. In fact we have by analogy with [11]: 

PROPOSITION 3.3. IfVis an operator space, then the following are equivalent: 
(1) Given an arbitrary inclusion of operator spaces W\ <—> Wi> the induced map 

y ®n Wi —• V ®M W2 is completely isometric. 
(2) V^ is an injective operator space. 

PROOF. From above, the induced map V ®M Wi —» V ®^ W2 is completely contrac­
tive. If it is isometric, then from the classical Hahn-Banach Theorem, any/ G (V®^ W\)* 
has a contractive extension FG(V0 M W2)* of the same norm. Since the norm and com­
plete bounded norms of scalar functionals coincide, we see that any <p;W\ —•* 0 has 
an extension O: W2 —• V^ with the same completely bounded norm, and thus V^ is an 
injective operator space. Conversely, let us suppose that V̂  is injective. Then Mn(V^) 
is injective, since given V^ Ç <B(H) and a completely contractive projection O of #(//) 
onto V\ On is a completely contractive projection of the injective (B(Hn) onto Mn(V^). 
Given u G Mn(V ®^ Wi), we may use Lemma 2.1 to choose a complete contraction 
<p: V®^ W\ —> M„ such that || (pn(u)\\ > \\ u\\ - e. We have that 

<p G Mn((V®M Wi)T) = MJn(fAf(Wi,VT)) = M(WuMn(V
])), 

and thus <p has an extension to a complete contraction (pf: W2 —• M„(0). Regarding <p' 
as a functional on Mn(V ®^ W2) and letting || || ' be the norm on the latter space, we see 
that ||M||' > ||</(w)|| > || «|| — e, and we are done. • 
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4. Regarding representation theorems. As we remarked in the introduction, 
given a C*-algebra A, the reverse multiplication map R:A x A —» A: (a, &) —> ba is 
matricially contractive. To see this, simply note that given a G Mp,q(A) and b G Mr,5(A), 
we have that 

| | ^ i r > , f t ) | | = |lM*)rs(fl)l |<||fl | | | |*l|. 

An interesting consequence of this result is that if F: A x A —* C is a bilinear function 
satisfying 

for states pi9 qj then F is matricially bounded. It would seem likely that the converse is 
also true. More generally one might conjecture that there is a representation theorem 
for matricially bounded maps <p:A x A —-> (B(H) involving expressions of the form 
R7r(a)S9(b)T and R'6'(b)S'n'(a)T'. The Haagerup form of the Grothendieck Theorem 
seems to say that all bounded bilinear functional on A are constructed from completely 
bounded functional on A (g)A and A ®Aop. The operator system approach of Paulsen and 
Smith [14] does not appear to work, since despite the fact that A 0M A is an A-bimodule, 
the operations are presumably not completely contractive in the sense of Christensen and 
Sinclair. 

Finally we observe that the matricial category seems more suitable to cyclic coho-
mology than the completely bounded category, since cyclic theory involves reversed 
products. A new representation theorem might conceivably enable one to reduce the rel­
evant calculations to algebraic manipulations, as was the case for completely bounded 
cohomology. 
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