Bull. Aust. Math. Soc. **86** (2012), 424–429 doi:10.1017/S0004972711003339

ULTRAPOWERS OF ℓ^1 -MUNN ALGEBRAS AND THEIR APPLICATION TO SEMIGROUP ALGEBRAS

MAEDEH SOROUSHMEHR

(Received 3 November 2011)

Abstract

In this work, we study and investigate the ultrapowers of ℓ^1 -Munn algebras. Then we show that the class of ℓ^1 -Munn algebras is stable under ultrapowers. Finally, applying this result to semigroup algebras, we show that for a semigroup *S*, ultra-amenability of $\ell^1(S)$ and amenability of the second dual $\ell^1(S)''$ are equivalent.

2010 *Mathematics subject classification*: primary 46B08; secondary 46H05. *Keywords and phrases*: Banach algebra, ultrapower, amenability, ℓ^1 -Munn algebra.

1. Introduction

Given a Banach space *E* and a nonprincipal ultrafilter \mathcal{U} on a nonempty set *I*, we can form the ultrapower of *E* with respect to \mathcal{U} , which is denoted by $(E)_{\mathcal{U}}$ and defined as the quotient space

$$(E)_{\mathcal{U}} = \ell^{\infty}(I, E)/N_{\mathcal{U}},$$

where

$$\ell^{\infty}(I, E) = \left\{ (x_i)_i \subset A : \sup_i ||x_i|| < \infty \right\}$$

and

$$N_{\mathcal{U}} = \left\{ (x_i)_i \in \ell^{\infty}(I, E) : \lim_{i \to \mathcal{U}} ||x_i|| = 0 \right\}.$$

It is routine to write $(x_i)_{\mathcal{U}}$ for the equivalence class it represents. There is a canonical isometry $i_E : E \to (E)_{\mathcal{U}}$ which sends $x \in E$ to the constant family $(x)_{\mathcal{U}}$. It is easily seen that if $(x_i)_{\mathcal{U}}$ represents an equivalence class in $(A)_{\mathcal{U}}$, then

$$\|(x_i)_{\mathcal{U}}\| = \lim_{i \to \mathcal{U}} \|x_i\|.$$

If A is a Banach algebra, $(A)_{\mathcal{U}}$ is also a Banach algebra; in other words, the class of Banach algebras is stable under ultrapowers. In [7], stability of some special classes

^{© 2012} Australian Mathematical Publishing Association Inc. 0004-9727/2012 \$16.00

425

of Banach algebra such as C*-algebras is investigated. In [2], the ultrapowers of Banach algebras are used to study the bidual of *A*. Also, in [3], Daws introduces the notion of ultra-amenability for a Banach algebra *A*. We say *A* is ultra-amenable if every ultrapower of *A* is amenable. In [3, 4], the ultra-amenability of C*-algebras is characterised and, for a locally compact group *G*, the ultra-amenability of $L^1(G)$ is investigated (see also [8]). In particular, it is shown that if *G* is a discrete group, $\ell^1(G)$ is ultra-amenable if and only if *G* is finite.

The aim of this paper is to study the concept of ultrapowers for a Banach algebra, which is the so-called ℓ^1 -Munn algebras. These algebras were first introduced by Munn [9] to study some semigroup algebras. Then they were generalised by Esslamzadeh [5]. These algebras were then investigated by, for example, Esslamzadeh and Esslamzadeh [6] and Shojaee *et al.* [10], where they study contractibility, weak amenability and Connes amenability of these algebras.

We end this work by classifying the ultra-amenability of the ℓ^1 -Munn algebras. Finally, as an application, we show that for a semigroup *S*, $\ell^1(S)$ is ultra-amenable if and only if $\ell^1(S)''$ is amenable, which is a generalisation of the case where *S* is a group.

2. ℓ^1 -Munn algebra of ultraproduct of Banach algebras

Let *A* be a unital Banach algebra, let $P = (p_{ji}) \in M_{n \times m}(A)$ with $\max\{||p_{ji}|| : i \in m, j \in n\} \le 1$, where $m, n \in \mathbb{N}$. We regard $\mathfrak{A} = M_{m \times n}(A)$ as a Banach algebra by taking the norm to be specified by

$$\|(a_{ij})\| = \sum_{i \in \mathbb{N}_m, j \in \mathbb{N}_n} \|a_{ij}\| \quad (a = (a_{ij})_{ij} \in \mathfrak{A}),$$

and with the product

 $a \circ b = aPb$,

for all $a, b \in \mathfrak{A}$ in the sense of matrix products. Then \mathfrak{A} is called the ℓ^1 -Munn algebra over A with sandwich matrix P, and it is denoted by $\mathcal{M}(A, P, m, n)$. We are interested in determining $(\mathcal{M}(A, P, m, n))_{\mathcal{U}}$, when \mathcal{U} is an ultrafilter.

THEOREM 2.1. Let A be a Banach algebra, $m, n \in \mathbb{N}$, and let \mathcal{U} be an ultrafilter. If $\mathfrak{A} = \mathcal{M}(A, P, m, n)$ is an ℓ^1 -Munn algebra over A with sandwich matrix $P = (p_{ji})$, then there exists $Q \in M_{n \times m}((A)_{\mathcal{U}})$ such that

$$(\mathfrak{A})_{\mathcal{U}} \simeq \mathcal{M}((A)_{\mathcal{U}}, Q, m, n).$$

PROOF. Define $Q = i_A(P) \in M_{n \times m}((A)_U)$ by $Q_{ji} = i_A(P_{ji})$ for each *i*, *j*, and consider the map

$$\Psi: ((\mathcal{M}(A, P, m, n)))_{\mathcal{U}} \to \mathcal{M}((A)_{\mathcal{U}}, Q, m, n)$$

with $\Psi((a_i)_{\mathcal{U}}) = ((a_{kl}^i)_{\mathcal{U}})_{kl}$, where $a_i = (a_{kl}^i)$ for each *i*. This definition is easily seen to be independent of the choice of the representation; indeed, Ψ is an isometry.

For $(a_i) \in \mathfrak{A}$,

$$\begin{split} \|\Psi((a_{i})_{\mathcal{U}})\| &= \|((a_{kl}^{i})_{\mathcal{U}})_{kl}\| \\ &= \sum_{k=1}^{m} \sum_{l=1}^{n} \|(a_{kl}^{i})_{\mathcal{U}}\| \\ &= \sum_{k=1}^{m} \sum_{l=1}^{n} \lim_{i \to \mathcal{U}} \|a_{kl}^{i}\| \\ &= \lim_{i \to \mathcal{U}} \sum_{k=1}^{m} \sum_{l=1}^{n} \|a_{kl}^{i}\| \\ &= \lim_{i \to \mathcal{U}} \|a_{i}\| = \|(a_{i})_{\mathcal{U}}\|. \end{split}$$

Therefore Ψ is one-to-one. Linearity of Ψ is obvious. Now, for $(a_i)_{\mathcal{U}}, (b_i)_{\mathcal{U}} \in \mathfrak{A}$,

$$((a_i)_{\mathcal{U}} \circ (b_i)_{\mathcal{U}})_{kl} = \sum_{j=1}^n \sum_{t=1}^m a_{kj}^i P_{jt} b_{tl}^i.$$

So, for $k \in \mathbb{N}_m$ and $l \in \mathbb{N}_n$,

$$(\Psi((a_i)_{\mathcal{U}}) \circ (b_i)_{\mathcal{U}})_{kl} = \left(\left(\sum_{j=1}^n \sum_{t=1}^m a_{kj}^i P_{jt} b_{tl}^i \right)_{\mathcal{U}} \right)_{kl}$$
$$= (\Psi((a_i)_{\mathcal{U}}) \circ \Psi((b_i)_{\mathcal{U}}))_{kl}.$$

This shows that Ψ is a homomorphism. One may check that Ψ is also onto and so is an isomorphism.

COROLLARY 2.2. Let A be a Banach algebra, let \mathcal{U} be an ultrafilter, and $n \in \mathbb{N}$. Then

$$M_n((A)_{\mathcal{U}}) \simeq (M_n(A))_{\mathcal{U}}.$$

THEOREM 2.3. Let A be a Banach algebra, let \mathcal{U} be an ultrafilter, and let $\mathfrak{A} = \mathcal{M}(A, P, m, n)$ be the ℓ^1 -Munn algebra over A with sandwich matrix $P = (p_{ji})$, where $m, n \in \mathbb{N}$. Then the following statements are equivalent.

(a) *A is ultra-amenable.*

(b) A is ultra-amenable, m = n, and P is invertible.

PROOF. (a) \Rightarrow (b). Since \mathfrak{A} is ultra-amenable, \mathfrak{A} is amenable by [3]. So, m = n, P is invertible and $\mathfrak{A} \simeq M_n(A)$ by [1, Proposition 2.16]. Furthermore, by Corollary 2.2, $M_n((A)_{\mathcal{U}}) \simeq (M_n(A))_{\mathcal{U}}$. By our hypothesis, for each \mathcal{U} , $(M_n(A))_{\mathcal{U}}$ is amenable. Hence, $M_n((A)_{\mathcal{U}})$ and so $(A)_{\mathcal{U}}$ is amenable for each \mathcal{U} by [1, Proposition 2.7(i)]. This shows that A is ultra-amenable.

Conversely, if m = n and P is invertible, then $\mathfrak{A} \simeq M_n(A)$. Now, by Corollary 2.2, $(\mathfrak{A})_{\mathcal{U}} \simeq M_n(A)_{\mathcal{U}})$. Since $(A)_{\mathcal{U}}$ is amenable, $M_n(A)_{\mathcal{U}})$ is amenable by [1, Proposition 2.7(i)]. Hence $(\mathfrak{A})_{\mathcal{U}}$ is amenable for each \mathcal{U} . Before proceeding further, we need to fix some notation. For a semigroup *S*, $\ell_0^1(S)$ denotes the set of all $f \in \ell^1(S)$ such that $\sum_{s \in S} f(s) = 0$.

Let *G* be a group, and $G^o = G \cup \{o\}$. Let

$$S = \{(g)_{ij} : g \in G, i \in \mathbb{N}_m, j \in \mathbb{N}_n\} \cup \{o\},\$$

where $m, n \in \mathbb{N}$ and $(g)_{ij}$ denotes the element of $M_{m \times n}(G^o)$ with g in the (i, j)th position and o elsewhere, and o is a matrix with 0 everywhere. Let $P = (p_{ji})$ be an $n \times m$ matrix over G^o . Then the set S with the composition

 $(a)_{ij} \circ o = o \circ (a)_{ij} = o$ and $(a)_{ij} \circ (b)_{lk} = (ap_{il}b)_{ik}, \quad ((a)_{ij}, (b)_{lk} \in S)$

is a semigroup which is called a Rees matrix semigroup with a zero over *G* and will be denoted by $S = \mathcal{M}^{o}(G, P, m, n)$.

Recall that for $g \in G$, $(g)_{ij}$ is identified with the element of $M_{m \times n}(\ell^1(G))$ which has δ_g in the (i, j)th position and 0 elsewhere, and o is identified with δ_0 . Furthermore, we identify $P \in M_{n \times m}(G^o)$ with a matrix $P \in M_{n \times m}(\ell^1(G))$ as follows: if the first matrix P has $g \in G$ in the (i, j)th position, then the new matrix P has the point mass δ_g in the (i, j)th position; if the first matrix P has o in the (i, j)th position, then the new matrix P has 0 in the (i, j)th position. Thus we can write

$$\ell^1(S)/\mathbb{C}\delta_o = \mathcal{M}(\ell^1(G), P, m, n).$$

The product in $\ell^1(S)$ also satisfies $f \star \delta_o = \delta_o \star f = \sum_{s \in S} f(s)\delta_o$, and

$$(f)_{ij} \star (g)_{kl} = \begin{cases} (f \star \delta_{p_{jk}} \star g)_{il} & \text{if } p_{jk} \neq o, \\ \sum_{s,t \in S} f(s)g(t)\delta_o & \text{if } p_{jk} = o \end{cases}$$

for all $f, g \in \ell^1(S)$; $j, l \in \mathbb{N}_n$ and $i, k \in \mathbb{N}_m$. For more details, see [1].

COROLLARY 2.4. Let G be a group and $S = \mathcal{M}^0(G, P, m, n)$ be a Rees matrix semigroup with a zero over G, and let \mathcal{U} be an ultrafilter. Then the following are equivalent.

- (a) $\ell^1(S)$ is ultra-amenable.
- (b) $\ell^1(G)$ is ultra-amenable, P is invertible and m = n.
- (c) *S* is finite, and $\ell^1(S)$ is amenable.

PROOF. (a) \Rightarrow (b). We can identify $(\ell^1(S))_{\mathcal{U}}/\mathbb{C}\delta_o$ with $(\mathcal{M}(\ell^1(G), P, m, n))_{\mathcal{U}}$ (see [1, Corollary 2.3.2]). Furthermore, by Theorem 2.1,

$$(\mathcal{M}(\ell^1(G), P, m, n))_{\mathcal{U}} \simeq \mathcal{M}((\ell^1(G))_{\mathcal{U}}, P, m, n).$$

Now, amenability of $\mathcal{M}((\ell^1(G))_{\mathcal{U}}, P, m, n)$ for each ultrafilter \mathcal{U} implies that $(\ell^1(G))_{\mathcal{U}}$ is amenable, *P* is invertible and m = n by [5]. So, $\ell^1(G)$ is ultra-amenable, and (b) follows.

(b) \Rightarrow (c). By [3], ultra-amenability of $\ell^1(G)$ implies that G, and so S is finite.

(c) \Rightarrow (a). Since *S* is finite, $\ell^1(S)$ is finite-dimensional, and $\ell^1(S) \simeq (\ell^1(S))_{\mathcal{U}}$ for each ultrafilter \mathcal{U} . Now, amenability of $\ell^1(S)$ shows that it is ultra-amenable.

M. Soroushmehr

Before we present our result on semigroup algebras, we need an easy but useful lemma.

LEMMA 2.5. Let *S* be a semigroup and let *I* be an ideal of *S*. Then $\ell_0^1(I)$ is an ideal of $\ell^1(S)$ and

$$\ell^1(S/I) \cong \ell^1(S)/\ell^1_0(I).$$

PROOF. We can identify $\ell^1(I)$ with the set of all functions in $\ell^1(S)$ such that their support is contained in *I*. In this way, $\ell_0^1(I)$ is an ideal of $\ell^1(S)$. Furthermore, the natural map $\pi: S \longrightarrow S/I$, extends to an algebra homomorphism

$$\pi: \ell^1(S) \longrightarrow \ell^1(S/I)$$

such that

$$\pi\left(\sum_{s\in S}\alpha_s\delta_s\right)=\sum_{s\in S}\alpha_s\delta_{\pi(s)}.$$

We claim that ker $\pi = \ell_0^1(I)$. Clearly, $\ell_0^1(I) \subseteq \ker \pi$. Now, suppose that $f \in \ker \pi$ and supp $f \nsubseteq I$. So there exists $s_0 \in S \setminus I$ such that $f(s_0) \neq 0$. Since $f \in \ker \pi, \pi(f)(\pi(x)) = 0$ for all $x \in S$. On the other hand, $\pi(f)(\pi(s_0)) = f(s_0) \neq 0$, a contradiction. This shows that supp $f \subseteq I$; equivalently we may suppose that $f \in \ell^1(I)$. The fact that $f \in \ker \pi$ implies that $f \in \ell_0^1(I)$, and therefore, ker $\pi \subseteq \ell_0^1(I)$. Hence, ker $\pi = \ell_0^1(I)$.

COROLLARY 2.6. Let S be a semigroup. Then the following are equivalent.

- (a) $\ell^1(S)$ is ultra-amenable.
- (b) *S* is finite and $\ell^1(S)$ is amenable.
- (c) $\ell^1(S)''$ is amenable.

PROOF. (a) \Rightarrow (b). As $\ell^1(S)$ is ultra-amenable, $\ell^1(S)$ is amenable by [3, Corollary 5.5]. By [1, Theorem 10.12], *S* has the principal series

$$K(S) = S_1 \trianglelefteq S_2 \cdots \oiint S_n = S_n$$

where K(S) is an amenable group, and each quotient S_{i+1}/S_i has the form $\mathcal{M}^o(G, P, n)$ such that *G* is an amenable group, and *P* is invertible in $\ell^1(G)$. Also, $\ell^1(K(S))$ and $\ell^1(S_2)$ are closed ideals in $\ell^1(S)$ having bounded approximate identities (in fact identities), and by [3, Proposition 5.2], they are ultra-amenable. Since K(S) is a group, it is finite by [3, Theorem 5.11].

Now consider the semigroup algebra $\ell^1(S_2/S_1)$. By Lemma 2.5, $\ell^1(S_2/S_1) \simeq \ell^1(S_2)/\ell_0^1(S_1)$, and so it is ultra-amenable by [3, Corollary 5.5]. On the other hand, S_2/S_1 is a completely 0-simple semigroup. Hence, ultra-amenability of $\ell^1(S_2/S_1)$ implies that S_2/S_1 is finite by Corollary 2.4. Finiteness of S_2/S_1 and S_1 together shows that S_2 is finite. Iterate this argument to deduce that S is finite.

(b) \Rightarrow (c). Since *S* is finite, $\ell^1(S)$ is finite-dimensional and therefore isomorphic with its second dual. So $\ell^1(S)''$ is amenable, as required.

428

(c) \Rightarrow (a). Identifying $\ell^1(S)''$ with $M(\beta S)$, and using [1, Theorem 11.8], it follows that *S* is finite. So $\ell^1(S)$ is finite-dimensional, and therefore $\ell^1(S) \simeq (\ell^1(S))_{\mathcal{U}}$ for each ultrafilter \mathcal{U} . Furthermore, since $\ell^1(S)''$ and $\ell^1(S)$ are isomorphic by finitedimensionality, amenability of $\ell^1(S)''$ implies that $\ell^1(S)$ is amenable. So $\ell^1(S)$ is ultra-amenable.

Acknowledgement

The author thanks the Centers of Excellence for Mathematics at the University of Isfahan.

References

- H. G. Dales, A. T.-M. Lau and D. Strauss, 'Banach algebras on semigroups and their compactifications', *Mem. Amer. Math. Soc.* 205 (2010), 1–165.
- [2] M. Daws, 'Ultrapowers of Banach algebras and modules', J. Glasg. Math. 50 (2008), 539–555.
- M. Daws, 'Amenability of ultrapowers of Banach algebras', Proc. Edinb. Math. Soc. 52 (2009), 307–338.
- [4] M. Daws, 'Corrigendum: Amenability of ultrapowers of Banach algebras', *Proc. Edinb. Math. Soc.* 53 (2010), 633–637.
- [5] G. H. Esslamzadeh, 'Banach algebra structure and amenability of a class of matrix algebras with applications', J. Funct. Anal. 161(2) (1999), 364–383.
- [6] G. H. Esslamzadeh and T. Esslamzadeh, 'Contractibility of ℓ^1 -Munn algebras with applications', *Semigroup Forum* **63**(1) (2001), 1–10.
- [7] S. Heinrich, 'Ultraproducts in Banach space theory', J. reine angew. Math. 313 (1980), 72–104.
- [8] A. T.-M. Lau, R. J. Loy and G. A. Willis, 'Amenability of Banach and C *-algebras on locally compact groups', *Studia Math.* 119 (1996), 161–178.
- [9] W. D. Munn, 'On semigroup algebras', Math. Proc. Cambridge Philos. Soc. 51 (1955), 1–15.
- [10] B. Shojaee, G. H. Esslamzadeh and A. Pourabbas, 'First order cohomology of l¹-Munn algebras and certain semigroup algebras', *Bull. Iranian Math. Soc.* 35(1) (2009), 211–219.

MAEDEH SOROUSHMEHR, Department of Mathematics, University of Isfahan, Isfahan 81746-73441, Iran e-mail: soroushmehr@math.ui.ac.ir 429