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Abstract. A class of compact cold stars in the presence of strange matter is obtained for a
pseudo-spheroidal geometry. Considering the strange matter equation of state p = 1

3 (ρ − 4B),
with pressure anisotropy described by Vaidya-Tikekar metric, we determine the parameter B
both inside and on the surface of the star for different values of anisotropy parameter α. In the
anisotropic case, we note that a stable model of a compact star may be realized.
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1. Introduction
In relativistic astrophysics, the estimated masses and radii for many compact objects

are not compatible with the standard neutron star models. To understand the behaviour
of observed physical features of such compact objects, it has been predicted that strange
quark matter may be a useful approach (Li et al. 1995; Bombaci 1997). In the case of
compact objects an alternative approach was adopted (Mukherjee et al. 1997) to study
the variation of pressure p and density ρ inside the stars based on the model (Vaidya
& Tikekar 1982; Tikekar & Thomas 1999) with specific ansatz e2μ = 1+λr 2 /R2

1+r 2 /R2 (λ =
spheroidicity and R= Curvature parameter), prescribing 3-pseudo spheroidal geometries
for the 3-space of the interior space-time of the star. The equation of state for the strange
quark matter from Kapusta (1994) is:

p =
1
3
(ρ − 4B) (1.1)

where B is referred to as the Bag constant. The total energy density is ρ = ρq + B and
total pressure is p = pq − B.

2. Anisotropic compact star model
The metric of a spherically symmetric, static, cold compact star in equilibrium is

represented by,

ds2 = −e2ν (r)dt2 + e2μ(r)dr2 + r2(dθ2 + sin2 θdφ2) (2.1)

where ν(r) and μ(r) are the two unknown metric functions. The energy-momentum tensor
for the interior matter content of the ultra compact star with anisotropic fluid pressure
is given by, Tij = diag (−ρ, pr , p⊥, p⊥), where ρ, pr and p⊥ are the energy-density,
radial pressure and tangential pressure respectively. In this model, pressure anisotropy
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(Tikekar & Thomas 1999) is defined as Δ = p⊥ − pr , which depends on metric functions
μ(r) and ν(r). The Einstein field equation is,

Rij −
1
2
gijR = Tij (2.2)

where Rij is Ricci tensor and R is the Ricci scalar. Using Eq. (2.1) in Eq. (2.2), we
obtain the following equations:

ρ =

(
1 − e−2μ

)
r2 +

2μ′e−2μ

r
(2.3)

pr =
2ν′e−2μ

r
−

(
1 − e−2μ

)
r2 (2.4)

Δe2μ =

[
ν′′ + ν′2 − ν′μ′ − ν′

r
− μ′

r
−

(
1 − e−2μ

)
r2

]
. (2.5)

To simplify we choose the anisotropy parameter Δ defined above as α = ΔR2 (1−λ+λx2 )2

λ2 (x2 −1)
so that the regularity in pressure(p) and density(ρ) at the center of the star is ensured.
Now using Eqs. (2.4), (2.5) and the ansatz e2μ = 1+λr 2 /R2

1+r 2 /R2 , one obtains a second order
differential equation in ’z’ (Mukherjee et al. 1997) given by,

(1 − z2)Ψzz + zΨz + (β2 − 1)Ψ = 0 (2.6)

where |β|2 = (2 − λ + λα), z =
√

λ/(λ − 1)x with x2 = 1 + r 2

R2 and Ψ = eν (r) . General
solutions of Eq. (2.6) are given below:
Case(i) Here β(=

√
2 − λ(1 − α)) is positive for the values of λ and α. The solution is

Ψ = C[β
√

z2 − 1 cosh(βη) − z sinh(βη)] + D[β
√

z2 − 1 sinh(βη) − z cosh(βη)] (2.7)

Case(ii) Here β(=
√

λ(1 − α) − 2) is positive for the values of λ and α. The solution is

Ψ = C[β
√

z2 − 1 cos(βη) − z sin(βη)] + D[β
√

z2 − 1 sin(βη) − z cos(βη)] (2.8)

where z = cosh(η). C and D are two unknown constants. For an isotropic case(α = 0),
it reduces to the solutions obtained by Tikekar & Jotania (2005).

3. Discussion
The variation of energy density and pressure inside a compact stellar object can be

understood qualitatively in this model from Eqs. (2.3) and (2.4). The energy density ρ
and radial pressure pr become:

ρ =
1

R2(z2 − 1)

[
1 +

2
(λ − 1)(z2 − 1)

]
(3.1)

pr = − 1
R2(z2 − 1)

[
1 − 2z

(λ − 1)
Ψz

Ψ

]
(3.2)

Using the expression of ρ and pr , the parameter B may now be evaluated from Eq. (1.1).
Here the unit of B is Mev/fm3 when R is expressed in km. The following conditions may
be imposed for a compact star: (i) At the boundary of the star Schwarzchild’s exterior
solution is matched with the interior solution i.e.

e2ν (r=b) = e−2μ(r=b) =
(

1 − 2M

b

)
(3.3)
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(ii) Inside the star radial pressure pr > 0 , which leads to an inequality Ψz

Ψ < (λ−1)
2z .

However at r = b(defines the boundary of the star), the radial pressure pr = 0, which
yields Ψz (zb )

Ψ(zb ) = (λ−1)
2zb

, where z2
b = λ(1+b2 /R2 )

(λ−1) . Now R can be evaluated using Eq. (3.2)
for specific configuration of the compact object. To determine the role of anisotropy on
B, we determine the two unknown parameters C and D that appear in Eqs. (2.7) and
(2.8) from matching condition. Once C, D and R are known, the parameter B can be
determined using Eq. (3.1) at different points in the star for different α and λ.

Case I: The data for X-ray pulsar Her X-1 are mass M = 0.88 M�, and radius
b = 7.7 km, so that compactness u = M/b = 0.1686. R = 3.26376 km for λ = 1.6. Inside
the star the value of B decreases from center to surface for a particular choice of α and
at the surface it attains a constant value Bb independent of the anisotropy parameter α.
At the center B0 = 86.2771 Mev/fm3 for α = 0, B0 = 143.067 Mev/fm3 for α = 0.15 and
Bb = 4.81202 Mev/fm3.

Case II: The data for SAX J 1808.4-3658 are mass M = 1.323M� and radius b =
6.55 Km. so that u = 0.2979 (Tikekar & Jotania 2005). Here R = 4.2668 Km for λ = 3.1.
B0 = −2.55601 Mev/fm3 for α = 0, B0 = 125.271 Mev/fm3 for α = 0.3 and Bb =
7.09937 Mev/fm3. From the analysis for both cases it appears that B parameter picks
up smaller values for isotropic case and increases in the presence of anisotropy. At the
center of the star the value of B0 is found to increase almost linearly with an increase of
anisotropy α.

M/b 0.15 0.18 0.20 0.24 0.26 0.28 0.30

B0 (α = 0) 2.1490 1.9066 1.7193 1.2460 0.9344 0.529 -0.0392

B0 (α = 0.3) 2.6654 2.5655 2.4873 2.2887 2.1565 1.987 1.7569

Bb 1.4062 1.1550 1.0000 0.7200 0.5950 0.480 0.3750

Table 1. Variation of parameter B at the center (B0 ) and surface(Bb ) in unit of
3∗104

R 2 Mev/fm3 with compactness factor (M/b) for λ = 5.

From Table 1 it is evident that at the surface of the star Bb decreases with an increase
of compactness (M/b) for fixed α. It is also noted that B becomes negative near the
centre of the star implying the core-region of such configurations to be repulsive. Thus
the radial dependence of B parameter in presence of isotropic and anisotropic strange
matter are different throughout the interior of the star although at the boundary it
attains a definite value.
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