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When mass falls on the polar regions of a neutron star in a binary X-ray source system,
it tends to spread out over the entire surface. A long-standing question in research on this
problem is: will the mass be anchored on the magnetic field lines and drag the field with
it or is there a special mechanism that allows the mass to slip through the magnetic field
lines, leading to much less distortion? As the amount of mass falling on the neutron star
can actually be comparable with the neutron star mass, the question of which alternative
holds is very important. We suggest an efficient mechanism that will allow the mass to
slip through the lines. The mechanism is based on a strong ideal Schwarzschild (Structure
and Evolution of the Stars. Princeton University Press, 1958) instability. As the instability
itself is ideal, it cannot directly force the mass to slip though the lines. However, it can
create a cascade of eddies whose scale extends down to a resistive scale, at the same time
mixing the field lines up without breaking them. On this scale the mass can cross the lines.
This instability is efficient enough that it can produce a mass flow in the plasma without
growing to a large amplitude but saturates at a small one. The instability determines
the mass per flux distribution of the accumulated material on different lines so that the
equilibrium is marginal to the instability on every line. This makes the equilibrium unique.
Thus, as the extra mass on the neutron star grows, the state of the outer shell proceeds
through a sequence of unique critically unstable equilibria. In an appendix, an attempt is
made to track the critical equilibria over long times.
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1. Introduction

This paper investigates the role of anomalous diffusion, caused by a
magnetohydrodynamic (MHD) instability, in spreading freshly accreted matter at the
bottom of the massive accretion columns at the magnetic poles of ultra-luminous X-Ray
(ULX) pulsars: accreting neutron stars with strong (B � 1013 G) magnetic fields. It
should help understand the data from several X-Ray spacecraft observing ULX sources
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in external nearby galaxies. These objects have extremely high X-ray luminosities of
approximately 1040–1041 erg s−1, exceeding, by orders of magnitude, the Eddington
luminosity 1038 (M/M�) erg s−1 at which the radiation pressure force on the electrons
equals the gravitational attraction on protons by an object with mass M. The majority
of observers have traditionally believed that these sources are ‘intermediate-mass’ black
holes with masses of the order of hundreds or thousands solar masses. Recently, however,
the NuSTAR and Swift spacecraft detected regular pulsations with periods of the order
of a second from several of such objects, implying that they are neutron stars with huge
accretion rates.

X-ray binary star emission is believed to arise from mass falling from an accretion disc
onto a neutron star (see Basko & Sunyaev 1976). The binary consists of a neutron star and
a normal star. The normal star evolves and fills its Roche lobe with plasma that flows into
the accretion disc around the neutron star. This mass is driven radially inward through the
disc until it comes into contact with those outermost magnetic field lines of the neutron
star. Then magnetic reconnection allows the mass to transfer to these magnetic field lines.

As the contact point of this transfer is very far from the neutron star compared with its
radius, the mass is transferred to the outermost field lines, which are anchored in a very
small polar region about the neutron star’s magnetic axis. Then, gravity pulls the mass
onto the neutron star with great velocity along the field lines and onto this polar region.
We assume the radius of this region is of order of several hundred metres.

The actual details of the falling material, how it is slowed down by a radiative shock,
and finally reaches the neutron star surface, are discussed by Basko & Sunyaev (1976). In
the present paper we assume that it arrives on the surface and accumulates at rest there.
Our concern is what happens subsequently and how this added mass manages to merge
with the ambient mass of the neutron star shell.

We assume that the neutron star has a very strong, solid, highly conducting crust below
its surface. This crust forms a strong lower boundary to the outer shell of the neutron
star. The plasma in this shell consists of protons and highly degenerate zero-temperature
electrons. Its pressure is mainly due to the Fermi energy of the electrons. This plasma acts
very much like an ordinary high-temperature plasma of high electrical conductivity. In
the absence of instabilities it is strongly frozen onto the field lines of the strong 1012–1013

Gauss magnetic field of the neutron star.
The weight of the accumulating plasma quickly becomes too great to be supported by

the neutron star surface and a large portion of it sinks below its surface under the influence
of the gravitational field of the neutron star, and adds a large amount of pressure to the
original ambient pressure of the neutron star shell. This additional pressure, localized to
the polar region, pushes the shell outward from the polar axis, and as a result distorts the
magnetic field.

Over time this pressure forces the incoming plasma to spread over the entire surface,
greatly distorting the magnetic field of the neutron star in a way that can be observed
externally. (See figures 1 and 2.)

In this paper, we explore this distorted magnetic field and the resulting redistribution
of the additional plasma in the neutron star’s outer shell. These depend on the flux
freezing interaction between the plasma and the magnetic field. We show that when these
distortions are large enough an ideal plasma instability will develop that will lead to
breaking the flux-freezing constraint and allow the plasma to flow across the field lines.
This cross-field flow plays an important role in the redistribution of the field lines and
matter over the surface of the neutron star.

If there were no such cross-field flow, then, at any time, the amount of mass on each
field line, between the crust and the surface would be equal to the amount of plasma that
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FIGURE 1. There are four regions involved in the infalling plasma. In region A, the plasma
is slowed down by radiation that is being emitted by the neutron star. In region B, the plasma
comes to rest or is slowed down and its accumulated weight presses down on the neutron star
and it submerges below the surface. In region C, the ambient plasma is pressed down and its
pressure is increased. It expands radially against the plasma on closed lines. Region D, which
lies on closed lines, has no new plasma until flow across the magnetic field lines occurs.

FIGURE 2. The region, R, where the instability occurs. This region is on the lower part of a
line of force. The s direction perpendicular to the line of force is shown. Owing to the increase
of force because of a finite gradient in h(ψ), the pressure can increase in this direction and
produce the instability, which always occurs on the lower part of the distorted line containing the
instability.
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has fallen on it plus the ambient plasma initially on this line. For the lines on which plasma
is falling, the extra mass on these lines would be equal to the amount of plasma that has
flown along this line up to this time. In this paper, we refer to the inflowing plasma as
simply the plasma and the ambient plasma as simply the ambient plasma.

On the other hand, in the case of no flux freezing, the mass of plasma in the outer
neutron star shell will be redistributed and determined by a method we present in this
paper.

Now, the distortion of the plasma and field at any time is determined by solving a certain
partial differential equation called the Grad–Shafranov equation, after its relation to a
similar equation in plasma physics. However, the unique solution of this equation depends
on the total mass on each of the magnetic flux tubes. For this reason, it is important to
show that, after the magnetic field is sufficiently stressed, a local instability develops on
each field line. These instabilities cause the plasma to flow across the field lines to an
extent we will determine. Thus, the equilibrium will determine the instabilities and the
instabilities will determine the distribution of the plasma on the field lines, which will, in
turn, determine the equilibrium.

Our theory of these instabilities is based on the similar situation that occurs in the
convective region of the Sun and other stars. There, an analogous instability convects the
luminosity across this region. The instability adjusts its strength to just the level necessary
to provide the right convection. If the instability is too strong, too much heat flows, and if
the instability is too weak, not enough heat flows. As the convective zone must carry the
excess heat not carried by radiation, the instability is crucial to the structure of the Sun and
stars. It turns out that the strength of this instability makes the entropy nearly adiabatic.
A very similar situation holds in the neutron star’s outer shell where the instability forces
the magnetic type of entropy to be nearly constant, and allows the mass to flow across the
magnetic field. It is this analogy which has guided our understanding of our problem.

The paper is divided into the following sections. Section 2 describes the condition for
static equilibrium.

Section 3 describes the instability and the conditions for the equilibrium to be unstable
to it on any line.

In § 4, we describe the nonlinear properties of the instability and describe the cascade
of fluctuations of the magnetic field strength and plasma density which it produces. We
present a simple physical picture as to how, when the eddies reach the resistive scale, the
magnetic strength and plasma density fluctuations cause mass to cross the magnetic field
lines.

In § 5, the analytic details of the evolution of the cascade is presented and the rate of
cross-field flow is calculated. An example is given to show how close to marginality all
the instabilities need to be for a steady state in an actual case.

Section 6 shows that the quasi-static equilibrium is a sequence of marginally stable
states and how they are controlled by the plasma inflow onto the neutron star.

Section 7 describes other research on this problem.
Section 8 summarizes the results and draws the conclusion promised in the introduction

as to the method of determining the distribution of the mass per flux and the distortion of
the outer shell.

There are several appendices that supplement the calculations in the text. Appendix D
presents a very approximate attempt to predict the long-time behaviour of the neutron
star’s shape distorted by the flow.
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2. The equilibrium

The rate of the infalling plasma on the neutron star is slow enough that the equilibrium,
under the combined pressure gradient, gravitational and magnetic forces, is essentially
static. (We neglect the centrifugal force owing to the star’s rotation.) At first, we consider
the equilibrium only in the region near the north pole. The symmetric solution holds near
the south pole.

This equilibrium is described by the so-called Grad–Shafranov equation.
Let the incoming matter and the neutron star’s magnetic field be axisymmetric about

its axis and have no toroidal component. At first, we restrict ourselves to times before the
infalling matter has spread over a large region of the neutron star’s surface, so that we
are able to treat the ambient surface as planar. We employ cylindrical coordinates, r, θ, z,
and take the ambient outward magnetic field that existed before the infall of any matter,
as uniform, of constant strength B0 and parallel to the axis of symmetry. The z coordinate
increases radially inward so that z gives the depth below the ambient surface. Therefore,
B0 is in the negative ẑ direction (i.e. vertically upward). We assume that the gravitational
field g is constant, of magnitude g and is in the positive (downward) z direction. The
surface z = 0 is the ambient neutron star surface, that exists before any mass has fallen.
All quantities are in cgs units.

The components of the magnetic field can be expressed in terms of its flux function ψ
as

Br = −1
r
∂ψ

∂z
; Bz = 1

r
∂ψ

∂r
. (2.1a,b)

Here ψ = constant is a flux surface (as B · ∇ψ = 0). The function ψ(r, z) is, thus, equal
to 1/2π times the magnetic flux enclosed by the magnetic surface through r and z.

The current density, j, which is in the θ direction, is

4πjθ = ∂Br

∂z
− ∂Bz

∂r

= −Δ
∗ψ
r
, (2.2)

where

Δ∗ ≡
(
∂2

∂r2
− 1

r
∂

∂r
+ ∂2

∂z2

)
. (2.3)

Now, for a magnetostatic equilibrium,

j × B = ∇p − ρg. (2.4)

The radial component of this equation is

− 1
4πr2

(Δ∗ψ)
∂ψ

∂r
=

(
∂p
∂r

)
z

, (2.5)

where p is at first taken as a function of z and r.
The neutron star pressure is mainly due to cold degenerate electrons for which p =

p(ρ). Non-relativistically, in cgs units p = 1.0 × 1013ρ5/3, and ultrarelativistically, p =
1.5 × 1015ρ4/3. In general, we write p = KργA where γA is the adiabatic index, 5/3 in the
non-relativistic limit and 4/3 in the ultrarelativistic limit.
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The component of (2.4) parallel to the magnetic field is

dp
dρ

(
∂ρ

∂z

)
ψ

= ρg, (2.6)

where the subscript ψ indicates the z variation at constant ψ , i.e. taken along a fixed line
ψ . Its non-relativistic solution is

ρ(z, ψ) = 22.6(z + const)3/2. (2.7)

We have taken g = 2 × 1014 cm s−2. The integration constant is to be determined on each
line by the boundary condition at the surface. It should be zero when z = −h(ψ) at the top
of the accumulated plasma, which rises a height h(ψ) above the ambient surface. Thus,

ρ(ψ, z) = 22.6[z + h(ψ)]3/2 g cm−3, (2.8)

and

p(z, h) = 1.83 × 1015(z + h)5/2 ergs cm−3. (2.9)

Cancelling the factor (∂ψ/∂r), the non-relativistic Grad–Shafranov becomes

− Δ∗ψ
4πr2

= 4.58 × 1015[z + h(ψ)]3/2 dh
dψ
. (2.10)

In the relativistic region, the pressure is more complex because when the electron Fermi
energy is greater than 2 MeV, the electrons combine with protons to make neutrons. The
resulting equation of state for relativistic degenerate electrons in neutron stars is quite
complicated and is discussed in chapter 3 of Shapiro & Teukolsky (1983). We do not
get into the details and simply use Pam(z) for the ambient non-relativistic and relativistic
pressures.

For the general case, let Pam(z) and ρam(z) be the hydrostatic solution for the ambient
pressure and density. Then, because the hydrostatic equation (2.6) does not involve z,
Pam[z + h(ψ)] and ρam[z + h(ψ)] are also solutions along B with the pressure and density
still related by the same equation of state. This latter solution is the hydrostatic solution of
a column of plasma lifted by a height h(ψ) along the line of force ψ . Thus, we have

p(z, ψ) = Pam[z + h(ψ)] (2.11)

is valid for a plasma that rises a height h(ψ) above the neutron star surface. The general
Grad–Shafranov equation (2.5) is then

− 1
4πr2

Δ∗ψ = ∂Pam

∂z
[z + h(ψ)]

dh
dψ
. (2.12)

However, the equations for the pressure and density are not valid within a distance h(ψ)
of the crust and the pressure and density have been extended by a Taylor expansion of p and
ρ. To lowest order, in this expansion the density is a constant equal to the ambient density
at the crust, ρcrust. In addition, the conductivity of the crust is so large that the magnetic
lines of force are frozen in it and do not move during the distortion. The primeval mass
per flux in the extension is equal to this density times the volume which equals the height

https://doi.org/10.1017/S0022377820001026 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377820001026


Anomalous diffusion across magnetic field in accreting neutron stars 7

FIGURE 3. The diagram of the elementary physics of the buoyant instability. The orientation
of the instability is indicated by the direction s in which the buoyancy occurs. This direction is
at an angle to g. The coordinates of the instability are indicated, and α is the angle between −s
and g.

times the cross-sectional area of the flux tube; therefore, m(ψ), the extra mass of the fallen
matter per dψ , is

m(ψ) = h(ψ)ρcrust

B0
. (2.13)

Here 2πm(ψ) is the mass per flux. We see that the function h(ψ) has three different
interpretations. It gives the height of the plasma above the neutron star surface, the extra
mass per unit flux and the right-hand side of the Grad–Shafranov equation. As it gives
the distribution of mass, it should lead to a unique static solution as can be seen by an
energy argument. The equilibrium state with a given distribution of mass on flux tubes is
the lowest energy state with this constraint.

Thus, the determination of h(ψ) is a fundamental problem. Its determination is related
to our main question of whether there are any cross-field flows. The answer to this question
is related to the existence of an instability on each line which has the capacity to drive these
flows. A quasi-steady state depends on there being some cross-field flows at every line of
force and, therefore, on there being an instability driving turbulent transport.

3. The instability

In general, every line of force in the static equilibrium may be subject to our instability.
We present a simplified derivation of this instability here. A more rigorous derivation,
based on the MHD energy principle, is given in appendix A.

In figure 2, consider a particular small region on the lower part of a line of force, and let
us visualize it in local coordinates (see figure 3).

The instability occupies a cylindrical region R on the lower part of a line of force as
shown in figure 2. It extends a distance 	 along this line of force. We describe the instability
in the localized Cartesian coordinates, s, y, ζ , where ζ is taken along the line on which the
plasma is unstable, y is in the θ direction and s is perpendicular to ζ in the rz plane
and increases towards the axis. Here gs = g cosα is the component of g in the negative s
direction where α is the angle between −s and z.

We assume that the region R extends a sufficient distance along the magnetic line that
locally the motions are two-dimensional and independent of ζ . The lines that are straight
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and rigid will roll over each other. At first, we ignore any tension forces associated with
the ends of the region.

In these coordinates, the initial ambient pressure, p, decreases along s as ψ decreases,
but after being upshifted by h(ψ) the total distorted pressure may actually increase. The
magnetic field strength B decreases along s because the magnetic field is pushed outward
by the added infalling mass.

As in the solar case, described in Schwarzschild (1958), consider a two-dimensional
(cylindrical) bubble rising a small distance δs away from the original line. Let the bubble
expand its volume slightly by a factor 1 + ε. Inside the bubble, the density will change
by the factor (1 − ε) and the plasma and the magnetic pressures will change by factors of
(1 − ε)γA and (1 − ε)2.

The total pressure inside the bubble will be

Pin =
(

p + B2

8π

)
= p0(1 − ε)γA + B2

0

8π
(1 − ε)2

= p0 + B2
0

8π
−

(
γAp0 + 2

B2
0

8π

)
ε, (3.1)

where the zero index refers to the bubble’s initial pressure and magnetic field strength.
The total pressure outside the bubble in the undisturbed plasma and magnetic field is

Pout =
(

p0 + B2
0

8π

)
+

(
p′

0 + B0B′
0

4π

)
δs, (3.2)

where throughout the rest of this paper (except in one case), a prime will always denote an
s derivative.

If the bubble rises slowly enough, the total pressure inside the bubble must equal that
outside it. Thus, Pin = Pout and, hence,

ε = −P′
0

Γ P0
δs. (3.3)

where Γ P0 = γAp0 + 2B2
0/8π. Thus, Γ is the effective adiabatic index for the total

pressure P0 = p0 + B2
0/8π.

The gravitational (buoyancy) force per unit volume on the bubble in the s direction, Fs,
is

Fs = −gs(ρin − ρout) = −gs[−ερ0 − (δs)ρ ′
0)] = −gsρ

(
P′

0

Γ P0
− ρ ′

0

ρ0

)
δs. (3.4)

Now, from our equation of state p′/p = γAρ
′/ρ, so expanding the expression in the

parentheses and dropping the zero subscripts, we obtain

P′

Γ P
− ρ ′

ρ
= P′

Γ P
− p′

γAp

= 1
4πΓ PγAp

[γAp(BB′ + 4πp′)− p′(B2 + 4πγAp)]

= 1
4πΓ PγAp

(γApB′B − p′B2)

= B2

4πΓ PγA

(
γAB′

B
− p′

p

)
= 1
γA(1 + γAβ/2)

(
γAB′

B
− p′

p

)
. (3.5)

https://doi.org/10.1017/S0022377820001026 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377820001026


Anomalous diffusion across magnetic field in accreting neutron stars 9

As a result the force in the s direction is

Fs = gsρ

γA

Δ

(1 + γAβ/2)
δs = gsρ

Δ

C
δs, (3.6)

where

Δ = p′

p
− γA

B′

B

= d
ds

ln
( p

BγA

)
, (3.7)

and
C = γA(1 + γAβ/2). (3.8)

As usual, β ≡ 8πp/B2. In the ambient medium β = 4.6 × 10−8z2.5 for B = 1012 G. The
factor C depends on β. When β is small, C is ≈ γA, and when β is large, C is of the order
of γ 2

Aβ/2. We treat C as of order one in our estimates.
The product gsΔ is the critical stability quantity. Assuming gs > 0, as is the case on the

lower part of a line of force (see figure 2),Δmust be positive for instability. If gs < 0, as is
the case on the upper part of the line, then Δ < 0 is the condition. However, on this upper
part of the line Δ is almost always positive and there is no instability.

This instability was discovered by Newcomb (1961), and he derived its force in the form
given in the parentheses of (3.4). We have reduced it to the form given in (3.6), which is
more convenient for our purposes.

It is useful to express Δ approximately in terms of the density gradient. In the local
approximation, we assume p′ + BB′/4π ≈ 0 because the gravitational and curvature
forces are small compared with the gradient forces in a thin region. In addition, p′/p =
γAρ

′/ρ for degenerate electrons.
Then it is easy to show that

Δ ≈ C
ρ ′

ρ
, (3.9)

thus we have an instability if ρ ′ (or p′) is greater than zero on the lower parts of the lines.
Further, using (2.11), we obtain

p′ = dPam[z + h]
ds

= dPam

dz

(
dz
ds

+ dh
ds

)

= dPam

dz
(− cosα + dh/ds), (3.10)

where α is the angle between the −s and z. Therefore, (because dPam/dz is positive), on
the lower part of the line where gs > 0 the plasma is unstable if and only if

dh
ds
> cosα. (3.11)

Thus, if h changes fast enough in the s direction, then one has instability. In other words,
if too much mass accumulates inside the flux surface of the line, dh/ds will be large enough
to produce the instability as was hinted at in the introduction.

In our derivation of the stability condition, we have neglected the fact that our cylindrical
bubble has ends and we have assumed that the magnetic field is only locally perturbed
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along a length 	 and is unperturbed outside. However, there is a tension force πB2
0(δs/	

2)
per unit volume. Thus, Δ must be greater than zero for instability. An estimate shows that
the critical value of Δ for instability is

Δcrit = π2v2
AC

gs	2
. (3.12)

Thus, the critical condition for instability is Δ′ = Δ−Δcrit > 0. (This prime does not
refer to a derivative.) When necessary, we can take care of the tension forces by replacing
Δ by Δ′. It turns out that in our applications Δ′ is very close to Δ so, where appropriate
in our subsequent discussions, we can replace Δ′ by Δ.

The quantity Δ is a function of s through the s dependence of p′/p and B′/B, so that the
force Fs will be positive over a limited region −ξ < s < ξ , where ξ is a mixing length,
whose magnitude we estimate in § 5. The force Fs is the gradient of a local potential. If,
for simplicity, we take the potential as parabolic, its depth is

φ = ρgs
Δ

2C
ξ 2. (3.13)

As an approximation to the nonlinear orbit of the unstable fluid element, we can take its
corresponding velocity as a harmonic motion with amplitude

v0 = ξ

√
gsΔ

C
cm s−1. (3.14)

It is useful to have some idea as to the magnitude of these quantities. With
g = 2 × 1014 cm s−2 and the mixing length ξ = 103 cm, the velocity is v0 = 1.4 ×
1010√Δ/C cm s−1. We expect Δ to be at most of order 10−4 cm−1 because it is the
difference of the gradient of two equilibrium quantities and we take their scale heights as
of order 104 cm. Thus, (in this case) v0 should be at most 1.4 × 108 cm s−1. The nonlinear
growth rate γnl ≡ k0v0/2, where k0 = 2π/ξ , is from (3.14)

γnl = k0vo

2
= π

√
gsΔ

C
, (3.15)

thus γnl = 4.4 × 107√Δ/C s−1, or at most 4.4 × 105 s−1.
When the instability becomes nonlinear, we expect there to be many such independent

unstable modes in the unstable k region. Treating the modes as independent, and adding
all of these modes, we can treat the resulting velocity field statistically.

Expand v in a two-dimensional Fourier series in k and a Fourier integral over ω,

v = Σk

∫
dωvkω exp(ik · r − iωt). (3.16)

We assume that v is perpendicular to B0 and independent of ζ , the coordinate along B0.
Then, we use the random phase approximation to write

〈v∗
k′ω′vkω〉 = J(k, ω)δk′kδ(ω

′ − ω)(I − k̂k̂). (3.17)

Here, J(k, ω) is the turbulent velocity spectrum that we assume axisymmetric about the
magnetic field direction.

Although one expects nonlinear effects to spread the unstable velocities over many
different wave length scales, we make the simplifying assumption that all the velocity
modes remain on the scale of the inverse mixing length, ko = 2π/ξ = 6.7 × 10−3 cm−1.
However, the frequency of the velocity modes is not monotonic.
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4. The cascade of the fluctuations of the magnetic field strength

Using these facts about the instability, we are now in a position to discuss the nonlinear
cascade developed by the instability, when it saturates and how it can move plasma across
the very strong neutron star magnetic field lines.

We assume that the turbulent velocities are localized to the cylindrical region R of
radius ξ and length 	 along a given field line. Outside this region in the longitudinal
direction along B0, or in the radial direction across B0, the plasma will be stable and there
will be no turbulent velocity (see figure 2). Owing to the great strength of the magnetic
field, its lines of force will be straight and rigid during the perturbations. However, as they
are displaced, the magnetic strength at a fixed point varies.

Inside R, the turbulent velocities move the straight magnetic field lines around, mixing
them up. These lines will remain tied to the static outside lines so this line tying will lead
to tension that will try to keep the lines in R from moving. As long as the instability
persists owing to a non-zero (positive)Δ∗, the unstable forces will be able to overcome the
tension forces and mixing will continue.

Even though we have assumed that the transverse turbulent velocities remain on the
mixing length scale k0, these velocities will have a shear that can generate magnetic
and density perturbations at much smaller scales. As long as the plasma is ideal, these
perturbations will extend down to the smallest conceivable scales. However, at sufficiently
small scales, resistive effects become important and truncate the magnetic and density
spectra. On these scales, the plasma will no longer be ideally tied to individual lines, and
resistivity can lead to transfer of mass between different lines.

The combination of these two effects, namely the propagation of the perturbations down
to resistive scales and the transfer of mass to different lines on these scales, leads to
systematic motions of the plasma across the lines. With time, these motions flatten the
density gradient, which was driving the instability and it will terminate. Finally, the lines
in R will have returned to their original position under the influence of the tension force
tying the lines to the external region, but the plasma will not have returned to its original
position. On the contrary, some of the plasma will have moved downstream in the negative
s direction. In this way, flux freezing will be broken, there will be a bulk motion of the
plasma across the lines and the accumulated infalling mass will be able to spread over the
neutron star without completely dragging the field lines with it.

The rest of the paper is devoted to deriving the rate at which this all happens.
Before proceeding to an analytical treatment of the evolution of the fluctuation spectrum

let us pause and understand in a general way what is going on. We do this by making use
of a simple model (see figures 4 and 5).

Imagine the magnetic field strength and density having fluctuations at only a single
scale, say the scale kη. Ignoring the region along B0 outside of R, which is stable, let us
replace the magnetic field by a large collection of rigid rods oriented in the B0 direction
with radii of the order of this scale (see figure 4). Let each of the rods, which we label
by φ, internally contain a uniform plasma and magnetic field, whose density and strength
can be different for different rods. Let the rods be moved around randomly by the shear of
large-scale turbulent velocities, which are perpendicular to the rods and uniform in 	 (i.e.
rolls).

As the rods move, let them remain rigid. Initially, let the different plasmas in the rods
vary in space in a way consistent with the unstable equilibrium. Let the mass in each
individual rod remain constant as the rods move.

In figure 5, we display an end view of the rods. At first, neighbouring rods will have
nearly the same densities. After the rods are mixed up by transverse motions, two rods
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FIGURE 4. Side view of the model. The region R is indicated in which the rods exist. Their
size is the resistive size. Two particular rods φ1 and φ2 are shown. They are being mixed up by
the eddies produced by the turbulent velocity shear.

(a) (b)

(c)

FIGURE 5. End-on view of the model. (a) The two rods φ1 and φ2 with different densities are
initially some distance apart. (b) After some time they are brought close together and resistive
effects will cause the plasma to flow between the rods and equalize their densities. A repetition
of these collisions will equalize the densities of all the rods. (c) Plot of how the density would
vanish along a cross cut of the region.
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(a)

(b)

FIGURE 6. An explanation of why some mass can cross magnetic field lines. A plot of the
density before and after the instability. Before the instability develops, there is an unstable
gradient of the density in the s direction, which produces a cascade (here, s increases to the left).
After the cascade saturates, the density gradient vanishes and the mass distribution becomes
different, so that there is less mass upstream (positive s) and more mass downstream, violating
flux freezing. The density before is indicated by lines slanting to the left and after lines slanted
to the right.

φ1 and φ2 in figure 5(a) with quite different densities and field strengths may come close
together as in figure 5(b). When this happens a surface current j develops between the
two rods. From Ohm’s law in the frame of motion v × B = ηj, this current will give rise
to diffusional velocity of plasma between the two rods. It is easy to see that if the rods
both have the same total pressure p + B2/8π the diffusion is from the high-density to the
low-density rods and this equalizes their two densities.

If the mixing continues long enough, all the neighbouring pairs in the same
neighbourhood will approach each other and all the densities in the entire cylindrical
region will equalize. As a consequence the unstable density gradient ρ ′ = ρΔ/C driving
the instability will be reduced to zero, and the turbulent velocity driving the mixing will
cease.

However, when one compares the original density, which had a finite gradient, with the
final density, which has a stable gradient, we see that the plasma will have been shifted
relative to the magnetic field lines, see figure 6. Thus, when the turbulent cascade reaches
the resistive scale, it is truncated by the resistive effects described previously, which flatten
the magnetic and density gradients and damp the instability.

We see that the cascade proceeds in two stages. In the first stage, the fluctuations of B
and ρ cascade down the scales to a size where resistive effects come into play. We show
in the next section that this happens at a rate of order γnl/16, see also appendix B. In the
second stage, the resistive effects will flatten the density spectrum at the resistive diffusion
rate k2η (see appendix C). At large scales, this diffusion rate is small compared with the
cascading rate, but at a certain scale keq, it will balance the rate of flow of the first stage
so as the fluctuations propagate down the cascade they will be damped by the second
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stage effects. This scale will be roughly equal to kη where

k2
ηη = γnl. (4.1)

At still shorter wave lengths there will be no fluctuations.
We will separate these two stages. In the first stage, treated in the next section, we

will derive the evolution of the magnetic strength fluctuations as though there were no
resistivity. In the second stage treated in appendix C we will derive the resistive damping
for k ≈ kη. Then we will match the two rates to find the scale keq where the two rates
balance. The first scale is characterized by a the time tγ,D for the cascade to reach kη. and
the second is characterized by the resistive time, tη,D, at kη. Once the two times have been
found a simple iteration leads us to keq. We will find that the two times do not balance. We
will then alter k to get balance, and find keq = 4.5kη.

The mathematical details of the first stage are given in the next section and the second
stage in appendix C.

The total life of the instability from its initial time to the time when it is terminated is

tD = tDγ + tDη (4.2)

with the times first evaluated for k = kη and then for keq.

4.1. The rate of mass flow across magnetic lines
We can express the flow rate in terms of the instability lifetime tD as follows. After the
instability is terminated, the initial density gradient has been reduced by

δρ ′ = ρ0Δ/C, (4.3)

where ρ ′ is the initial gradient and the final gradient is zero, see (3.9).
After the cascade has terminated an amount of mass per unit area

δM = ξ 2δρ ′

2
= Δ

C
ρ0ξ

2

2
g cm2 s−1 (4.4)

will have been transferred across the plane s = 0 by the cascade, see figure 6. Dividing
this mass by tD, the life of the instability, we obtain the average rate of the local mass flow
across the magnetic lines during the life of this instability

δM
tD

= ρ0ξ
2

2tD

Δ

C
. (4.5)

So far, we have concentrated on the flow of local mass in region R crossing the magnetic
field the field line. However, in a steady state all the mass in the entire flux tube must cross
the field (see figure 7). However, the flow along the field line is easy so that as the local
mass is removed from the unstable region, a pressure gradient will exist along the line
which will pull the plasma to the unstable region. This happens fast enough that one sees
a continual flow of the total mass across the field. If ε is the fraction of the line’s length
in the unstable region, then the amount of mass needed to be transferred will be larger by
a factor approximately 1/ε. However, the time for complete transfer will be longer by the
same factor. Thus, (4.5) still gives the mean flow during the life of the instability.

Assuming that the instabilities are continually excited with the same Δ, this expression
yields the relation between the mean cross-flow rate and Δ, once the life of the instability
tD is known. Our goal is thus reduced to evaluating tD.
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FIGURE 7. The correction for the flow along field lines. The mass along the entire fluid slows
along the tube until it reaches the instability and crosses the line at that point, increasing the
length of the flow time, but increasing the amount of mass during the longer time.

5. The evolution of the cascade

In this section, we derive the ideal equation for the time-dependent spectrum of the
intensity of the magnetic fluctuations at a general point and time of the quasi-static
equilibrium.

Let the field strength be
B = B0 + b(x, t), (5.1)

where B0 is the unperturbed quasi-static magnetic field. The initial unstable gradient of
the magnetic field strength is included in b.

We assume ∇ · v = 0 because the magnetic field is so strong. Then the magnetic field
strength satisfies the scalar equation

∂b
∂t

= −∇ · (vb). (5.2)

If we perform a Fourier analysis of b,

b = Σkbk(t) exp(ik · x), (5.3)

then this equation can be written as

∂bk

∂t
= −ik ·

∫
Σk′′ (vk′′bk′) dω, (5.4)

where we use the notation
k = k′ + k′′. (5.5)

This equation can be interpreted as a k magnetic mode being changed by the interaction
of a k′′ velocity mode with another k′ magnetic mode. The integration over dω allows for
the time dependence of the turbulent velocity.
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This equation is of the same type as the dynamo equation treated by Kulsrud
& Anderson (1992), which itself is equivalent to the direct-interaction formalism of
Kraichnan & Nagarajan (1967). It can be solved in a similar way with two changes. Here
the perturbed magnetic field strength b is the passive scalar. Further, the velocities are
perpendicular to the unperturbed B0 and independent of the position along the unperturbed
field line. The details of the solution, with the appropriate modifications, are given in
appendix B.

We have used discrete Fourier modes for the analysis because they make the direct
interaction between the turbulent velocity and the magnetic field clearer. The Fourier series
are most easily interpreted in terms of continuous functions, so with box normalization,
we replace an axisymmetric sum of the square of the Fourier modes by

Σk|bk|2 =
∫

M(k) dk. (5.6)

Thus, M(k), is the spectrum of the intensity of the perturbations in the magnetic field
strength. In the box normalization formalism M(k) is defined by

M(k) =
(

L
2π

)2 ∫
|bk|2k dk̂, (5.7)

where L2 is the two-dimensional volume of our box, k is a scalar, k̂ is a unit vector and the
integral is over a cylindrical surface of radius k.

As shown in appendix B, for k 
 k0 the time evolution of M(k) is given by the
differential equation

∂M
∂t

= γ

16

(
k2 ∂

2M
∂k2

+ k
∂M
∂k

− M
)
, (5.8)

where from (B 28)

γ =
(

L
2π

)2 ∫
k′′2J(k′′, 0)dk′′. (5.9)

(This ignores the fact that (5.8) for ∂M(k)/∂t is actually the large k limit of an integral
equation. Assuming the differential equation is valid down to k0 does make a small error.
However, because the range in k is very large this is probably not serious.)

We have assumed that the velocity spectrum is concentrated at k0. Then from this
equation for γ and (3.17)

v2
0 = 2

(
L

2π

)2 ∫
J((k′′, ω) d2k′′ dω, (5.10)

it follows that
γ

v2
0

= k2
0

2
J(k, 0)∫

J(k, ω) dω
= k2

0

2(Δω)
∼ k2

0

2k0v0
, (5.11)

where v0 is the root-mean-square (rms) velocity. In this equation, (Δω), is the
decorrelation rate of the turbulence, and is roughly equal to k0v0/2, one half the turnover
rate of the eddy. Thus, a reasonable approximation for γ is the nonlinear growth rate γnl
given in (3.15). We see that γ = γnl is also the turnover rate of the turbulent velocity, and
is given in our numerical example in § 3 as 4.4 × 107√Δ/C s−1.
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To solve (5.8), we transform the independent variable k to

x = ln(k/k0), (5.12)

Then, the equation for M becomes

∂M
∂t

= γ

16

(
∂2M
∂x2

− M
)
. (5.13)

This is a damped diffusion equation. Its solution, normalized so that the initial level of
fluctuations

[∫
M(k) dk = k0

∫
M(x)ex dx

]
is unity, at t = 0 is

M(x, t) = 4
k0

√
πγ t

exp(−γ t/16 − 4x2/γ t). (5.14)

(In fact, M should be normalized by the initial condition (δB)2/B2
0 = (γβ/2C)Δ, but

we do not make any use of this normalization.)
Although it turns out that keq is not exactly equal to kη it is of the same order of

magnitude. Thus, we are first interested in the integrated energy about kη,

kηM(kη, t) = 4√
πτ

exp(−τ/16 − 4x2
η/τ + xη), (5.15)

where kη = √
γ /η, τ = γ t and xη = ln(kη/k0. If we take η = 1.0 cm2 s−1 and Δ =

10−4 cm−1, we find xη = 9.26.
The value of the resistivity in the conditions of the neutron star shell is somewhat

controversial. (As the resistivity enters into our results only logarithmically, we may
choose the value of unity given by Shapiro & Teukolsky (1983) for it.)

For a fixed xη, (5.15) is a function of τ alone. Its asymptotic expression for large xη can
be found by expanding its exponent about its maximum value τ = τ0 = 8xη. The result is

kηM(kη, t) = 4k0√
πτ0

exp
−(τ − τ0)

2

16τ0
. (5.16)

Thus, the time for the eddies to cascade down to kη is tDγ = τ0/γ = 8xη/γ = 74/γ s.
A similar result holds for the density whose spectrum is given by N(k, t).
These results give the initial condition for the second stage: the resistive evolution of b

and δ, the perturbed magnetic strength and density, respectively, at kη. In appendix C, it is
shown that δ and b satisfy a third-order system of differential equations. Their solution can
be expressed in terms of three normal modes. One mode damps at the rate k2

ηη/2 = γ /2,
and the other two at the rate γ /4. Therefore, all these modes should disappear in a time of
order 4/γ .

Hence, it would seem that the total time during which the instability lasts, tD, is

tD = tDγ + tDη = 74
γ

+ 4
γ
, (5.17)

we see that the first term dominates.
However, the two times, or rates, are different for stage one and two. This is because we

chose kη only as a first guess for keq. Thus, our guess for keq must be adjusted. Note that the
first stage time tγ,D depends only logarithmically on the terminal k, but the second stage
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time depends on its square. Thus, as a first iteration we may keep tγ,D fixed and vary k to
make the second time equal to the first. This gives keq = 4.3kη and the total time will be
just twice the unchanged first time.

Thus, the total decay time is

tD = 16xη
γ

= 148
k0ξ

√
gsΔ/C

= 24√
gsΔ/C

. (5.18)

In this formula, we use xη = 9.26 rather than the more correct value of xη = 13.87 − 0.5 ×
ln(Δ/C). This is slightly inaccurate, but it keeps the results more compact.

5.1. The mean rate of flow across the field lines
Let uF be the velocity of mass transfer across the field lines. Then ρ0uF is given by the
total mass divided by tD, which from (4.5) is

ρ0uF = δM
tD

= 1
48
ρ0

√
gsξ

2

(
Δ

C

)3/2

, (5.19)

thus

uF = 1
48

√
gsξ

2

(
Δ

C

)3/2

cm s−1. (5.20)

To determine the mixing length ξ we use the fact that the critical quantity Δ is only
positive over a limited range −ξ < s < +ξ as in the figure 3. Now, when Δ is considered
to be a function of s, then 2ξ is the difference between its zeros. The maximum value of
Δ(s) is the critical valueΔ soΔ = −(ξ 2/2)(d2Δ)(ds2). However,Δ is itself a logarithmic
derivative, thus

(d2Δ/ds2) = −d3 ln( p/Bγ )
ds3

, (5.21)

is of order −1/λ3, where the length, λ, depends on the actual equilibrium. Without
knowing the detailed equilibrium obtainable from a numerical calculation, we can only
guess at the value of λ, but presumably it is of the order of magnitude of the two scale
heights of B and p. Estimating ξ in this way, we have

ξ 2 ≈ 2λ3(Δ/C). (5.22)

Thus, with this estimate for ξ ,

uF = 1
48

√
gs

(
Δ

C

)3/2

ξ 2 = 1
24
λ3√gs

(
Δ

C

)5/2

cm s−1. (5.23)

This result gives the relation between the instability parameter Δ and the flow velocity
of matter across the strong neutron star field lines. It can be considered indicative of the
rate of loss of flux freezing.

5.2. The magnitude of Δ
We have stated that positive values of Δ in our normal solutions can be treated small
enough as to be considered negligible. To indicate that this is true, we estimate mass flow
across a general surface. Then use (5.23) to calculate Δ and verify that it is indeed small.
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Let ˙Mtotal be the time derivative of Mtotal equal to 6 × 1017L grams per second, which is
equivalent to 10−9L solar masses per year. In a quasi-steady state ˙Mtotal is the same for all
surfaces except those close to the poloidal axis. The surface area of any given flux tube is
its mean radius r times its vertical curved length, which we approximate as Dc, the depth
of the crust. Then the mean flow velocity across the surface, UF, is given by

˙Mtotal = 2πρ0rDcUF. (5.24)

For Dc = 1 km and ρ0 = 1011 g cm−3, we find

UF =
˙Mtotal

2πρ0rDc
≈ 10L

r
cm s−1. (5.25)

This velocity is slow because the huge mass near the crust flows along the field to the
instability and across the flux line.

Taking λ ≈ 104 cm and gs = 2 × 1014 cm s−2, we find from (5.23) that

uF = 5 × 1017

(
Δ

C

)5/2

cm s−1, (5.26)

so equating this to UF ,

Δ

C
= (5 × 10−17L/r)2/5 ≈ 2.1 × 10−7

(
L
r

)2/5

cm. (5.27)

(Here r is in centimetres. For r in metres, we have Δ = 3.3 × 10−8(L/rm)
2/5.)

Remembering that an arbitrary Δ would be of order 10−4, its small size here is due to
the cancellation of p′/p and γB′/B. We see that the effective value of Δ is smaller than
expected by a factor of 2.1 × 10−3/r.

Thus, we may consider the effective valueΔ to be very small. This estimate justifies our
claim that Δ is negligibly small.

6. The evolution of the quasi-steady equilibrium as a sequence of self-organized
criticality states

We can make use of the smallness of Δ to determine the evolution of the quasi-static
states. We have treated the instabilities as starting from a marginal state and considering
the amplitude growing to a magnitude that can balance the damping of the instability
owing to the flow of mass across the neutron star surface, and then decreasing to
zero. It would be more realistic to imagine the instabilities are always at the amplitude
corresponding to equation (5.27).

We do not expect the amplitudes of each instability to be constant, but rather the rms of
their amplitudes to be such as to lead to a balance between the dissipation rates of all the
amplitudes and their growth rates.

That is, the mean value of the square of the amplitudes gives the correct flow according
to (5.23), and the size of the Δ is such as to continually balance the dissipation rate.

We do not need to know the actual value of Δ because their magnitude is small enough
that they do not affect the quasi-static equilibrium so we may simply take the size of the
Δ at the instability sites large enough to balance the damping of the unstable modes. We
call a quasi-static state normal if there is a point on every line such that Δ is zero and is
non-positive everywhere else.
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This situation is duplicated in stellar convection zones where, in practice, the radial
entropy gradient ∇ ln( p/ργ ) can be taken as zero everywhere in the convection zone
(except near the surface). There the gradient is small and just positive enough for the
instability amplitude to drive the necessary amount of convective heat flow, but not large
enough to be noticeable, so in the convective zone the gradient of the entropy can be taken
to be zero.

The significant difference between our treatment of the distribution of mass on the
neutron star surface and the distribution of temperature in the convection zone is that
our Δ need to be zero only on a limited region of each magnetic surface and negative
everywhere else.

It should be noted that our critical quantity for stability Δ = ∇[log( p/Bγ )] is the
gradient of the magnetic form of entropy.

Thus, to find the quasi-steady state at t we find the normal state in which the total excess
mass Mtotal is equal to the total mass that has fallen up to this time. We believe such normal
states only depend on Mtotal and are unique solutions of the Grad–Shafranov equation. As
Mtotal increases from zero they give the correct evolution of the problem of fallen mass on
the surface of a neutron star.

These normal states are marginally stable states that are often referred to in the literature
as ‘self-organized criticality states’.

From the fact that in our steady state, the flow across the field would seem to occur
so freely, one might conclude that the field itself would not be changing. This cannot be
the case because the flow across the lines can only occur if there is an instability and
this instability will only occur under certain conditions. These conditions change as the
amount of accumulated mass changes and to accommodate this the magnetic field itself
must change. To find these changes, one must rely on there always being instabilities and
the system must in a marginal state and satisfy the Grad–Shafranov equation.

In appendix D, we speculate as to the long-time behaviour of the evolution of the neutron
star’s external shell.

7. Comparison with other research

There has been a large number of papers presented on this problem. We found the
following to be noteworthy.

Hameury et al. (1983) were the first to derive the Grad–Shafranov as the equation for
equilibrium. They solved this equation for special cases of what we refer to as h(ψ)
equilibrium equations. Then Geppert & Urpin (1994), and later Cumming, Zweibel &
Bildsten (2001), assumed that the incoming mass was not magnetized, but they included
resistivity to see whether the mass penetrated the neutron star field. Brown & Bildsten
(1998) assumed that the mass did not spread out radially, but simply sunk into the neutron
star. Litwin, Brown & Rosner (2001) discovered and analysed the Newcomb instability
of the equilibrium and determined critical conditions for instability. Melatos & Phinney
(2001), in a seminal paper, investigated conditions when a very large amount of infalling
neutral mass, comparable with 10−5–10−2 solar masses, accumulated on the neutron star.
They could not be definite about their results because of their uncertainty as to whether
flux freezing or resistive diffusion dominated. However, they did discuss the possibility
that this amount of mass could reduce the magnetic moment of the neutron star. Then
Payne & Melatos (2004, 2007), Vigelius & Melatos (2008) and others made extensive
numerical simulations of the time evolution of the mass. However, in these papers it was
assumed that the neutron star surface was rigid so that none of the new mass penetrated
the surface. They further explored the depression of the magnetic moment and investigated
the size of the resulting quadrupole moment of the neutron star, to see whether there could
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be significant emission of gravitational radiation. However, because it is now appreciated
that the mass does penetrate the surface, the significance of their results is uncertain. In
most of these papers, the emphasis was on nuclear reactions that would be produced by
the infalling mass rather than on the equilibrium itself.

Priymak, Melatos & Payne (2011) returned to the stability question. They approached
it by time-integrating the dynamic equations after a strong perturbation was produced by
adding random extra mass. This led to some results on the gross instabilities, but they
could not reach the small-scale instabilities discussed by Litwin et al. (2001) and those
studied in our present paper.

Mukherjee & Bhattacharya (2012) and Mukherjee, Bhattacharya & Mignone (2013)
carried out a similar approach to the stability question with similar results.

Some attempts (e.g. Urpin & Geppert 1995; Urpin 2005) were made to find mechanisms
to enhance the resistivity by the effects of the infalling mass, but apparently they were not
successful.

8. Summary and conclusions

The main goal of this paper has been to show that when external mass flows onto a
neutron star, it may not be inhibited by flux freezing, from flowing across the neutron
star’s magnetic field from the pole towards the equator. We have shown that when the flow
of mass from the other star sets in, stresses lead to an instability that allows mass to cross
field lines. Although the instability is ideal on its initial scale, it nonlinearly generates
a cascade of magnetic field strength fluctuations that extends down to resistivity scales
where flux freezing is broken and matter is allowed to cross the field lines.

By an analytical analysis, we show that the instability is so strong that even a small
increase in the parameter for instability, Δ, above its critical condition, will lead to the
necessary amount of flow to balance the inflow.

This flow leads to a redistribution of the excess mass per flux over the neutron star
surface. (This distribution of mass uniquely determines the magnetostatic equilibrium.)
However, the latter is very difficult to derive from the properties of the instability, because
the amount of flow is so sensitive to its amplitude.

Instead the flow is determined indirectly at any time t, by finding a distribution of
the mass that allows a normal solution of the equations for a quasi-static equilibrium.
We call a solution normal if it leads to an instability on every flux surface. (An
additional requirement is that the equilibrium contain the amount of excess mass that has
accumulated up to this time.) The necessary flow between the states can be found from
the different equilibria at neighbouring times. These flows can be used to calculate the
amplitude of the instability that we have shown to be very small.

In this paper, we first derive the equation for magnetostatic equilibrium and show that its
solution depends on the distribution of mass per flux. We next derive the ideal instability
and show that it indeed leads to a cascade of fluctuations.

Then we carry out a two-dimensional ‘Kulsrud–Anderson’ analysis (Kulsrud &
Anderson 1992) (first developed for dynamo theory) to derive the equation for the
time-dependent evolution of the cascade. We apply resistive MHD theory to calculate the
amount of cross-field flow that results from these fluctuations and relate it to the marginal
valueΔ. Then we demonstrate that, for the rate of flow of mass onto the neutron star, very
small values of Δ are needed.

Because these values of Δ are so small, this is all the information we need from the
instability. The whole problem reduces to looking for the sequence of normal states. This
result was our goal.
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Based on these results and making use of a very crude marginal condition for instability,
we speculate in appendix D about what might happen on longer time scales. This
approximate condition can be expressed in terms of h(ψ), the variation of the height of the
mass above the ambient neutron star surface. It is dh/dr < cosα, where r is the distance
measured along the neutron star surface and α is a certain angle, which we cannot ascertain
without a detailed numerical calculation.

Assuming that mass flow on the star is 10−9 solar masses per year, we find that it will
take ≈ 12/a thousand years for the mass to finally reach the equator, where a = cosα. The
height of the mass will be (1.5/a) kilometres at the poles and will be a linear decreasing
function of r.

We found that our normal states may not stretch all the way to the equator with free
cross-field flows. Instead, if the neutron star field is less than 1013 Gauss, there will be
an unmagnetized cylindrical region near the neutron star pole where the plasma may be
field free and allow the flowing mass to fill this unmagnetized region with no trouble.
This region would be surrounded by a normal type of solution. This, in turn, could be
surrounded by an undisturbed region where the remaining flux is compressed.

Needless to say these speculations are unlikely to be even qualitatively valid, because
they are based on a highly approximate treatment of the instability. However, they do yield
interesting results. They predict the form of the altered surface magnetic field over the
entire surface and indicate a time-dependent macroscopic change in the neutron star dipole
field. After a few tens of thousand of years, a steady state for the magnetic field will be
reached. The neutron star will still increase its mass owing to more mass falling on it and
its radius will increase at about one-tenth of a centimetre per year, but the distribution of
mass and magnetic field will be in a steady state and the neutron star will slowly increase
its radius under all this new mass to accommodate its inflow.
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Appendix A. The energy principle derivation of the instability

The existence of the instability and its critical condition can be shown from the δW
formulation of the MHD energy principle (Bernstein et al. 1958). This principle states
that if the perturbed energy under a perturbation ξ(r),

δW(ξ) = 1
2

∫ [
Q2

4π
+ j · (ξ × Q)+ γAp(∇ · ξ)2 + (ξ · ∇p)(∇ · ξ)

+(g · ξ)∇ · (ρξ)
]

d3x (A 1)

is negative, for a single perturbation ξ0(r), then there exists initial conditions and an exact
unstable solution for which

K(ξ, t) > K(ξ, t0) exp 2γ0t, (A 2)
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where

γ 2
0 = −δW(ξ0)

K(ξ0)
, (A 3)

and where K(ξ, t) is the integral

K(ξ) = 1
2

∫
ρξ 2 d3x, (A 4)

see Laval, Mercier & Pellat (1965).
By this we mean that a perturbation ξ(r, t) that satisfies the initial conditions ξ(r, 0) =

ξ0(r) : ∂ξ/∂t(r, 0) = γ0ξ0(r) will make K(ξ(r, t)) greater than K(ξ0)) exp 2γ0t for all t in
the linear regime. (Note that here ξ and γ are not the same as the ξ and γ in the main
text.)

If our goal is to show that there is such an instability, then we have considerable choice
in choosing our ξ to make δW negative.

To find such a ξ , go to local coordinates again as in figure 2, with x perpendicular to B,
y in the θ direction and z along B.

In (A 1)
Q = ∇ × (ξ × B) = B · ∇ξ − ξ · ∇B − B(∇ · ξ). (A 5)

As stated previously, we can choose our ξ perpendicular to B in our search for an unstable
ξ . In addition, for convenience, let us replace ξx and ξy and by ξx and

D = ∇ · ξ, (A 6)

and then write ξx as simply ξ . In addition, for notational compactness, let us replace x
derivatives by primes.

Breaking Q into perpendicular and parallel parts, we have

Q⊥ = B
∂ξ

∂z
,

Q‖ = −ξB′ − BD.

⎫⎬
⎭ (A 7)

In Q‖ we violate our convention by letting ξ be the total perpendicular vector.
Now, with these conventions, we have

Q2
‖

4π
= 1

4π
(ξB′ + BD)2

j · ξ × Q = − 1
4π
ξB′ (ξB′ + BD

)
(ξ · ∇p)(∇ · ξ)+ γAp(∇ · ξ)2 = ξp′D + γApD2

ξ · g∇ · (ρξ) =
(

p′ + BB′

4π

) (
ξD + ξ 2ρ

′

ρ

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A 8)

In these equations we have used j = −B′/4π and the equilibrium equation ρg = −(p′ +
BB′/4π). Collecting all these terms, we find that their sum is

2(δW)sum =
∫
Γ P

[
D2 + 2P′ξD

Γ P

]
+ P′ρ

′

ρ
ξ 2 + 1

4π

(
B
∂ξ

∂z

)2

d3x, (A 9)

where, as in the main text, Γ P = γAp − +B2/4π and P = p + B2/8π.
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We now minimize the bracket over D to obtain

2δW = −
∫ [

P′ξ 2

(
P′

Γ P
− ρ ′

ρ

)
+ 1

4π

(
B
∂ξ

∂z

)2
]

d3x. (A 10)

Now from (3.7)

− P′
(

P′

Γ P
− ρ ′

ρ

)
= −gsρ

Δ

C
, (A 11)

where C and Δ are defined as C ≡ γA(1 + γβ/2) and

Δ =
(

p′

p
− γB′

B

)
> 0. (A 12)

Note that the choice of D to minimize δW, D = −(Γ ′Pξ)/Γ , is the same as that used
in the heuristic argument in the main text to derive ε.

Now if the region where Δ is positive is of length 	, then we can choose ξ to vary with
z as ξ = cos(πz	). The average value of the last term in (A 10) is (B2/4π)(π2/2	2)ξ 2, and
the resulting value of 2δW is

2δWc =
∫ [

−gsρ
Δ

C
+ π2

	2

B2

4π

]
ξ 2 d3x (A 13)

and the integration is between −	/2 < z < 	/2.
The modified sufficient condition for instability is now

Δ

C
>

πv2
A

8	2gs
(A 14)

over a region of length 	 where λB is the mixed scale height p and B. Thus, the critical
value of Δ is shifted upward by magnetic tension.

The energy principle was applied by Litwin et al. (2001) to search for instabilities, but
as they carried out a more detailed calculation to find the actual stability condition, their
more detailed expression is much more complicated than our simpler one, which is really
only a sufficient condition. With the simpler expression, we have been able to uncover the
physically significant results presented in this paper.

A similar stability investigation was carried out numerically by Priymak et al. (2011)
who also looked for instabilities in neutron stars with a heavy overlay of materials. They
did not explicitly find our instability, although it was visible in their data.

Appendix B. The derivation of the M equation

We present the derivation of the equation for M(k) when k is large: (5.8).
Starting from the basic (5.2),

∂b
∂t

= −v · ∇b = −∇ · (vb), (B 1)

the plasma velocity is

v =
∫
Σk exp(ik · x − iωt) dω. (B 2)

The velocity depends on the frequency ω as well as k, because at any k it has a spread
in positive frequencies. In our equations, we do not write out the ω integrals, but indicate
their presence by the differential dω.
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The statistics of the random turbulent velocities are given by (3.17).

〈v∗
k′,ω′vk,ω〉 = J(k, ω)δk′kδ(ω

′ − ω)(I − k̂k̂). (B 3)

The expansion of b in a Fourier series is

b(t) = Σkbk(t) exp(ikr). (B 4)

Then (B 1) becomes

∂bk

∂t
= −iΣk′′k · (vk′′bk′) · exp(−iωt) dω. (B 5)

We stick with the convention from the main text that k = k′ + k′′.
We use this equation to carry bk(t) forward a small time dt = τ , and expand this

equation to second order in τ .
Before continuing, we should state the philosophy we use in our calculation. We imagine

that all the fluctuations are random and decorrelated after a given decorrelation time.
Therefore, each of our perturbations start form zero and disappear after the decorrelation
time. There are many and we are interested in the sum of their squares.

All of the magnetic fields are in the B direction and all of the k and v are perpendicular
to B, so that we can treat bk as a scalar and work in the two dimensions perpendicular to
B. For notational simplicity,we write vk = v(k) and sometimes write v(k′) = v′ and even
write b(k′) as b′, etc.

With these conventions, the basic equation now reads

∂bk

∂t
= −iΣk′′(k · v′′)b′ exp(−iω′′t) dω′′. (B 6)

Its solution after a short time τ can be expanded in τ as b(t + τ) = b(0) + b(1) + b(2)
where the superscripts denote the orders in τ . The lowest-order term, b(0), is independent
of t and we will drop the zero superscript, except we will keep it when necessary for clarity.

The first-order solution that vanishes at τ = 0 is

b(1)k = −2iΣk′′(k · v′′)bk′ exp(−iω′′τ/2)
sin(ω′′τ/2)

ω′′ dω′′. (B 7)

A complex form of this solution is

b(1)∗k = 2iΣkiv (k · viv∗)b′′′∗ exp(+iωivτ/2)
sinωivτ/2

ωiv
dωiv, (B 8)

where k′′′ + kiv = k.
We take the product of (B 7) and (B 8) and ensemble average using (3.17) to find that

k(iv) = k′′ and, consequently, k′′′ = k′ and ωiv = ω′′.
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Thus,

|b(1)(k)|2 = 4Σk′′k · (I − k̂′′k̂′′) · kJ(k, ω′′)|bk′ |2 sin2 ω′′τ/2
ω′′2 dω′′. (B 9)

Now, if τ is large enough, then the limiting value of [sin(ω′′τ/2)/ω′′]2 can be replaced
by τ(π/2)δ(ω′′), so (B 9) becomes

|b(1)k |2 = 2πτΣk′′k2
⊥J(k′′, 0)|b0)

k′ |2, (B 10)

where the product in the brackets has been reduced to k2
⊥, where k⊥ indicates the part of k

perpendicular to k′′. We also have k′⊥ = k⊥ because k′ = k − k′′. (However, see the note
at the end of this appendix.)

Now, consider bk to be a continuous function of k.
Define M(k), as the b2 intensity in dk. With a box normalization of size L,

∫
M(k) dk = Σk|bk|2 =

(
L

2π

)2

2πk|bk|2, (B 11)

and

M(k) =
(

L
2π

)2 ∫
k dk̂|bk|2, (B 12)

where L is the box size and k̂ is a unit vector.
Then ∫

M(t + τ) dk =
(

L
2π

)2 ∫
[|b(0)|2k + (b(0)∗b(1))k + c.c.

+ (b(2)∗k b(0)k + c.c.)+ |b(1)k |2] dk. (B 13)

After ensemble averaging, the linear terms vanish. We have already calculated |b(1)k |2,
but we need b(2)k .

Iterating (B 6) once more, we have

∂b(2)(k)
∂t

= −iΣk′′(k · v′′)b(1)(k′) exp(−iω′′t) dω′′. (B 14)

Rewriting (B 7)

b(1)(k′) = Σkivk′ · vivb′′′ exp(−iωivt)− 1
ωiv

dωiv. (B 15)

Substituting this into (B 14), with k′ = k′′′ + kiv we obtain

∂b(2)k)
∂t

= −iΣk′′k′′′′[(k · v′′)(k′ · v′′′′)]b′′′ (exp(−iωivt)− 1) exp(−iω′′t)
ωiv

dω′′ dωiv.

(B 16)

Now, on taking the ensemble average, we see that v(iv) = v2∗ = v−2 so that kiv = −k′′

and k′′′ = k′ − kiv = k′ + k′′ = k, and also ωiv = −ω′′.
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As before the bracket equals k2
⊥J(k, ω). Thus, the equation for b(2)k simplifies to

∂

∂t
b(2)k = −ik2

⊥J(k′′, ω′′)bk
1 − exp(−iω′′t)

−ω′′ dω′′, (B 17)

and integrating this over t up to τ we obtain

b(2)k = +iΣk′′k2
⊥bkJ(k′′, ω′′)

[
τ

ω′′ − exp (−iω′′τ)− 1
−iω′′2

]
dω′′. (B 18)

However, from (B 13), we see that we only need the real part of b(2)(k), thus

Re[b(2)](k) = −τΣk′′k2
⊥J(k′′, ω′′)bk

(
1 − cosω′′τ

ω′′2

)
dω′′. (B 19)

For large τ , the expression in the parentheses gives πδ (ω′′) so

b(2)k = −πτΣk′′k2
⊥J(k′′, 0)b0

k. (B 20)

Now, substituting this and (B 10) into (B 13), we obtain the second-order part of

b(t + τ) = b∗b(2) + b(2)∗b + 2πτΣk′′k2
⊥J(k′′, 0)|b(1)|2. (B 21)

Finally, transforming sums into integrals, using box normalization and making use of
(B 10) and (B 20),∫

∂M
∂t

dk =
∫

k2
⊥U(k′′)M(k′) d2k d2k′′ −

∫
k2

⊥U(k′′)M(k) d2k d2k′′, (B 22)

where

U(k′′) =
(

L
2π

)2

2πJ(k′′, 0). (B 23)

The second term is similar to that in turbulent dynamo theory.
Instead of reducing the equation further, let us remember that for the purposes of

resistive destruction of our eddies, we are interested in the smaller-scale eddies of the
cascade. That is, we are interested in k′ 
 k′′ and, therefore, k 
 k′′. The variations of M
with k are rather rapid on these scales and, therefore, we are interested in smoothing the
equation.

For this purpose, we follow Kulsrud & Anderson (1992), and introduce a general
function of k, F(k), into the equation for ∂M/∂t∫

F(k)
∂M(k)
∂t

dk =
∫

d2k′ d2k′′F(k)U
(
k′′) k2

⊥|b′|2

−
∫

d2k d2k′′F(k)U(k′′)k2
⊥|b|2. (B 24)

We have changed the first integration from an integral over k and k′′ to an integral over k′

and k′′.
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We now express F(k) as a function of k′ and k′′. In fact, because of our assumption of
small k′′ we can expand

k =
√
(k′ + k′′)2 ≈ k′ + k′′ cosφ + k′′2

2k′ sin2 φ, (B 25)

where φ is the angle between k′ and k′′. Expanding F(k) for small k′′

F(k) = F(k′)+ (k − k′)
dF
dk′ + 1

2
(k − k′)2

d2F
dk′2 . (B 26)

Making use of (B 25) and substituting this expansion of F(k) into (B 24), we obtain

∫
F(k)

dM
dt

dk =
∫ (

3
16

k′ dF
dk′ + 1

16
k2 d2F

d2k′2

)
M(k′)k′′2U(k′′) dk′ d2k′′, (B 27)

where the first F(k′) term in the first line of (B 24) cancels the integral of the second line.
We have averaged over φ (with 〈sin4 φ〉 = 3/8 and 〈sin2 φ cos2 φ〉 = 1/8). The k′ and k′′

parts of the integral have now separated.
Let

γ =
∫

k′′2U(k′′) d2k′′ =
(

L
2π

)2 ∫
k′′2J(k′′, 0) dk′′. (B 28)

Integrate the k′ integral with respect to k′ to obtain

∫
F(k)

dM
dt

dk = γ

16

∫ (
d

dk′

(
k′M

(
k′) + d2

dk′2 (k
′2M)(k′)

))
F(k′) dk′. (B 29)

As F(k′) is an arbitrary function k′, M must satisfy

∂M(k)
∂t

= γ

16

(
k2 ∂

2M(k)
∂k2

+ k
∂M(k)
∂k

− M(k)
)
. (B 30)

This is the differential equation for M(k) (5.8) in the main text.
The assumption that τ is large enough that sinωt/ω can be approximated by a delta

function is not strictly correct: τ should be of the order of the decorrelation time, equal
to the frequency spread of J(k, ω). However, for such a value, the expansion terms of b in
τ would be too large. The trouble arises from the assumption that during a decorrelation
time the k′ and k′′ terms would only drive a single b mode at k (the triangular hypothesis).
Actually, during this time their effect would spread to a large number of b modes. However,
the total energy in all these modes would actually be comparable with what we incorrectly
obtain in our calculation for the energy of a single mode. In fact, if one smears out the
energy produced by them one would obtain the physically correct result. This smearing is
essentially what happens in our derivation of the differential equation (5.8), the smearing
being accomplished by introducing the function F. Although a rigorously correct theory
has not yet been developed, the first author is trying to do this and one can hope that our
differential equation is not too far from the truth.

Although this implies our results are only an approximation to the truth, they may be
sufficiently good for our purposes, which is to show that a nearly marginal state of the
instability is enough to diffuse the mass at the same rate it is flowing to the neutron star.
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Appendix C. Resistive damping of the spectrum

The calculation of the damping of the eddies owing to the flow of mass between two
nearby small eddies educed by resistivity, is as follows.

Referring to figure 5(c), we see both ρ and B oscillate through the cascade. In this
appendix, let the coordinate s be in the x direction and B be in the z direction and let us
take the perturbed B to also be in the z direction. Locally, B is sinusoidal as is the density
in the rod.

Take
Bz = B0 + εB0 cos(kx),

ρ = ρ0 + δρ0 cos(kx).

}
(C 1)

Then obtaining jy from Ampere’s law, Ey from Faraday’s law and vx from the equation
of continuity, we have

jy = kεB0

4π
sin(kx),

Ey = − ε̇B0

kc
sin(kx),

vx = − δ̇
k

sin(kx),

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(C 2)

where dots denote time derivatives. We can substitute these into Ohm’s law

Ey − vxB0

c
= η′jy, (C 3)

to obtain
− ε̇ + δ̇ = k2ηε. (C 4)

Here η′ is the true resistivity, η = 4πη′/c and dots denote time derivatives.
We must add the equation of motion for the electrons to these equations:

ρ0v̇x = − ∂

∂x

(
p1 + B0B1x

4π

)
, (C 5)

where p1 and B1 = εB0 are the perturbed pressure and magnetic field.
However, p = KργA and

p1 = γAKργA−1
0 ρ1 = γAp0δ cos(kx). (C 6)

Thus, with the expressions for vx and B1 we obtain

− δ̈ = k2 γAp0

ρ0
δ + k2 B2

0

4πρ0
ε. (C 7)

Taking ε and δ to vary as eωt we obtain a third-order system of equations from equation
C 4 and (C 7)

−ωε + ωδ = ωηε

−ω2δ = ω2
Sδ + ω2

Aε,

}
(C 8)

where ωη ≡ k2η, ω2
S ≡ k2γAp0/ρ0 and ω2

A = k2B2
0/4πρ0.
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These equations have three normal modes. To determine these modes and their damping
rates, it is expeditious to assume that ωη is small compared with the other two frequencies
and expand the equations. In addition, we limit our expansion to the case when ωA = ωS.
One of the frequencies ω is small of order ωη.

In this limit, the equations reduce to

ω(δ − ε) = ωηε

0 = ω2
A(δ + ε).

}
(C 9)

From the second equation we have δ = −ε so the first equation becomes

− 2ωε = ωηε, (C 10)

so this mode damps at the rate ωη/2.
For the other two modes, we take ω to be of order unity and write ω = ω0 + ω1, ε =

ε0 + ε1 and δ = δ0 + δ1. Then, to zero order the first equation is

ω0(δ0 − ε0) = 0, (C 11)

so that δ0 = ε0.
Next, the second equation becomes

− ω2
0δ0 = 2ω2

Aδ0, (C 12)

so to zeroth order

ω2
0 = −2ω2

A, (C 13)

and the two modes oscillate with the frequency
√

2ωA. To obtain the damping of these
two modes we proceed to next order. In this order, we are permitted to make δ1 = 0, by
adjusting the normalization.

Then, to first order, the first equation becomes

ω0(−ε1) = ωηε0, (C 14)

which gives

ε1 = −ωηδ0/ω0. (C 15)

With this result for ε1, the second equation to first order is

− 2ω0ω1δ0 = ω2
0ε1 = −ω

2
Aωη

ω0
δ0, (C 16)

thus

ω1 = ω2
0ωη

2ω2
0

ωη

4
. (C 17)

https://doi.org/10.1017/S0022377820001026 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377820001026


Anomalous diffusion across magnetic field in accreting neutron stars 31

Appendix D. The long-time behaviour of the outer neutron star shell

In this appendix, we speculate about the long-time behaviour of the system as more and
more mass accumulates. To do this, we make use of our rough criterion for instability
on any flux surface. That is, dh/ds must be equal to a = cosα. The angle α is the angle
between the g and −s, see figure 2. The size of a is uncertain until we actually find the
normal solution of the Grad–Shafranov equation. Here, we simply assume that it is a
constant for all flux surfaces.

We make the further approximations of replacing the s derivative of h by an r derivative.
Accepting these conditions we have

dh
dr

= a (D 1)

in the normal state. Integrating this equation we find

h(r) = a(r0 − r), (D 2)

where r0 corresponds to the radius beyond which there is no distortion, i.e. where h = 0.
From now on all lengths will be in kilometres. Here, h(r) is the height of the neutron star
shell above its ambient radius z = 0, i.e. that is the height of the mound of material that
has accumulated on it.

Then, at the magnetic pole of the neutron star, the height of the accumulated mass above
the ambient surface h0 = ar0. We can derive a relation between the total accumulated mass
Mtotal and r0 by making use of (2.13):

Mtotal = 2πa
∫ r0

0
(r0 − r)

dψ
dr

m(ψ) dr = 2πa
6
ρcrustr3

0. (D 3)

Taking ρcrust = 1011 g cm−3, we have

Mtotal = 1.05 × 1026ar3
0 grams. (D 4)

With an inflow rate of 10−9L solar masses per year

Mtotal = 1.0 × 1024Lty = a
2

× 1026r3
0 grams, (D 5)

where ty is the time in years. Thus,

ty = 12.5
aL

r3
0. (D 6)

Using (2.9) with z = 0, we find the pressure at the ambient surface to be

p(r) = 5.8 × 1027 × [a(r0 − r)]5/2 erg cm−3. (D 7)

The gradient of this pressure along the surface must be balanced by the gradient of the
magnetic pressure (neglecting magnetic tension), so that

p + B2

8π
= B2

∞
8π
, (D 8)

where B2
∞ is the magnetic field beyond r0. Here B∞ results from the compression of the

undisturbed flux in the undisturbed region, which we assume extends to a wall. In our flat
coordinates, we take the wall at the neutron star radius rns. Numerically, (D 8) is

[a(r0 − r)]5/2 + B2 = B2
∞. (D 9)

The magnetic field is in units of tera-Gauss (1012 Gauss).
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We see that this equation would give the neutron star magnetic field along its surface if
our coordinates were spherical coordinates. In this case, a Legendre expansion could be
used to extend the magnetic field externally to find the modification of the large-scale field
and the dipole moment of the neutron star. Even in our planar approximation, one can see
that the neutron star dipole field is macroscopically modified by all the mass that could be
added to it. We do not attempt to transfer our calculation to spherical coordinates in this
paper.

Setting r = 0 in this equation, we see that

r0 < [B∞)/a](4/5) ≡ r1. (D 10)

Here r0 is given in terms of Mtotal by (D 4). When Mtotal exceeds the value Mc that makes
r0 = r1, our model must be modified.

We see from (D 9) that at the origin B becomes zero when r0 = r1. For Mtotal > Mc
the region near the origin is unmagnetized and all the subsequent matter falls into an
unmagnetized hole when r < r2, where r2 is given by

Mtotal − Mc = πρcrusth0r2
2. (D 11)

The height of the plasma in this region must be h0.
The surface thus breaks into three regions.

Region I: 0 < r < r2 where the plasma is unmagnetized and h = h0.
Region II: r2 < r < r1 where h = a(r1 − r); the instability region.
Region III: r1 < r < rns h = 0, where h = 0; the undisturbed region.
When r1 reaches rns we believe a steady state with a fixed Mtotal has been reached. After

this, the surface adapts a fixed form that is slowly raised above the ambient surface by a
thickness δR given by

Mtotal − Mc = πρcrustr2
nsδR. (D 12)

This section is based on our approximate criteria for instability dh/dr = a, which certainly
cannot be very accurate. However, it does give an idea of the long-time behaviour of
the shell under constant bombardment with matter from the companion star. As noted
previously, this behaviour will lead to a gradual decrease in the dipole field of the neutron
star up to the time when Mtotal = Mc and r1 reaches rns. After this it, should become
constant.
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