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ON COMPACT ACTION IN /^-ALGEBRAS
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1. Introduction

A real Jordan algebra which is also a Banach space with a norm which satisfies

for each pair a, b of elements, is said to be a JB-algebra. A JB-algebra which is also a
Banach dual space is said to be a JB W-algebra.

Important examples of JB-algebras include the JC-algebras, these are by definition
the uniformly closed Jordan subalgebras of the Jordan algebra of all bounded self-
adjoint operators on a complex Hilbert space, and also the algebra M§ of hermitian
3x3 matrices over the octonions. A JC-algebra which is closed in the weak operator
topology is a JB W-algebra said to be a JFF-algebra.

The reader is referred to [2-3, 7-9, 11, 14-15, 18] for the relevant background on JB
algebras and to [10, 16-17] for that on JC algebras. A detailed account of the general
theory of Jordan algebras is to be found in [12].

In the JB-algebra A, the Jordan triple product {a, b, c}, of elements a, b and c in A, is
defined by {a,b,c} = (a°b)°c + a°(b°c)—{a°c)°b, and for each element a in A, the
operators on A, Va and La are defined by Ua(b) — {a,b,a], La(b) = a°b for each element
b in A. When A is a JC-algebra these operations reduce to

La(b)=&ab + ba), Ua(b) = aba, {a,b,c}=±{abc + cba).

For the JB-algebra A, A+, the set of squares of elements of A, is a positive cone which
generates A. A JB-subalgebra B of A is said to be an hereditary JB-subalgebra of A if
whenever 0 g a^ b with a e A and b e B, then as A. Also, a linear subspace, J, of A, is
said to be a Jordan (resp: quadratic) ideal of A if LX(A) (resp: UX(A)) is contained in A
for every element x of J. A fact that will frequently be used is that the uniformly closed
quadratic ideals of A are precisely the hereditary JB-subalgebras of A [8, Theorem 2.3].
The JB-algebra A will habitually be considered to be a JB-subalgebra of the J B - -
algebra A**, the second dual of A (see [11, 14-15]), and by A will be meant the JB-
subalgebra of A** generated by A and the unit, 1, of A**.

The purpose of this note is to identify, in an arbitrary JB-algebra A, those sets of
elements

*! (resp: x2) of A for which UXi (resp: LX2) are weakly compact on A. (I)

353

https://doi.org/10.1017/S0013091500004429 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500004429


354 L. J. BUNCE

and,

x3 (resp: x4) of A for which UX3 (resp: LXJ are compact on A. (II)

By way of justification, we might mention the fact that though in a C* algebra A it is
easily seen, by elementary analysis, that the set of elements x of A for which the
operator on A, a\—>axa, is compact is a two-sided ideal of A and, in view of the results
of [1], consequently recognisable as the largest dual (in the sense of [5, 4.7.20]) two-
sided ideal in A, the corresponding method of insight is not available for JB algebras.
Indeed, the former of the sets of (II), above, is not, at times, even a linear space. A
similar difficulty arises with the latter set of (II).

2. On associative subalgebras in a JB algebra

Recall that an associative JB-algebra can be realised as the self-adjoint part of a
commutative C*-algebra [1, Proposition 2.3, 14, Lemma 2.2], and that, in particular, for
each element a in the JB algebra A the (associative) JB-subalgebra, C(a), of A generated
by a can be identified with the algebra of all continuous real valued functions vanishing
at infinity on the locally compact Hausdorff space o(a), of all real numbers X for which
a — XI is not invertible in A. Recall also that for each pair of elements a, b in the JB
algebra A, C(a, b), the JB subalgebra of A generated by a and b can be realised as a JC
algebra, by [18, Proposition 2.1]. It is said that the pair a, b operator commute in A if
LaLb = LbLa on A. The set of all elements of A which operator commute with every
element in A is said to be the centre, Z(A), of A.

In this preliminary section two lemmas are proved, the first of which is a slight
variation of a result of Youngson [19, Theorem 5]. The result is known for JC-algebras
[16, Proposition 1]. The following Jordan identities will be needed (see [12, page 37]) in
Lemma 2 and after.

UUaW = UaUbUa (2.1)

(Ua(b))2 = UaUb(a
2). (2.2)

Lemma 1. Let A be a JB algebra and let a, b be elements of A. Then the following are
equivalent:

(i) Ua(b) = a2ob.
(ii) a and b operator commute in A.

(iii) C(a, b) is associative.

Proof. From [16, Proposition 1] and [18, Proposition 2.1] it follows that (i) and (iii)
are equivalent and that (ii) implies (i). It remains to prove that (i) implies (ii). In order
to achieve this it is enough to suppose that A equals Ml, as can be seen on application
of [16, Proposition 1] together with the fact that A has a faithful family of
representations each member of which maps A onto Mf or a JC-algebra. But then
C(a,b) is finite dimensional and so, in particular, a is a finite linear combination of
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projections of C(a, b). The desired conclusion now follows on application of (i)o(ii) and
[2, Lemma 2.11].

A projection p in the JB-algebra A is said to be a one-dimensional projection of A if
Up(A) has dimension one.

Lemma 2. Let A be a JB-algebra and let B be a maximal associative JB-subalgebra
of A. Then every one-dimensional projection of B is also a one-dimensional projection of A.

Proof. In any associative algebra one has the identity

(xyx)z + z{xyx) = (xz + zx)yx + xy(xz + zx) — x(yz + zy)x.

By Macdonald's Theorem [12, page 41] the corresponding identity

Ux(y)^ = 2{xoz,y,x}-Ux(yoz) (2.3)

will hold in every Jordan algebra.
Let aeA, beB and let e be a one-dimensional of B. Observe that e°b = Ue(b) = Xe, for

some real number X, and that e and b operator commute in A, by [2, Lemma 2.11] or
Lemma 1, which in turn means that

Ue(aob)=Ue(a)°b = XUe(a) (2.4)

on applying (2.3). From (2.1), (2.2), it follows that

where the second equality is obtained on replacing a with Ua(e) in (2.4). From Lemma 1
and the assumption on B it follows that Ue(A) c B, as thus does the desired result.

3. Compact action in JB algebras

A JW-algebra is said to be a JW factor of Type In, n = oo, 1,2, 3 , . . . , if it has trivial
centre and contains a family, with cardinality n, of mutually orthogonal minimal
projections with sum 1. Recall [2, §7] and [17], that the spin factors are precisely the
JW factors of Type I2 and that for each spin factor V,

V=Ul®N(V), N(V)°N(V) = Ul,

where N(V) is the closed linear span of the non-trivial symmetries of V (an element s is
said to be a non-trivial symmetry if s # + 1 , s2 = 1). Let us write, for each spin factor V,

£(K) = u{Rc;e2 = e#0 ,1} .

A JB-algebra A is said to be dual, [4], if (J°)° = J for every hereditary JB-subalgebra J
of A (where given a subset S of A, S° represents the annihilator of S in A). The
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following discussion relies heavily upon the theory of dual JB algebras and thus, for the
convenience of the reader, some of the more immediately relevant properties are
collected below in Theorem 3.

The following terminology and notation is used below. The JB-(oo) sum of a family,
(A)), of JB algebras, written (L Ax)0, is the JB-algebra of all generalised sequences (xx),
(xxeAx), vanishing at infinity, with norm ||(xA)|| = Sup||xA||; in addition, if FX(=AX, for
each X, defines a family of subsets, then (Z Fx)0 will denote the set of the (xx) in (E Ax)0

for which each xx lies in Fx. A JB-algebra is said to be simple if it contains no non-
trivial norm closed Jordan ideals. Finally, given an arbitrary JB-algebra A, let C(A)
denote the closed linear span of the one-dimensional projections of A, and further, let

Cl(A) = {xeA; UX:A->A is weakly compact},

C2(A) = {xeA;Lx:A^A is weakly compact},

C3(A) = {x e A; Ux: A-^A is compact},

C4(A) = {xeA;Lx:A->A is compact}.

Theorem 3. ([4, Sections

(a) The simple dual JB-algebras are (up to isomorphism) precisely Ml, the spin
factors, and the simple JC-algebras consisting of compact operators.

(b) The following are equivalent for the JB-algebra A:

(i) A is a dual JB-algebra,
(ii) Each element of A is of the form X Xnen (norm convergent), where (en) is a

sequence of mutually orthogonal one-dimensional projections of A,
(iii) A is the JB-(oo) sum of a family of simple dual JB-algebras,
(iv) A is an hereditary JB-subalgebra of A**,
(v) UX:A-*A is weakly compact for each x in A,

(vi) LX:A->A is weakly compact for each x in A.

Moreover, each of the above six conditions is equivalent to the condition (vii), below, if
and only if A has no representations onto an infinite dimensional spin factor:

(vii) UX:A^>A is compact for each x in A.

A JB-algebra which satisfies condition (vii) of Theorem 3 is said to be a compact JB-
algebra.

Lemma 4. Let Abe a JB-algebra. Then C(A) is a Jordan ideal of A and is the largest
hereditary dual J B-subalgebra of A. It is also the largest hereditary J B-subalgebra of A**
contained in A.

Proof. Given an element a of A, Ua(C(A)) is contained in C(A), since for each one-
dimensional projection e of A there exists a one-dimensional projection f of A for which
C/a(e) = ||(/o(e)||/, by the argument of [4, Proposition 3.1], for example. It therefore

https://doi.org/10.1017/S0013091500004429 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500004429


ON COMPACT ACTION IN JB-ALGEBRAS 357

follows, from [8, Lemma 2.4], that C(A) is a Jordan ideal and, moreover, by [8,
Theorem 2.3] and of Theorem 3 (b) (i)*>(ii), it is seen to be the largest hereditary dual
JB-subalgebra of A. Finally, since any hereditary JJ3-subalgebra, J, of A** which is
contained in A is, via the canonical embedding, an hereditary J5-subalgebra of J**, the
last statement in the lemma follows from Theorem 3 (b) (i)o(iv) and the first part of the
proof.

Before stating the main theorem of this note, let us observe that for each element x in
the JB-algebra A, the norm closure, A(x), of UX(A) is, by identity (2.1) and a simple
limit argument, a quadratic ideal (and hence an hereditary JB-subalgebra) of A.

Writing x = x+— x_ (where x+ and x . lie in C(x)+, x+°x_ =0), it is easily seen, by
spectral theory together with hereditary considerations, that both x+ and x_ , and
hence x, lie(s) in A(x).

Theorem 5. Let A be a JB-algebra. Then

(i) C1(y4), C2(A) and the closed linear subspace generated by C3(A) are all equal to
C(A).

Moreover, on identifying C(A) with the JB-(co) sum of the family, {Ax;XeA}, of simple
dual JB-algebras (Justified by Theorem 3 and Lemma 4) and letting F (resp: G) denote the
set of those AeA for which Ax is finite-dimensional (resp: an infinite-dimensional spin
factor), one has, on retaining the above-mentioned identification,

(ii) Y
\A\G

(iii)

Proof, (i) Let xeA and suppose that UX:A-*A is compact (resp: weakly compact).
Then from identity (2.1), a simple limit argument, and well-known properties of compact
(resp: weakly compact operators), [6, Chapter 6], for example, one has that
Uy:A(x)-+A(x) is compact (resp: weakly compact) for every element y of A(x). Therefore,
x e A(x) c C(A), by Theorem 3 and Lemma 4.

If z lies in A and LZ:A-*A is weakly compact, let B be a maximal associative
subalgebra of A containing z. Then Lr2 = L\ = Uz on B and so, by the above argument
and the fact that C(B) = C(A)nB (see Lemma 2), it follows that z lies in C(A). Thus
C3(A)cCl(A)czC(A) and C2(A)cC(A).

Conversely, suppose that x lies in C(A). By spectral theory, Lemma 4 and the
equivalence of (i), (v) and (vi) of Theorem 3(b), Uxi, Uxt, Lx\, Lxt, Lx+, Lx are all
weakly compact operators on C(A) which, being a Jordan ideal of A, by Lemma 4,
implies that
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and consequently

f-Ux% +2(Lxi)
2-Uxt,

are both weakly compact operators on A. Thus, C3(A) c C^A) = C2(A) = C(A), and since
all one-dimensional projections of A must lie in C3(A), (i) results.

(ii) Certainly, E(AX) is contained in C(A3) for each X in G and from (i), together with
Theorem 3(a), (b)(vii), one has that AX = C3(AX) for each X in A\G. Thus given X in A\G
and an element x in Ax, writing |x| = x + + x _ , xn=(|x[+l/n)"i, for each integer n, and
operating in the associative JB-subalgebra C(l,x) of A, one sees that x\ °xn converges
uniformly to x+ (by Dini's Theorem, since x2+°xn increases to x+). Similarly, x2.«x,
converges uniformly to x_. Hence,

Ux = lim t /^ . i , , , . , = lim t/,1/,,,1/,.

acts compactly on the whole algebra A, since Ax is (identified with) a Jordan ideal of A.
So, /lA = C3(^/l)c:C3(yl) for each X in A\G.

On the other hand, given an element x of C3{A) and representing x as an element (xx)
of the JB-(oo) sum of the family {Ax; Xe A}, using (i), it is immediate that each xx lies in
C3(AX). Finally, since in a spin factor the norm and weak operator topologies coincide,
[17, page 1060], and because A(xx) is a compact hereditary JB-subalgebra of Ax, by the
first part of the proof of (i), it follows from Theorem 3(a), (b)(vii) together with [7,
Theorem 2.3] that xA lies in E(AX) for each X in G. This completes the proof of (ii).

(iii) If X belongs to G, so that V—Ax is an infinite dimensional spin factor, then N(V)
= C 4 (K)cC 4 (4 Indeed, the equality follows because LS(F) = R1 + Rs for each symmetry
s # +1 in V, and the inclusion follows because (as one may check) Lf = Ls for each such
s.

If, on the other hand, X lies in F, then it is clear that A = C4(AX) c C4(A), where the
inclusion follows by an argument similar to that used in the last part of (i).

It is easy to see that if (xx) is an element of C(A) lying in CA(A) then each xx lies in
C4(XA). Thus the proof will be complete if, in these circumstances, it can be shown that
whenever xx is non-zero and X is not in G, then X is in F. In order to prove this, in view
of Theorem 3(a), suppose that B is a simple compact JC-algebra, contained in B(H) for
some complex Hilbert space H, for which there exists a non-zero element x in C4(B).
Let us define Ty:B->B(H)(b>->yb), for each y in B. Then, TX = 2TXLX-UX:B-+B(H) is
compact. It is seen therefore, from Theorem 3(b)(i)o(ii), that there exists a one-
dimensional projection e of B such that Te:B—*B(H) is compact. Notice now that if (xn)
is any sequence of elements in B for which exn converges uniformly in B(H), then

lim exn = lim e(xne + exn - exne) = e lim (xn ° e - Ue(xn)),

which again lies in eB. It follows that eB is of finite dimension, since it is uniformly
closed and has compact identity operator. The weak operator closure M, of B is a Type
I JW-factor, by the results of [4], for example. Since eM must be of finite dimension, so
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also must be the space generated by {Us(e);s, a symmetry in M}. It follows, therefore,
from [2, Theorem 6.10, Proposition 8.3], that M, and hence B, is of finite dimension.
This completes the proof.

In conclusion, the following corollary (of which (ii), it should be said, was announced
without proof in [4] and is a generalisation of a result of Kaplansky [13], on C*-
algebras) may be deduced by inspection of the above proof.

Corollary 6. Let A be a JB-algebra. Then

(i) C;(J) = Ci(A) nJ, i= 1,2,3,4, for every hereditary JB-subalgebra J of A,
(ii) LX:A-*A is compact for every x in A if and only if A is the JB-(co) sum of finite

dimensional JB-algebras.

Much of this work appears in the author's Ph.D. thesis, written at the University of
Reading under the supervision of Professor J. D. M. Wright, and the author would like
to acknowledge this fact.
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