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Abstract

Twisted commutative algebras (tca’s) have played an important role in the nascent field of
representation stability. Let Ad be the tca freely generated by d indeterminates of degree 1. In a
previous paper, we determined the structure of the category of A1-modules (which is equivalent
to the category of FI-modules). In this paper, we establish analogous results for the category of
Ad -modules, for any d. Modules over Ad are closely related to the structures used by the authors in
previous works studying syzygies of Segre and Veronese embeddings, and we hope the results of
this paper will eventually lead to improvements on those works. Our results also have implications
in asymptotic commutative algebra.
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1. Introduction

In recent years, twisted commutative algebras (tca’s) have played an important
role in the nascent field of representation stability. The best known example
is the twisted commutative algebra Sym(C〈1〉) freely generated by a single
indeterminate of degree one. Modules over this tca are equivalent to the FI-
modules of Church–Ellenberg–Farb [CEF], and have received a great deal of
attention. In [SS1], we studied the module theory of this tca, and established a
number of fundamental structural results. The purpose of this paper is to extend
these results to tca’s freely generated by any number of degree one generators.
This is, we believe, an important step in the development of tca theory, and
connects to a number of concrete applications.

1.1. The spectrum. Let A be the tca Sym(E〈1〉), where E = Cd ; this is the
tca freely generated by d elements of degree 1. We identify A with the polynomial
ring Sym(E⊗C∞) in variables {xi, j }16i6d

16 j
, equipped with its natural GL∞-action;

A-modules are required to admit a compatible polynomial GL∞-action. (See
Section 2 for complete definitions.) The goal of this paper is to understand the
structure of the module category ModA as best we can.

As a first step, we introduce the prime spectrum of a tca. This is defined
similarly to the spectrum of a commutative ring, but (as far as we are concerned
in this paper) is just a topological space. The spectrum of a tca gives a coarse
view of its module category, so determining the spectrum is a good first step in
analyzing the structure of modules.

We explicitly determine the spectrum of A. To state our result, we must make a
definition. The total Grassmannian of E , denoted by Gr(E), is the following
topological space. As a set, it is the disjoint union of the topological spaces
Grr (E) for 0 6 r 6 d . (Here we are using the topological space underlying the
scheme Grr (E) parametrizing rank r quotients of E .) A set Z ⊂ Gr(E) is closed
if each Z ∩ Grr (E) is closed and moreover Z is downwards closed in the sense
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GL-equivariant modules II 3

that if a quotient E → U belongs to Z (meaning the closed point of Grr (E) it
corresponds to belongs to Z ) then any quotient of U also belongs to Z . We prove:

THEOREM 1.1. The spectrum of A is canonically homeomorphic to Gr(E).

In the course of proving this theorem, we classify the irreducible closed subsets
of Gr(E): each is the closure of a unique irreducible closed subset of Grr (E), for
some r . This provides a wealth of interesting prime ideals in A: for example, when
d = 3 the space Gr1(E) is P2, and so each irreducible planar curve gives a prime
ideal of A. This shows that for d > 1 there is interesting geometry contained in
A, contrary to the more rigid structure when d = 1.

In joint work with Rohit Nagpal (which he kindly allowed us to include in this
paper), we show:

THEOREM 1.2 (with R. Nagpal). The space Gr(E) has Krull dimension
(d+1

2

)
.

From this, we deduce:

COROLLARY 1.3. The category ModA has Krull–Gabriel dimension
(d+1

2

)
.

1.2. Structure theory. Let ar ⊂ A be the r th determinantal ideal. If we think
of the variables {xi, j } as the entries of a d ×∞ matrix, then ar is generated by the
(r + 1)× (r + 1) minors of this matrix. Alternatively, in terms of representation
theory, ar is generated by the representation

∧r+1
(E) ⊗

∧r+1
(C∞) occurring in

the Cauchy decomposition of A. Let ModA,6r be the full subcategory of ModA

spanned by modules supported on ar (that is, locally annihilated by a power of
ar ). Equivalently, ModA,6r is the category of modules whose support in Gr(E) is
contained in

⋃
s6r Grs(E). These categories give a filtration of ModA:

ModA,60 ⊂ ModA,61 ⊂ · · · ⊂ ModA,6d = ModA .

We call this the rank stratification. Let

ModA,r =
ModA,6r

ModA,6r−1

be the Serre quotient category. Intuitively, ModA,r is the piece of ModA

corresponding to Grr (E) ⊂ Gr(E). Our approach to studying ModA is to
first understand the structure of the pieces ModA,r , and then understand how these
pieces fit together to build ModA.
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Every object of ModA,r is locally annihilated by a power of ar . We concentrate
on the subcategory ModA,r [ar ] consisting of objects annihilated by ar . The
following theorem completely describes this category:

THEOREM 1.4. Let Q be the tautological bundle on Grr (E) and let B be the tca
Sym(Q〈1〉) on Grr (E). Then ModA,r [ar ] is equivalent to ModB,0, the category of
B-modules locally annihilated by a power of Q〈1〉 ⊂ B.

Every finitely generated object of ModA,r admits a finite length filtration with
graded pieces in ModA,r [ar ]. Thus, for many purposes, the above theorem is
sufficient for understanding ModA,r . For example, it immediately implies:

COROLLARY 1.5. The Grothendieck group of ModA,r is canonically isomorphic
to Λ ⊗ K(Grr (E)), where Λ is the ring of symmetric functions, and thus is free
of rank

(d
r

)
over Λ.

We now describe how ModA is built from its graded pieces. For this we
introduce two functors. Let M be an A-module. We define Γ6r (M) to be the
maximal submodule of M supported on ar , and we define Σ>r (M) to be the
universal module to which M maps that has no nonzero submodule supported
on ar . We call Σ>r (M) the saturation of M with respect to ar . The functor Σ>r

can be identified with the composition

ModA → ModA /ModA,6r → ModA,

where the first functor is the localization functor and the second is the section
functor (that is, the right adjoint to localization). The functors Γ6r and Σ>r are
left-exact, and we consider their right derived functors. We refer to RiΓ6r as local
cohomology with respect to the ideal ar . The most important result in this paper
is the following finiteness theorem:

THEOREM 1.6. Let M be a finitely generated A-module. Then RiΓ6r (M) and
RiΣ>r (M) are finitely generated for all i and vanish for i � 0.

This result has a number of important corollaries. Write Db
fg for the bounded

derived category with finitely generated cohomology groups. Write D = 〈T1,

. . . ,Tn〉 to indicate that the triangulated category D admits a semiorthogonal
decomposition into subcategories Ti .

COROLLARY 1.7. We have a semiorthogonal decomposition:

Db
fg(ModA) = 〈Db

fg(ModA,0), . . . ,Db
fg(ModA,d)〉.
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Here Db
fg(ModA,r ) is identified with a subcategory of Db

fg(ModA) via the
functor Σ>r . We note that without finiteness conditions, such a decomposition
follows almost formally; to get the decomposition with finiteness conditions
imposed requires the theorem. The functor RΓ6r is essentially the projection
onto the subcategory 〈D(ModA,0), . . . ,D(ModA,r )〉, while the functor RΣ>r is
the projection onto 〈D(ModA,r+1), . . . ,D(ModA,d)〉. (This point of view explains
the subscripts on these functors.) We introduce the functor RΠr = RΣ>r ◦ RΓ6r ,
which projects onto D(ModA,r ).

COROLLARY 1.8. We have a canonical isomorphism

K(ModA) =

d⊕
r=0

K(ModA,r ).

The projection onto the rth factor is given by RΠr . In particular, K(ModA) is free
of rank 2d as a Λ-module.

Finally, we prove a structure theorem for Db
fg(ModA) that refines the above

corollary. For an integer 0 6 r 6 d , let P(r) denote the set of partitions λ
contained in the r × (d − r) rectangle (that is, λ1 6 d − r and `(λ) 6 r ). For
λ ∈ P(r), put

Kr,λ = H0(Grr (E),Sλ(Q)⊗ Sym(Q〈1〉)),
where Q is the tautological bundle on Grr (E). Alternatively, Kr,λ is the quotient
of Sλ(E) ⊗ A by the ideal spanned by those copies of Sµ(E) where µ has more
than r parts. The classes [Sλ(Q)] with λ ∈ P(r) form a Z-basis for K(Grr (E)),
while the classes [Kr,λ] form a Λ-basis for K(ModA). Our structure theorem is:

THEOREM 1.9. The objects Sµ(C∞) ⊗ Kr,λ, with µ arbitrary and λ ∈ P(r),
generate Db

fg(ModA), in the sense of triangulated categories. Thus every object of
Db

fg(ModA) admits a finite filtration where the graded pieces are shifts of modules
of this form.

In fact, our results are more precise than this: for instance, we show that the
K ’s all appear in a certain order, with the K0,∗’s first, then the K1,∗’s, and so on.
See Remark 6.15 for a proof.

When d = 1, we showed in [SS1] that every object M of Db
fg(A) fits into an

exact triangle
T → M → P →

where T is a finite length complex of finitely generated torsion modules and
P is a finite length complex of finitely generated projective modules. A finitely
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generated torsion module admits a finite filtration where the graded pieces have
the form Sµ(C∞) ⊗ K0,∅, while a finitely generated projective module admits a
finite filtration where the graded pieces have the form Sµ(C∞)⊗ K1,∅. (We note
that K0,∅ = C and K1,∅ = A.) Thus Theorem 1.9 is essentially a generalization
of the structure theorem from [SS1].

We prove several other results about the structure of ModA. We mention a few
here:

• The extremal pieces of the rank stratification ModA,0 and ModA,d are
equivalent.

• Projective A-modules are injective.

• Finitely generated A-modules have finite injective dimension.

Lest the reader extrapolate too far, we offer two warnings: (a) For d = 1, every
finitely generated A-module injects into a finitely generated injective A-module.
This is no longer true for d > 1. (b) We believe that ModA,r and ModA,d−r are
inequivalent for r 6= 0, d , though we do not have a rigorous proof of this.

1.3. Duality. Koszul duality gives an equivalence between the derived
category of A = Sym(E⊗C∞)modules and the derived category of

∧
(E∗⊗C∞)

modules (assuming some finiteness). The category of polynomial representations
of GL∞ has a transpose functor, which induces an equivalence between∧
(E∗ ⊗ C∞) modules and A∗ = Sym(E∗ ⊗ C∞) modules. We call the resulting

equivalence
F : Ddfg(ModA)

op
→ Ddfg(ModA∗)

the Fourier transform. (Here the ‘dfg’ subscript means the GL∞-multiplicity
space of each cohomology sheaf is coherent.) Our main result on it is:

THEOREM 1.10. The Fourier transform induces an equivalence between
Db

fg(ModA) and Db
fg(ModA∗).

This theorem can be unpackaged into a much more concrete statement. Let M
be an A-module, and let P• → M be its minimal projective resolution. Write
Pi = A ⊗ Vi , where Vi is a representation of GL∞, and let Vi,n be the degree
n piece of Vi . Then Ln =

⊕
i>0 Vi,n+i is called the nth linear strand of the

resolution. Up to a duality and transpose, Ln is Hn(F (M)). Thus the above
theorem implies that if M is a finitely generated A-module then its resolution
has only finitely many nonzero linear strands, and each linear strand (after
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applying duality and transpose) admits the structure of a finitely generated A∗-
module. Thus Theorem 1.10 is a strong statement about the structure of projective
resolutions of A-modules. In particular, it implies:

COROLLARY 1.11. A finitely generated A-module has finite regularity.

We also prove a duality theorem for local cohomology and saturation with
respect to the Fourier transform. We just mention the following version of this
result here:

THEOREM 1.12. We have F ◦ RΠr = RΠd−r ◦F .

In other words, the Fourier transform reverses the rank stratification of ModA.

1.4. Additional results. The results of this paper are of a foundational nature.
We have additional, more concrete results, that build on this foundation; for
reasons of length, we have deferred them to companion papers [SS4, SS5, SS6].
We summarize the main results here.

The first group of results concerns Hilbert series. In [Sn], the second author
introduced a notion of Hilbert series for twisted commutative algebras and their
modules, and proved a rationality result for the tca’s considered in this paper.
In [SS1], we introduced an ‘enhanced’ Hilbert series that records much more
information, and proved a rationality result in the d = 1 case. Using the tools of
this paper, we have greatly extended this theory. We can now prove a rationality
result for the enhanced Hilbert series for arbitrary d. Moreover, we understand
how the pieces of the Hilbert series match up with the structure of the category
ModA. We have similar results on the far more subtle Poincaré series as well.

The second group of results concerns depth and local cohomology. Suppose
that M is an A-module. We can then consider the local cohomology group
RiΓ6r (M) defined in this paper and, treating it as a polynomial functor, evaluate
on Cn . Alternatively, we can take the local cohomology of the A(Cn)-module
M(Cn) with respect to the ideal ar (Cn). We show that these two constructions are
canonically isomorphic for n � 0 when M is finitely generated. In particular, this
shows that the local cohomology of M(Cn) with respect to determinantal ideals is
finitely generated for n � 0, and exhibits representation stability in the sense of
Church–Farb [CF]. We also study the depth of M(Cn) with respect to ar (Cn) and
show that, for n � 0, it has the form an + b for integers a > 0 and b. Moreover,
we show that if a > 0 then RΓ6r (M) = 0, and if a = 0 then the first nonzero
local cohomology RiΓ6r (M) occurs for i = b.

The third group of results concerns regularity. In [CE], Church and Ellenberg
show that the regularity of an FI-module can be controlled in terms of its
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presentation. We generalize this result to arbitrary d . Our theorem states that
the regularity of a finitely generated A-module M can be controlled in terms of
TorA

i (M,C) for 0 6 i 6 1
4 d2
+ 1. As a corollary, we find that the regularity of the

A(Cn)-module M(Cn), for any n, can be controlled by the regularity of M(Cn0),
where n0 depends only on d and the degrees of generators of M .

1.5. Relation to previous work. The second author used the tca’s appearing
in this paper to study ∆-modules, which served as the primary tool in his study
of syzygies of the Segre embeddings and related varieties [Sn]. In [SS3], we
showed that the category of A-modules is equivalent to the category of FId-
modules, where FId is the category whose objects are finite sets and whose
morphisms are injections together with a d-coloring on the complement of the
image. Ramos further studied FId-modules in [Rm1], and recently used them
to study configuration spaces of graphs in [Rm2]. FId-modules are also used in
the first author’s study of equations and syzygies of secant varieties of Veronese
embeddings [Sa1, Sa2], where they play a crucial role. We hope that the results
of this paper will lead to additional insight related to the applications mentioned
here.

The equivariant structure of the ring A has been intensively studied in the
literature from combinatorial and algebraic perspectives, and we refer the reader
to [dCEP] for some background and additional references. The homological
aspects of this ring were shown to be closely related to the representation theory
of the general linear Lie superalgebra in [AW], and this motivates the study of
resolutions of its equivariant ideals. We refer the reader to [RW1, RW2, Ra] for
further information and calculations. Our results imply that one can expect certain
patterns and universal bounds to appear as the size of the matrix increases.

1.6. Outline. In Section 2, we recall the requisite background on the
representation theory of GL∞ and tca’s, and prove some general results about
tca’s. In Section 3, we introduce the spectrum of a tca and study the spectrum
of A. In Section 4, we develop a formalism of local cohomology and saturation
functors with respect to a filtration of an abelian category. These results are
mostly well known; we include this material simply to recall salient facts and
set notation. In Section 5, we study the two extremal pieces of the filtration of
ModA, namely the category ModA,0 of modules supported at 0, and what we call
the ‘generic category’ Modgen

A , which is just another name for ModA,d . These are
important special cases since the other pieces of the category will be described
using these pieces. In Section 6, we study the full rank stratification of ModA, and
prove the primary theorems of the paper. In Section 7, we treat Koszul duality
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and develop the theory of the Fourier transform. We also include two appendices:
Appendix A proves some well-known results about Grassmannians for which we
could not find a suitable reference, and Appendix B gives a different, more direct,
proof of the finiteness properties of Koszul duality.

1.7. Notation and terminology.

• All schemes in this paper are noetherian, of finite Krull dimension, and
separated over C. For a scheme X , we use the term ‘OX -module’ in place
of ‘quasicoherent OX -module,’ and we use the term ‘finitely generated OX -
module’ in place of ‘coherent OX -module.’ We write ModX for the category of
OX -modules. |X | denotes the underlying topological space of X .

• For a vector bundle E over a scheme X , we write Grr (E) for the relative
Grassmannian parametrizing rank r quotients of E . We often write Y for
Grr (E). We write Q for the tautological quotient bundle on Grr (E) and R
for the subbundle.

• We let V = C∞ be the standard representation of GL∞. We write Sλ for the
Schur functor associated to the partition λ.

• For a vector bundle E on a scheme X , we let A(E) be the tca Sym(E〈1〉) =
Sym(E ⊗ V). We let ar ⊂ A(E) be the r th determinantal ideal.

• For an abelian category A (typically Grothendieck), we write Afg for the
category of finitely generated objects in A. We write D(A) for the derived
category, Db(A) for the bounded derived category, D+(A) for the bounded-
below derived category, and Dfg(A) for the subcategory of the derived category
on objects with finitely generated cohomologies. We always use cochain
complexes and cohomological indexing.

• If ∗ is an object for which Mod∗ is defined (and locally noetherian), we write
K(∗) for the Grothendieck group of the category Modfg

∗
. In particular, if X is a

noetherian scheme then K(X) is the Grothendieck group of coherent sheaves,
and if A = A(E) then K(A) is the Grothendieck group of the category of finitely
generated A-modules.

2. Preliminaries on tca’s

2.1. Polynomial representations. A representation of GL∞ =
⋃

n>1 GLn(C)
is polynomial if it occurs as a subquotient of a direct sum of tensor powers
of the standard representation V = C∞ =

⋃
n>1 Cn . Let V be the category
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of such representations. Equivalently, V can be described as the category of
polynomial functors, and this will be a perspective we often employ (see [SS2]
for details). The category V is semisimple abelian, and the simple objects are
the representations Sλ(V) indexed by partitions λ. From the perspective of
polynomial functors, the simple objects are just the Schur functors Sλ. The
category V is closed under tensor product. The tensor product of simple objects
is computed using the Littlewood–Richardson rule.

Every object V of V admits a decomposition V =
⊕

λ Vλ⊗Sλ(V)where Vλ is a
vector space. We refer to Sλ(V)⊗Vλ as the λ-isotypic piece of V , and to Vλ as the
λ-multiplicity space of V . We let Vn =

⊕
|λ|=n Vλ⊗Sλ(V), and call this the degree

n piece of V ; in this way, every object of V is canonically graded. We say that λ
occurs in V if Vλ 6= 0. For a partition λ, we let `(λ) be the number of nonzero
parts in λ. We let `(V ) be the supremum of the `(λ) over those λ that occur in V ,
and we say that V is bounded if `(V ) <∞. We have `(V ⊗W ) = `(V )+ `(W )

by the Littlewood–Richardson rule; in particular, a tensor product of bounded
representations is bounded.

Let V6n be the full subcategory of V on objects V with `(V ) 6 n. The functor
V6n → Rep(GLn) given by V 7→ V (Cn) is fully faithful, and its image consists
of all polynomial representations of GLn . This is an extremely important fact,
since it implies that in V6n one can evaluate on Cn—and thus reduce to a familiar
finite-dimensional setting—without losing information.

Let Rep(S∗) be the category whose objects are sequences (Mn)n>0, where Mn

is a representation of the symmetric group Sn . Schur–Weyl duality provides an
equivalence between Rep(S∗) and V ; see [SS2] for details. This perspective will
appear in a few places in this paper.

Suppose that X is a scheme over C. We then let VX be the category of
polynomial representations of GL∞ on OX -modules. Every object of this category
V admits a decomposition V =

⊕
λ Sλ(V) ⊗ Vλ where Vλ is an OX -module. If

f : Y → X is a map of schemes then there are induced functors f∗ : VY → VX

and f ∗ : VX → VY computed by applying f∗ and f ∗ to the multiplicity spaces.
We also have the derived functors Ri f∗ : VY → VX , computed by applying Ri f∗
to the multiplicity spaces.

2.2. Twisted commutative algebras. For the purposes of this paper, a
twisted commutative algebra (tca) is a commutative algebra object in the
category V , or more generally, in VX for some scheme X . Explicitly, a tca is
a commutative associative unital C-algebra equipped with an action of GL∞
by algebra automorphisms, under which it forms a polynomial representation.
A module over a tca A is a module object in the category V (or VX ), that is,
an A-module equipped with a compatible GL∞ action under which it forms a
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polynomial representation. We write ModA for the category of A-modules. This
is a Grothendieck abelian category. An ideal of A is an A-submodule of A.
If M is an A-module then, treating M and A as Schur functors, M(Cn) is an
A(Cn)-module with a compatible action of GLn .

Let E be a vector bundle of rank d on X . We define A = A(E) to be the tca
Sym(V ⊗ E) on X . As a Schur functor, we have A(Cn) = Sym(Cn

⊗ E). In
particular, if X is a point then A(Cn) is just a polynomial ring in nd variables
over C. The Cauchy formula gives a decomposition

A =
⊕
λ

Sλ(E)⊗ Sλ(V).

Since Sλ(E) = 0 if λ has more than d rows, we see that `(A) = d . Thus A is
bounded. It follows that any finitely generated A-module is bounded, as such a
module is a quotient of A⊗V for some finite length (and thus bounded) object V
of VX . We recall the following well-known result (first proved in [Sn]):

THEOREM 2.1. The tca A is noetherian, that is, any submodule of a finitely
generated module is finitely generated.

Proof. Suppose M is a finitely generated A-module, and consider an ascending
chain N• of A-submodules of M . Let n = `(M), which is finite by the above
remarks; of course, `(Ni) 6 n for all i as well. Since M(Cn) is a finitely generated
A(Cn)-module, it is noetherian, as A(Cn) is a finitely generated over OX . Thus
the chain N•(Cn) stabilizes, which implies that N• stabilizes.

We let ar ⊂ A be the r th determinantal ideal of A; it is generated by
∧r+1

(E)⊗∧r+1
(V) ⊂ A. The tca A and its ideals ar are the main focus of this paper.

2.3. Internal Hom. We let Hom be the internal Hom in the category of OX -
modules. For V,W ∈ VX , we let Hom(V,W ) be the sheaf of GL-equivariant
homomorphisms. Explicitly,

Hom(V,W ) =
∏
λ

Hom(Vλ,Wλ).

We define the internal Hom on VX by

Hom(V,W ) =
⊕
λ

Hom(V ⊗ Sλ(V),W )⊗ Sλ(V).

This is again an object of VX . We have the adjunction

Hom(U,Hom(V,W )) = Hom(U ⊗ V,W ).
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The trivial multiplicity space in Hom(V,W ) is Hom(V,W ). When X is affine,
we write Hom in place of Hom.

PROPOSITION 2.2. Suppose X is a point. Let V ∈ V and let Ṽ ∈ Rep(S∗) be its
Schur–Weyl dual. Then

Hom(V,V⊗n) =
⊕

i+ j=n

IndSn
Si×S j

(Ṽ ∗i ⊗ V⊗ j).

Proof. The coefficient of Sλ(V) in Hom(V,V⊗n) is Hom(V ⊗ Sλ(V),V⊗n). We
can compute this Hom space after applying Schur–Weyl duality. Schur–Weyl
converts V⊗n to C[Sn], the regular representation in degree n, and converts
V ⊗ Sλ(V) to

⊕
i IndSi+ j

Si×S j
(Ṽi ⊗Mλ), where j = |λ|. We thus find

Hom(V,V⊗n) =
⊕

i, j

⊕
|λ|= j

Hom(IndSi+ j
Si×S j

(Ṽi ⊗Mλ),C[Sn])⊗ Sλ(V).

Since C[Sn] is concentrated in degree n, only the terms with i + j = n contribute.
For an Sn-representation W , we have HomSn (W,C[Sn]) = W ∗. Thus, via the
canonical autoduality of Mλ, the above becomes⊕

i+ j=n

⊕
|λ|= j

IndSn
Si×S j

(Ṽ ∗i ⊗Mλ)⊗ Sλ(V).

Using the formula V⊗ j
=
⊕
|λ|= j(Mλ ⊗ Sλ(V)), the result follows.

Let A = A(E). Suppose that M and N are A-modules. Then M ⊗OX N is
naturally an A⊗2-module, and thus an A-module via the comultiplication map
A→ A⊗2. We denote this A-module by M � N . The operation � endows ModA

with a new symmetric tensor product. In general, this operation does not preserve
finiteness properties of M and N . However, if M and N are finitely generated and
annihilated by a power of the maximal ideal of A then M � N is again finitely
generated and annihilated by a power of the maximal ideal.

PROPOSITION 2.3. The functor VX → ModA given by V 7→ Hom(A, V ) is a
tensor functor, using the � tensor product on ModA.

Proof. Let V,W ∈ VX . We have canonical maps

Hom(A, V )�Hom(A,W )→ Hom(A ⊗ A, V ⊗W )→ Hom(A, V ⊗W ),

(2.3a)
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We show that this map is an isomorphism. It suffices to work Zariski locally on
X , so we may assume E is trivial. Since both sides are biadditive in V and W , it
suffices to treat the case where each has the form F ⊗ Sλ(V), where F is an OX -
module. But OX -modules pull out of these Hom’s, and so we may as well assume
F = OX . The map in question is then pulled back from a point. It thus suffices
to treat the case where X is a point and V and W are irreducible; we write E in
place of E . We make one more reduction: instead of taking V and W irreducible,
we can assume each is a tensor power of the standard representation, since every
irreducible is a summand of such a tensor power.

Let Ã be the Schur–Weyl dual of A. We have Ãn = E⊗n . Thus

Hom(A,V⊗n) =
⊕

i+ j=n

IndSn
Si×S j

((E∗)⊗i
⊗ V⊗ j) = (E∗ ⊕ V)⊗n.

Thus with V = V⊗n and W = V⊗m , the map equation (2.3a) takes the form

(E∗ ⊕ V)⊗n
⊗ (E∗ ⊕ V)⊗m

→ (E∗ ⊕ V)⊗(n+m).

We can thus regard it as an endomorphism of the target. By adjunction, to give a
map of A-modules M → Hom(A,V⊗(n+m)) is the same as to give a map Mn+m →

V⊗(n+m); in particular, an endomorphism of Hom(A,V⊗(n+m)) is an isomorphism
if and only if it is so in degree n + m. Thus, to prove that the above map is
an isomorphism, it suffices to prove that it is an isomorphism in degree n + m.
Now, the degree n + m piece of each side is obtained by replacing A with C in
equation (2.3a). This map is clearly an isomorphism, and so the proof is complete.

2.4. Some remarks on injective objects. We let Ext be the sheaf version of
Ext for OX -modules.

PROPOSITION 2.4. Let A be a tca over X and let M and N be A-modules with
n = `(M) <∞. Then there is a natural isomorphism

Exti
A(N ,M)→ Exti

|A(Cn)|(N (C
n),M(Cn))GLn .

Let us clarify one point here: |A(Cn)| is the underlying algebra of A(Cn)

without any equivariance issues. Hence, ExtA deals with GL-equivariant
extensions of the algebra A, while Ext|A(Cn)| deals with extensions of the
underlying algebra A(Cn). The latter space carries an action of GLn .

Proof. Evaluation gives a map

Exti
A(N ,M)→ Exti

|A(Cn)|(N (C
n),M(Cn))GLn
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and it suffices to prove that it is an isomorphism over some affine cover, so we
now assume that X is affine. Let P• → N be a locally free resolution. Then
HomA(P•,M) computes Ext•A(N ,M). Since `(M) = n, the natural map

HomA(P•,M)→ Hom|A(Cn)|,GLn (P•(C
n),M(Cn))

is an isomorphism. Note that Hom|A(Cn)|(P•(Cn),M(Cn)) is an algebraic
representation of GLn , and thus is semisimple as a GLn-representation, and
so formation of GLn invariants commutes with formation of cohomology. Thus
the target complex computes

Ext•
|A(Cn)|(N (C

n),M(Cn))GLn ,

and so the result follows.

We write inj. dim.(M) for the injective dimension of an object M in an abelian
category. For a scheme X , we write cdim(X) for the cohomological dimension of
X : this is the maximum i for which Hi(X,−) is nonzero on quasicoherent sheaves.
We note that cdim(X) 6 dim(X) (Grothendieck vanishing) and cdim(X) = 0 if
X is affine (Serre vanishing).

PROPOSITION 2.5. Suppose X is regular. Let A = Sym(V ), where V ∈ VX has
all multiplicity spaces locally free of finite rank. If M is an A-module with n =
`(M) then

inj. dim.(M) 6 dimC(V (Cn))+ dim(X)+ cdim(X).

In particular, every bounded A-module has finite injective dimension. (Recall our
standing assumption that dim(X) <∞.)

Proof. Since Spec(A(Cn)) is regular, being an affine bundle over the smooth
scheme X , we have Exti

A(Cn)(−,−) = 0 identically for i > dim(A(Cn)). From
the previous proposition, we thus have Exti

A(N ,M) = 0 for i > dim(A(Cn)).
Next, we have a local-to-global spectral sequence

Ep,q
2 = Hp(X; Extq

A(N ,M)) H⇒ Extp+q
A (N ,M)

which implies that Exti
A(N ,M) = 0 whenever i > dim(A(Cn)) + cdim(X). As

dim(A(Cn)) = dim(X)+ dim(V (Cn)), the result follows.

COROLLARY 2.6. Suppose X is regular. Let A = A(E) for a vector bundle E on
X of rank d, and let M be a bounded A-module. Then

inj. dim.(M) 6 `(M) · rank(E)+ dim(X)+ cdim(X).

In particular, all finitely generated A-modules have finite injective dimension.
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Let A be a tca over X . Let C be the category of A-modules and let C6n be the
full subcategory on A-modules M with `(A) 6 M . We have an inclusion functor
C6n → C and a truncation functor C → C6n mapping M to M6n . These functors
are both exact, and the inclusion functor is the right adjoint to the truncation
functor. It follows that the inclusion functor preserves injectives, that is, if I is
an injective object of C6n then it is also an injective object of C. From this, we
deduce the following useful result:

PROPOSITION 2.7. Let A be a tca and let M be an A-module with `(M) 6 n.
Then there exists an injection M → I where I is an injective A-module with
`(I ) 6 n.

Proof. The category C6n is Grothendieck and therefore has enough injectives. We
can thus find an injection M → I where I is an injective object of C6n . By the
above observation, I is injective in the category of all A-modules.

REMARK 2.8. In particular, we get an injective resolution I • of M with `(I i) 6
`(M) for all i , so we also get bounds on ` of some derived functors, like local
cohomology (see Section 6).

PROPOSITION 2.9. Let A = A(E) and let I be an injective A-module. Then the
Sλ-isotypic component Iλ of I is an injective OX -module for all λ.

Proof. The forgetful functor ModA→ VX is right adjoint to the exact functor−⊗
A : VX →ModA, and therefore takes injectives to injectives. Thus I is injective as
an object of VX . As an abelian category, VX is simply the product of the categories
ModX indexed by partitions, and so the injectivity of I inVX implies the injectivity
of Iλ in ModX .

2.5. Pushforwards. Let f : Y → X be a proper map of schemes, let EX be
a finite rank vector bundle on X , and let EY = f ∗(EX ) be its pullback to Y . Let
AX = A(EX ) and AY = A(EY ). If M is an AY -module then Ri f∗(M) is naturally
an AX -module.

PROPOSITION 2.10. Suppose M is a finitely generated AY -module. Then
Ri f∗(M) is a finitely generated AX -module, for all i > 0.

Proof. We prove the result by descending induction on i . To begin, note that
Ri f∗ = 0 for i > dim(Y ). (Recall our assumption that dim(Y ) is finite.) Now
suppose the result has been proved for i + 1 and let us prove it for i . Since M is
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finitely generated, we can pick a short exact sequence

0→ N → AY ⊗ V → M → 0

where V is a finitely generated object of VY . Note that N is a finitely generated
AY -module by noetherianity. From the above, we obtain an exact sequence

Ri f∗(AY ⊗ V )→ Ri f∗(M)→ Ri+1 f∗(N ).

Now, Ri+1 f∗(N ) is finitely generated by induction, and so the image of Ri f∗(M)
in it is finitely generated by noetherianity. Since AY = f ∗(AX ), the projection
formula gives Ri f∗(AY ⊗ V ) = AX ⊗ Ri f∗(V ). Since f is proper, Ri f∗(V ) is a
finitely generated object of VX , and so the result follows.

COROLLARY 2.11. The functor R f∗ carries Db
fg(AY ) into Db

fg(AX ).

3. The prime spectrum

3.1. The spectrum. Let A be a tca. An ideal I ⊂ A is prime if for any ideals
a, b, we have that ab ⊂ I implies a ⊂ I or b ⊂ I . We define Spec(A) to be
the set of prime ideals of A, and equip it with the Zariski topology. If `(A) 6 n,
then I is prime if and only if |I (Cn)| is a prime ideal in |A(Cn)| (see [SS2, §§8.5,
8.6], and note that ‘domain’ and ‘weak domain’ coincide in the bounded case). In
particular, Spec(A) coincides with the set of GLn fixed points in Spec(|A(Cn)|),
given the subspace topology.

The spectrum of A is a useful tool for obtaining a coarse picture of the module
theory of A. In this section, we will determine the spectrum of A(E), and deduce
some consequences for modules.

3.2. The total Grassmannian. Let X be a scheme and let E be a vector bundle
of rank d over X . For each 0 6 r 6 d we have the Grassmannian Grr (E) of r -
dimensional quotients of E , which is a scheme over X . To be precise, given an
X -scheme T → X , a morphism f : T → Grr (E) is given by the datum of a short
exact sequence 0→ E1 → f ∗(E)→ E2 → 0 of locally free sheaves on T such
that the rank of E2 is r .

Given 0 6 r 6 s 6 d , let Flr,s(E) be the partial flag variety parametrizing
surjections E → Qs → Qr where Qr has rank r and Qs has rank s (we mean
this in the functor of points language as above). There are projection maps
πs : Flr,s(E)→ Grs(E) and πr : Flr,s(E)→ Grr (E). Given a subset Z of Grs(E),
we let Z (r)

⊂ Grr (E) be πr (π
−1
s (Z)). If Z is closed then so is Z (r) (since πr is

proper), and if Z is irreducible then so is Z (r) (since π−1
s (Z) is irreducible, as πs is
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a fiber bundle with irreducible fibers). Explicitly, Z (r) consists of all r -dimensional
quotients of a space in Z .

We now define a topological space Gr(E) called the total Grassmannian of E .
As a set, Gr(E) is the disjoint union of the |Grr (E)| for 0 6 r 6 d, including the
nonclosed points. A subset Z of Gr(E) is closed if each set Zr = Z ∩ Grr (E) is
Zariski closed in Grr (E) and Z is downwards closed in the sense that Z (r)

s ⊂ Zr

for all r 6 s. There is a natural continuous map Gr(E)→ |X |.
The discussion above gives:

LEMMA 3.1. Let Z ⊂ Grr (E) be closed. Then the closure of Z in Gr(E) is the
set of all quotients of a space in Z.

PROPOSITION 3.2. Suppose Z ⊂ Grr (E) is Zariski closed and irreducible. Then
the closure Z of Z in Gr(E) is irreducible, and all irreducible closed subsets of
Gr(E) are obtained in this way.

Proof. The closure of an irreducible set is irreducible, so Z is irreducible. Now
suppose that Y ⊂ Gr(E) is a given irreducible set. Let r be maximal so that Y
meets Grr (E). Then Z = Y ∩ Grr (E) is a nonempty open subset of Y . Thus Z
is irreducible, and Y is the closure of Z . Of course, Z is also a closed subset of
Grr (E), which completes the proof.

3.3. The spectrum of A(E). Fix a scheme X and a vector bundle E of rank d
on X . Our goal is to prove the following theorem:

THEOREM 3.3. We have a canonical identification Spec(A(E)) = Gr(E).

In what follows, let A = A(E) and Y = Spec(A). Recall that we have
determinantal ideals ar ⊂ A. We let Y6r be the closed subset V (ar ) of Y , and
we let Yr = Y6r \ Y6r−1.

LEMMA 3.4. Suppose that a connected algebraic group G acts freely on a scheme
X and that the quotient scheme X/G exists. Then the natural map π0 : |X |G →
|X/G| is a homeomorphism.

Proof. Let π : X → X/G be the quotient map. Given a point z ∈ X/G, let
Z be its closure, an irreducible closed subscheme of X/G. Then π−1(Z) is an
irreducible closed subscheme of X that is G-stable (it is irreducible because all
fibers are irreducible). We define a map ρ : |X/G| → |X |G by sending z to the
generic point of π−1(Z).
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Suppose y ∈ |X |G . Let Y ⊂ X be the closure of y, an irreducible closed
G-stable subset. Then π(Y ) is an irreducible closed subset of X/G and Y =
π−1(π(Y )). Thus if z = π0(y) is the generic point of π(Y ) then ρ(z) = y. Thus
π0 ◦ ρ = id. Similarly, if z ∈ X/G with closure Z and y = ρ(z) is the generic
point of Y = π−1(Z) then Z = π(Y ), and so z = π0(y). Thus ρ ◦ π0 = id. We
therefore see that ρ and π0 are mutually inverse bijections.

Suppose now that Y ⊂ |X |G is a closed subset. Then Y = Y ∩ |X |G , where Y
is the closure of Y in |X |. The set Y is G-stable, and so π0(Y ) = π(Y ) is closed
in |X/G|. We thus see that π0 is a closed mapping. As π0 is also a bijection, it is
thus a homeomorphism.

LEMMA 3.5. We have a canonical homeomorphism Yr = |Grr (E)|.

Proof. The space Y6r is the spectrum of the tca A/ar , which has 6r rows. Thus
Y6r is identified with the GLr fixed space of Spec(Y6r (Cr )), whose closed points
are identified with the space of maps E → (Cr )∗. The complement of V (ar−1)

is the locus where the map is surjective. The group GLr acts freely on this locus,
and the quotient is the scheme Grr (E). The lemma thus follows from the previous
lemma.

LEMMA 3.6. Suppose Z ⊂ Yr is Zariski closed and irreducible. Then the closure
Z of Z in Y is irreducible, and all irreducible closed subsets Z ′ of Y are obtained
in this way, and r can be recovered as the largest index such that Z ′∩Grr (E) 6= ∅.

Proof. Same as Proposition 3.2.

The homeomorphisms Yr → Grr (E) yield a bijective function f : Y → Gr(E).

LEMMA 3.7. The map f is a homeomorphism.

Proof. Let Z ⊂ Grr (E) be a closed set, and let Z ⊂ Gr(E) be its closure. Let
Z ′ = f −1(Z), a closed subset of Yr , and let Z

′

be its closure. We claim that
Z
′

= f −1(Z). It suffices to check this on each fiber of |X |, so we may as well
assume X is a single point and E = E is a vector space. It then suffices to check
on closed points after intersecting with each Ys . A closed point of Z ∩Grs(E) is
a rank s quotient V of a rank r quotient U belonging to Z . By definition, there
is a point in Spec(A(Cr )), thought of as a map f : E → (Cr )∗, with coimage U .
(Recall that the coimage of f is E/ ker( f ).) It is easy to construct a map in the
orbit closure of f with coimage V . It follows that Z

′

contains f −1(Z). For the
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reverse inclusion, the locus Spec(A(Cr )) where the image is contained in Z is a
closed set, and so the closure of Z ′ is contained in f −1(Z).

It follows from the previous paragraph that f and f −1 take closed sets to closed
sets. Indeed, every closed set is a finite union of irreducible closed sets, and each
irreducible closed set is the closure of an irreducible closed set in Yr or Grr (E)
(Lemma 3.6). This completes the proof.

3.4. Krull dimension. The next result compares the Krull dimension of
Spec(A), which is typically easy to calculate, to the Krull–Gabriel dimension
of the category ModA, which is harder to compute directly. (See [Gab, §IV.1] for
the definition of Krull–Gabriel dimension, though the following proof effectively
contains a definition as well.)

PROPOSITION 3.8. Let A be a noetherian tca. Suppose that the following
condition holds:

For any prime ideal p of A, let M be a finitely generated A/p-
module, and let M ⊃ N0 ⊃ N1 ⊃ · · · be a descending chain. Then
Ni/Ni−1 has nonzero annihilator in A/p for all i � 0.

(P)

Then the Krull–Gabriel dimension of the category ModA agrees with the Krull
dimension of the topological space Spec(A).

Proof. Let A be the category of finitely generated A-modules. Let B0 be the
category of finite length objects in A, and having defined Bi , let Bi+1 be the
category consisting of objects in A that become finite length in A/Bi . Let Ci

be the subcategory of A on objects whose support locus in Spec(A) has Krull
dimension at most i . We claim Bi = Ci . This is clear for i = 0: a finitely generated
A-module has finite length if and only if it is supported at the maximal ideal.
Suppose now we have shown Bi−1 = Ci−1, and let us prove Bi = Ci . If M is in Ci

then (P) shows that M has finite length in A/Ci−1 = A/Bi−1, and so M belongs
to Bi .

Conversely, suppose that M belongs to Bi , and let us show that M belongs to
Ci . We may as well suppose M is simple in A/Bi−1 and contains no nonzero
subobject in Bi−1 = Ci−1. Suppose that p is a prime ideal such that V (p) has
dimension i and is contained in the support of M . (If no such p exists then
M ∈ Ci−1.) We claim p annihilates M . Suppose not. Then pM is a nonzero
subobject of M and so does not belong to Bi−1. Since M is simple modulo Bi−1, it
follows that M/pM belongs to Bi−1 = Ci−1. But this is a contradiction, since the
support of M/pM is V (p), but M/pM belongs to Ci−1 and therefore has support
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of dimension <i . We conclude that pM = 0, and so M has support of dimension
6i , and thus belongs to Ci .

To finish, let d be the Krull dimension of Spec(A). Then Cd = A but Cd−1 6=

A. It follows that Bd = A but Bd−1 6= A, and so d is also the Krull–Gabriel
dimension of ModA.

PROPOSITION 3.9. Let A be a finitely generated bounded tca. Then the condition
equation (P) holds.

Proof. Let B = A/p for a prime ideal p, let M be a finitely generated B-module,
and let N• be a descending chain. Let n > `(M) + `(B). So Ni 6= Ni+1 implies
that Ni(Cn) 6= Ni+1(Cn). Then Ni(Cn)⊗B(Cn) Frac(B(Cn)) is a descending chain
of finite-dimensional vector spaces, and therefore stabilizes; suppose it is stable
for i > N . Then Ni(Cn)/Ni−1(Cn) has nonzero annihilator in B(Cn) for all i > N .
It follows that Ni/Ni−1 has nonzero annihilator in B for i > N .

REMARK 3.10. The condition equation (P) can be rephrased as: for every prime
ideal p, the category Modκ(p) has Krull–Gabriel dimension 0, where Modκ(p)
is the quotient of ModA/p by the Serre subcategory of modules with nonzero
annihilator. (One thinks of Modκ(p) as modules over a hypothetical residue field
κ(p).) Proposition 3.8 is not specific to tca’s, and holds for any tensor category
satisfying similar conditions.

3.5. Krull dimension of Sym(E〈1〉) (joint with Rohit Nagpal). Fix a vector
bundle E on X of rank d . The goal of this section is to prove the following
theorem:

THEOREM 3.11. The space Gr(E) has Krull dimension dim(X) +
(d+1

2

)
. If X is

universally catenary, then Gr(E) is catenary.

Combined with the other results of this section, we obtain:

COROLLARY 3.12. Let A = A(E). The category ModA has Krull–Gabriel
dimension dim(X)+

(d+1
2

)
.

LEMMA 3.13. Let Y ⊂ Grr+1(E) and Z ⊂ Grr (E) be irreducible closed sets
such that Z ⊂ Y in Gr(E). Then dim(Y )+ r > dim(Z).

Proof. Recall the definition of Flr,r+1(E) and πr and πr+1 from Section 3.2. By
Lemma 3.1, Y ∩Grr (E) is πr (π

−1
r+1(Y )). The space π−1

r+1(Y ) is a Pr -bundle over Y ,

https://doi.org/10.1017/fms.2018.27 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2018.27


GL-equivariant modules II 21

and therefore has dimension dim(Y ) + r . Since this space surjects onto a closed
set containing Z , we obtain the stated inequality.

LEMMA 3.14. The Krull dimension of Gr(E) is at most dim(X)+
(d+1

2

)
.

Proof. Let Z0 ⊂ · · · ⊂ Zk be a maximal strict chain of irreducible closed subsets
in Gr(E). Let Sr be the set of indices i for which Z i meets Grr (E) but not
Grr+1(E), so that for i ∈ Sr we have Z i = Y i for some irreducible closed set
Yi ⊂ Grr (E) by Lemma 3.6. We note that each Si is nonempty by maximality
of the chain. Let δr (respectively δ′r ) be the maximum (respectively minimum)
dimension of Yi with i ∈ Sr . Since Y j ⊂ Y i for all j ∈ Sr and i ∈ Sr+1, we have
δ′r+1 + r > δr by the previous lemma (for 0 6 r < d). We thus find

#Sr 6 δr − δ
′

r + 1 6 r + 1+ δ′r+1 − δ
′

r .

(In fact, the first inequality is an equality by the maximality of the chain.)
Therefore,

k + 1 = #S0 + #S1 + · · · + #Sd

6

( d−1∑
r=0

(r + 1)
)
+ δ′d − δ

′

0 + #Sd 6

(
d + 1

2

)
+ δ′d + #Sd .

Now, we can regard {Z i}i∈Sd as a descending chain of irreducible closed sets in X ,
as Grd(E) = X . The smallest member of this chain has dimension δ′d . Thus we
have δ′d + #Sd 6 dim(X)+ 1, and the theorem follows.

EXAMPLE 3.15. Here is a chain of irreducible closed sets of length
(d+1

2

)
in

Gr(E) for a vector space E . Let

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vd = E

be a complete flag in E . For 0 6 r < d and 0 6 i 6 r , let Yr,i be the set of all
r -dimensional subspaces of Vr+1 containing Vr−i . By replacing a subspace by its
quotient, these give irreducible closed subsets of Grd−r (E), and form a chain

Yr,0 ⊂ Yr,1 ⊂ · · · ⊂ Yr,r .

Let Zr,i be the closure of Yr,i in Gr(E). This is irreducible by general principles.
Furthermore, by Lemma 3.1, we have a strict chain

Z0,0 ⊂ Z1,0 ⊂ Z1,1 ⊂ Z2,0 ⊂ Z2,1 ⊂ Z2,2 ⊂ Z3,0 ⊂ · · · ⊂ Zd−1,d−1 ⊂ Gr(E).
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There are
∑d−1

i=0 (i + 1)+ 1 =
(d+1

2

)
+ 1 sets in this chain.

For a general base X , let Y be the reduced subscheme of an irreducible
component of largest possible dimension. Over the generic point of Y , E becomes
a vector space and we can build the chain as above. Now take closures of these
subvarieties to get a chain starting at Y of length

(d+1
2

)
. Now concatenate this with

a maximal chain of irreducible subspaces ending at Y to get a chain of length
dim(X)+

(d+1
2

)
.

Proof of Theorem 3.11. Combining Lemma 3.14 and Example 3.15 shows that
dim Grr (E) = dim(X)+

(d+1
2

)
.

So it remains to show Grr (E) is catenary when X is universally catenary.
Without loss of generality, we may replace X with one of its irreducible
components. We need to show that for any irreducible subspaces Y ⊂ Y ′, every
maximal chain of irreducible closed subsets between Y and Y ′ has the same length.
By extending these to maximal chains in the whole space (which is irreducible),
it suffices to consider the case Y = ∅ and Y ′ = Gr(E).

Use the notation from the previous proof. Consider a chain Z0 ⊂ · · · ⊂ Zk

which is maximal. Suppose Z i meets Grr (E) but not Grr+1(E) and that Z i+1

meets Grr+1(E). Write Z i = Y i and Z i+1 = Y i+1 for irreducible closed subsets
Yi ⊂ Grr (E) and Yi+1 ⊂ Grr+1(E). By Lemma 3.13, dim Yi+1 + r > dim Yi . It
suffices to check that this must be an equality, since Grr (E) is catenary. Now
use the notation from Lemma 3.13. So we have a map πr : π

−1
r+1(Yi+1)→ Grr (E)

whose image is irreducible and contains Yi . If the image strictly contains Yi , we
can insert its closure in between Z i and Z i+1 and get a longer chain, which is a
contradiction. So we conclude that the image is equal to Yi .

If dim Yi+1 + r > dim Yi , then the fibers of πr all have positive dimension.
In that case, let FW be the fiber over W ∈ Yi , that is, the set of quotients in
Yi+1 which further quotient to W . It is easy to check that FW is closed and from
what we have assumed, dim FW > 1. Now pick an open affine subset of X that
trivializes E and that has nonempty intersection with the image of Yi and Yi+1

in X ; let E denote the restriction of E to this open affine. Let H be a Schubert
divisor in Grr+1(E), that is, the intersection of Grr+1(E) with a hyperplane in
the Plücker embedding. If we choose H generically, then it does not contain Yi+1

and H ∩ Yi+1 has codimension 1 in Yi+1. Also, the intersection H ∩ FW is always
nonempty (this is easy to see by considering the Plücker embedding). So Yi ⊂

πr (π
−1
r+1(H ∩ Yi+1)). Since Yi is irreducible and π−1

r+1 is a projective bundle, we
can choose an irreducible component Z ′ ⊂ H ∩ Yi+1 such that Yi ⊂ πr (π

−1
r+1(Z ′)).

So Z ′ is an irreducible subvariety of one smaller dimension whose closure can be
inserted in between Z i and Z i+1, which gives a contradiction.
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4. The formalism of saturation and local cohomology

4.1. Decomposing into two pieces. Let A be a Grothendieck abelian category
and let B be a localizing subcategory. We assume the following hypothesis holds:

Injective objects of B remain injective in A. (Inj)

This is not automatic (see Examples 4.21 and 4.22). Let T : A → A/B be the
localization functor and let S : A/B→A be its right adjoint (the section functor).
We define the saturation of M ∈ A (with respect to B) to be Σ(M) = S(T (M)).
We also define the torsion of M (with respect to B), denoted by Γ (M), to be the
maximal subobject of M that belongs to B. (This exists since B is localizing.) We
say that M ∈ A is saturated if the natural map M → Σ(M) is an isomorphism.
We say that M ∈ D+(A) is derived saturated if the natural map M → RΣ(M)
is an isomorphism. We note thatΣ(M) is always saturated and RΣ(M) is always
derived saturated. We refer to RΓ as local cohomology.

PROPOSITION 4.1. Let M ∈ A. The following are equivalent:

(a) M is saturated.

(b) Exti
A(N ,M) = 0 for i = 0, 1 and all N ∈ B.

(c) HomA(N ,M) = HomA/B(T (N ), T (M)) for all N ∈ A.

Proof. The equivalence of (a) and (b) is [Gab, p. 371, Corollaire] (objects
satisfying (b) are called B-fermé). The equivalence of (b) and (c) is [Gab, p. 370,
Lemma].

PROPOSITION 4.2. If M ∈ B then RiΓ (M) = 0 for i > 0.

Proof. Let M→ I • be an injective resolution in B. By equation (Inj), this remains
an injective resolution in A. Thus RΓ (M) → Γ (I •) is an isomorphism. But
Γ (I •) = I • since each I n belongs to B, and so the result follows.

PROPOSITION 4.3. Let I ∈ A be injective. Then we have a short exact sequence

0→ Γ (I )→ I → Σ(I )→ 0

with Γ (I ) and Σ(I ) both injective. Moreover, T (I ) ∈ A/B is injective.

Proof. Since Γ is right adjoint to the inclusion B → A, it takes injectives to
injectives. Thus Γ (I ) is injective in B, and so injective in A by equation (Inj).
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Let J = I/Γ (I ). Then J is injective and Γ (J ) = 0, and so J is saturated by
Proposition 4.1(b). Since the map I → J has kernel and cokernel in B, it follows
that J is the saturation of I , that is, the natural map Σ(I ) → Σ(J ) = J is
an isomorphism. Finally, note that HomA/B(T (−), T (I )) ∼= HomA(−,Σ(I )) is
exact, which implies that HomA/B(−, T (I )) is exact, and so T (I ) is injective.

PROPOSITION 4.4. The functors T and S give mutually quasi-inverse
equivalences between the category of torsion-free injectives in A and the
category of injectives in A/B.

Proof. Proposition 4.3 shows that T carries injectives to injectives, while this
is true for S for general reasons. If I is a torsion-free injective in A then
Proposition 4.3 shows that the map I → S(T (I )) is an isomorphism. On the
other hand, for any object I of A/B the map T (S(I )) → I is an isomorphism.
Thus T and S are quasi-inverse.

Let Ind. Inj.(A) be the set of isomorphism classes of indecomposable injectives
in A. From the previous proposition, we find:

PROPOSITION 4.5. We have Ind. Inj.(A) = Ind. Inj.(B)q Ind. Inj.(A/B).

PROPOSITION 4.6. Let M ∈ D+(A). Then we have an exact triangle

RΓ (M)→ M → RΣ(M)→

where the first two maps are the canonical ones.

Proof. Work in the homotopy category of injective complexes. Let M be an object
in this category. Then from Proposition 4.3, we have a short exact sequence of
complexes

0→ Γ (M)→ M → Σ(M)→ 0,

and this gives the requisite triangle.

PROPOSITION 4.7. An object M ∈ D+(A) is derived saturated if and only if
R HomA(N ,M) = 0 for all N ∈ D+(B).

Proof. Suppose M is derived saturated. Choose an injective resolution T (M)→
I • in A/B. Applying S, we get a quasi-isomorphism M → S(I •). Given
N ∈ D+(B), we have R HomA(N ,M) = Hom(N , S(I •)), and the latter is 0 by
Proposition 4.1 since S(I •) consists of saturated objects.
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Conversely, if M is not derived saturated, Proposition 4.6 implies that
RΓ (M) 6= 0, and so R Hom(RΓ (M),M) 6= 0. Since RΓ (M) ∈ D+(B), we
are done.

DEFINITION 4.8. Given a triangulated category T , a collection of full
triangulated subcategories T1, . . . ,Tn is a semiorthogonal decomposition
of T if

(1) HomT (X i , X j) = 0 whenever X i ∈ Ti and X j ∈ T j and i < j , and

(2) the smallest triangulated subcategory of T containing T1, . . . ,Tn is T .

In that case, we write T = 〈T1, . . . ,Tn〉.

Let D+0 (respectively D+1 ) be the full subcategory of D+(A) on objects M such
that RΣ(M) = 0 (respectively RΓ (M) = 0).

PROPOSITION 4.9. We have the following:

(a) The inclusion D+(B)→ D+0 is an equivalence, with quasi-inverse RΓ .

(b) The functor T : D+1 → D+(A/B) is an equivalence, with quasi-inverse RS.

(c) We have a semiorthogonal decomposition D+(A) = 〈D+0 ,D+1 〉.

Proof. (a) Pick M ∈ D+0 . By Proposition 4.6, we have a naturally given quasi-
isomorphism RΓ (M) ∼= M . So the composition D+0 → D+(B) → D+0 is
isomorphic to the identity. For M ∈ D+(B), RΓ (M) can be computed by applying
Γ termwise, so it is immediate that the composition D+(B)→ D+0 → D+(B) is
also isomorphic to the identity.

(b) For M ∈ D+1 , Proposition 4.6 gives a natural quasi-isomorphism M →
RΣ(M), so RS ◦T ∼= idD+1 . For M ∈ D+(A/B), the homology of RS(M) lives in
B, so T (RS(M)) can be computed by applying T S termwise, and we get T ◦RS ∼=
idD+(A/B).

(c) Since D+1 is the subcategory of derived saturated objects, we have
HomD+(A)(X, Y ) = 0 whenever X ∈ D+0 and Y ∈ D+1 by Proposition 4.7.
By Proposition 4.6, D+(A) is generated by D+0 and D+1 .

REMARK 4.10. In many familiar situations, the above functors and
decompositions do not preserve finiteness. For example, suppose A is the
category of C[t]-modules and B is the category of torsion modules. Let M = C[t].
Then RΓ (M) = (C(t)/C[t])[1] and RΣ(M) = C(t). Thus the projection of M
to the two pieces of the semiorthogonal decomposition are not finitely generated
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objects of A. Nonetheless, in our eventual application of this formalism to tca’s,
finiteness will be preserved!

4.2. Decomposing into many pieces. Let A be a Grothendieck abelian
category and let

A60 ⊂ · · · ⊂ A6d = A
be a chain of localizing subcategories (we do not assume A60 = 0). We assume
that each A6r ⊂ A satisfies equation (Inj). We put

A>r = A/A6r and Ar = A6r/A6r−1.

We let T>r : A→A>r be the localization functor, S>r its right adjoint, andΣ>r =

S>r ◦ T>r , and we let Γ6r be the right adjoint to the inclusion A6r → A. The
subscripts in these functors are meant to indicate that they are truncating in certain
ways: intuitively Γ6r (M) keeps the part of M in A6r and discards the rest, while
T>r (M) discards the part of M in A6r and keeps the rest. By convention, we put
Γ6r = 0 for r < 0 and Γ6r = id for r > d , and put Σ>r = id for r < 0 and
Σ>r = 0 for r > d . We also put A6r = 0 for r < 0 and A6r = A for r > d . We
have the following connections between these functors:

PROPOSITION 4.11. We have the following:

(a) Any pair of functors in the set {Γ6i ,Σ> j }i, j∈Z commutes.

(b) We have Γ6iΓ6 j = Γ6min(i, j).

(c) We have Σ>iΣ> j = Σ>max(i, j).

(d) We have Γ6iΣ> j = 0 if i 6 j .

These results hold for the derived versions of the functors as well.

PROPOSITION 4.12. Let i < j , let T ′ : A6 j → A6 j/A6i be the localization
functor, and let S′ be its right adjoint.

(a) S′ coincides with the restriction of S>i to A6 j/A6i .

(b) Injectives in A j/Ai remain injective in A/A6i .

(c) RS′ coincides with the restriction of RS>i to D+(A6 j/A6i).

Proof. (a) Suppose M ∈ A6 j/A6i and write M = T ′(N ) with N ∈ A6 j . The
natural map N → S>i(M) has kernel and cokernel in A6i . Since A6 j is a Serre
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subcategory, it follows that S>i(M) belongs to A6 j . Thus S>i maps A6 j/A6i

into A6 j , from which it easily follows that it is the adjoint to T ′.
(b) Let I be injective in A6 j/A6i . Then S′(I ) is injective in A6 j since

section functors always preserve injectives. By (a), S′(I ) = S>i(I ). Thus, by
equation (Inj), we see that S>i(I ) is injective in A. But T>i takes injectives to
injectives, and so I = T>i(S>i(I )) is injective in A/A6i .

(c) This follows immediately from (a) and (b) (compute with injective
resolutions).

PROPOSITION 4.13. We have a natural bijection Ind. Inj.(A)=
∐d

r=0 Ind. Inj.(Ar ).

Let D+(A)i [changed notation from D+i to be more consistent with what is used
in following sections] be the full triangulated subcategory of D+(A) on objects
M such that RΓ<i(M) and RΣ>i(M) vanish.

PROPOSITION 4.14. We have the following:

(a) We have an equivalence RS>i : D+(Ai)→ D+(A)i .

(b) We have a semiorthogonal decomposition D+(A) = 〈D+(A)0, . . . ,
D+(A)d〉.

We now define a functor RΠi : D+(A)→ D+(A)i by RΠi = RΣ>i RΓ6i . This
is just the derived functor ofΣ>iΓ6i . The functor RΠi is idempotent, and projects
onto the i th piece of the semiorthogonal decomposition.

4.3. Consequences of finiteness. Maintain the set-up from the previous
section. We now assume the following hypothesis:

(Fin) If M ∈ A is finitely generated then RΣ>i(M) and RΓ6i(M) are finitely
generated for all i and vanish for i � 0.

We deduce a few consequences of this. We let Db
fg(A)r = D+(A)r ∩ Db

fg(A).

PROPOSITION 4.15. (a) We have an equivalence RS6r : Db
fg(Ar ) → Db

fg(A)r .
The inverse is induced by T6r .

(b) We have a semiorthogonal decomposition Db
fg(A) = 〈Db

fg(A)0, . . . ,
Db

fg(A)d〉.

COROLLARY 4.16. The functors T>r and S>r induce inverse isomorphisms
K(Db

fg(A)r ) = K(Ar ).
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PROPOSITION 4.17. We have an isomorphism

K(A) =
d⊕

r=0

K(Db
fg(A)r ).

The projection onto the rth factor is given by RΠr .

Proof. The map above is surjective: the composition K(Db
fg(A)r ) → K(A) →

K(Db
fg(A)r ), where the first map comes from the inclusion, is an isomorphism.

Suppose it is not injective. Pick an object M ∈ Db(A) whose image is 0 but
such that [M] ∈ K(A) is nonzero. Let i be minimal so that [M] is in the image
of K(A6i)→ K(A) but not in the image of K(A<i)→ K(A). Also, suppose we
have chosen M so that this index i is as small as possible. Note that [RΠr M] =
[RΣ>i M], so by our choice of M , [RΣ>i M] = 0. Proposition 4.6 then implies
that [M] = [RΓ<i M], which contradicts our choice of i , so no such object M
exists.

4.4. Examples and nonexamples of property equation (Inj). We first give
some positive results on property equation (Inj). Recall that a Grothendieck
abelian category is locally noetherian if it has a set of generators which are
noetherian objects.

PROPOSITION 4.18. Let A be a locally noetherian Grothendieck category and
let B be a localizing subcategory satisfying the following condition:

Given M ∈ A finitely generated, there exists M0 ⊂ M such that
M/M0 ∈ B and M0 has no subobject in B.

(∗)

Then B ⊂ A satisfies equation (Inj).

Proof. Let I be an injective object of B. We first note that Ext1
A(M, I ) = 0 if

M ∈ B. Indeed, a class in Ext1
A(M, I ) is represented by an extension

0→ I → E → M → 0,

and E necessarily belongs to B since this is a Serre subcategory. Since I is
injective in B, the above sequence splits in B, and this gives a splitting in A.
The result follows.

Now suppose that M is a finitely generated object of A and we have an
extension

0→ I → E → M → 0.
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Let N be a finitely generated submodule of E that surjects onto M ; this exists
because E is the sum of its finitely generated subobjects. Using equation (∗), pick
N0 ⊂ N such that N/N0 ∈ B and N0 has no subobject in B. Let M0 be the image
of N0 in M , and let E0 = I + N0, so that we have an extension

0→ I → E0 → M0 → 0.

Now, N0 ∩ I is a subobject of N0 belonging to B, and thus is zero. Thus the map
N0 → M0 is an isomorphism, and so the above extension splits.

From the exact sequence

0→ M0 → M → M/M0 → 0

we obtain a sequence

Ext1
A(M/M0, I )→ Ext1

A(M, I )
i
→ Ext1

A(M0, I ).

As M/M0 is a quotient of N/N0, it belongs to B, and so the leftmost group
vanishes by the first paragraph. Thus i is injective. We have shown that the image
of the class of E under i vanishes, and so the class of E is in fact 0. However, E
was an arbitrary extension, so we conclude that Ext1

A(M, I ) = 0.
We have thus shown that Ext1

A(M, I ) = 0 whenever M ∈ A is a finitely
generated. A variant of Baer’s criterion now shows that I is injective.

COROLLARY 4.19. Let A be a locally noetherian Grothendieck category with a
right-exact symmetric tensor product. Let a be an ideal, that is, a subobject of the
unit object, and let B ⊂ A be the full subcategory spanned by objects that are
locally annihilated by a power of a. Suppose that the Artin–Rees lemma holds,
that is:

If M ∈ A is finitely generated and N ⊂ M then there exists r such
that an M ∩ N = an−r (ar M ∩ N ) for all n > r .

(∗∗)

Then B satisfies equation (∗), and thus equation (Inj) as well.

Proof. Let M ∈ A be finitely generated and let T be the maximal subobject of M
in B. The subobjects T [ak

] form an ascending chain in T that union to all of T ,
and so T = T [an

] for some n by noetherianity. Let r be the Artin–Rees constant
for T ⊂ M . Put M0 = an+r M . Then M/M0 belongs to B: by right exactness of
tensor products, we have an+r M → an+r (M/M0)→ 0, but the image of this map
is 0, and hence an+r (M/M0) = 0.

Finally, by equation (∗∗), we have M0 ∩ T = an(ar M ∩ T ) ⊂ anT = 0, and so
M0 has no subobject belonging to B.
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COROLLARY 4.20. Let A be the tca A(E) and let a be an ideal in A. Then
the Artin–Rees lemma holds. In particular, ModA[a

∞
] ⊂ ModA satisfies

equation (Inj).

Proof. Let M be a finitely generated A-module with submodule N . Pick n >
max(`(M), `(A)). Given r , the equality am M ∩ N = am−r (ar M ∩ N ) holds for
all m > r if and only if it holds when we evaluate on Cn . The existence of r after
we evaluate on Cn can be deduced from the standard Artin–Rees lemma which
guarantees that such an r exists locally; since our space is noetherian, one can
find a value of r that works globally.

We now give two examples where equation (Inj) does not hold.

EXAMPLE 4.21. Let A be the category of R-modules for a commutative ring
R. Fix a multiplicative subset S ⊂ R, and let B be the category of modules M
such that S−1 M = 0. Then Σ(M) = S−1 M . If R is noetherian then it satisfies
Artin–Rees, and so equation (Inj) holds by the above results. Thus Proposition 4.3
implies that the localization of an injective R-module with respect to S remains
injective.

However, there are examples of non-noetherian rings R where injectives
localize to noninjectives [Da, §3]. In such a case, equation (Inj) must fail.

EXAMPLE 4.22. Let A be the category of graded C[t]-modules supported in
degrees 0 and 1 (where t has degree 1), and let B be the subcategory of modules
supported in degree 1. Then B is equivalent to the category of vector spaces,
and thus is semisimple. However, except for 0, no object of B is injective in A,
and so equation (Inj) does not hold. In this example, A is locally noetherian, but
equation (∗) does not hold. Furthermore, Σ and T carry injectives to injectives,
so these properties are weaker than equation (Inj).

5. Modules supported at 0 and generic modules

5.1. Set-up. We fix (for all of Section 5) a scheme X over C (noetherian,
separated, and of finite Krull dimension, as always) and a vector bundle E on X of
rank d. We let A be the tca A(E). We let Mod0

A denote the category of A-modules
supported at 0: precisely, this consists of those A-modules M that are locally
annihilated by a power of E ⊗ V ⊂ A. We say that an A-module is torsion if
every element is annihilated by a nonzero element of A of positive degree. We let
Modgen

A (the ‘generic category’) be the Serre quotient of ModA by the subcategory
of torsion modules. The goal of Section 5 is to analyze the two categories Mod0

A
and Modgen

A .
In general, we denote trivial bundles of the form V ⊗OX by simply V .
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5.2. Modules supported at 0. Recall from Section 2.3 the tensor product �
on ModA. The object E∗⊕V is naturally a finitely generated A-module supported
at 0. It follows that (E∗ ⊕ V)�n is again a finitely generated module supported at
0. The Sn-action permuting the � factors is A-linear, and so Jλ = Sλ(E∗ ⊕ V) is
a finitely generated torsion A-module.

PROPOSITION 5.1. We have the following:

(a) We have an isomorphism of A-modules Jλ = Hom(A,Sλ(V)).

(b) If M is an A-module and F is an OX -module then

HomA(M,F ⊗ Jλ) = HomOX (Mλ,F).

(c) If F is an injective OX -module then F ⊗ Jλ is an injective A-module.

(d) Every finitely generated object M in Mod0
A admits a resolution M → N •

where each N i is a finite sum of modules of the form F⊗ Jλ with F ∈Modfg
X

and N i
= 0 for i � 0.

(e) Every finitely generated object of Mod0
A admits a finite length filtration

where the graded pieces have the form F ⊗ Sλ(V), where F ∈ Modfg
X and

A+ acts by zero on Sλ(V). Moreover, if X is connected then the module
Sλ(V) has no nontrivial OX -flat quotients.

Proof. (a) This is clear for λ = 1. The general case then follows from
Proposition 2.3.

(b) This follows immediately from (a), and the fact (tensor-hom adjunction)
that

Hom(A,F ⊗ Sλ(V)) = F ⊗Hom(A,Sλ(V))

since the multiplicity spaces of A are locally free of finite rank as OX -modules.
(c) This follows immediately from (b).
(d) Suppose M is supported in degrees6n. Let J =

⊕
|λ|=n Mλ⊗Jλ. By part (b),

there is a canonical map M → J , the cokernel of which is supported in degrees
6n − 1. The result follows from induction on n.

(e) Given M ∈ Mod0
A, first consider the filtration M ⊃ A+M ⊃ A2

+
M ⊃ · · · .

By Nakayama’s lemma, Ar
+

M = Ar+1
+

M for some r , in which case the common
value is 0 since M is torsion. Each quotient Ai

+
M/Ai+1

+
M has a trivial action of A,

so is a direct sum of modules of the form F ⊗ Sλ(V). These can be used to refine
our filtration to the desired form. The last statement follows from irreducibility of
Sλ(V).
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REMARK 5.2. If X = Spec(C) then part (e) says that every finitely generated
object of Mod0

A has finite length and the Sλ(V) are the simple objects. In general,
the statement in part (e) is a relative version of this, taking into account the
nontrivial structure of OX -modules.

The category Mod0,fg
A is naturally a module for the tensor category V fg.

Thus K(Mod0,fg
A ) is a module for Λ = K(V fg). The following result describes

K(Mod0,fg
A ) as a Λ-module.

COROLLARY 5.3. The map K(X) → K(Mod0
A) taking [V ] to the class of the

trivial A-module V induces an isomorphism Λ⊗ K(X)→ K(Mod0
A).

Proof. This follows from Proposition 5.1(e).

5.3. Representations of general affine groups. Define G(E) = GL(V)X n
(V ⊗ E), which is an (infinite-dimensional) algebraic group over X . A
representation of G(E) is a quasicoherent sheaf on X on which G(E) acts
OX -linearly. For example, V ⊕ E∗ is naturally a representation of G(E), which
we call the standard representation. A representation is polynomial if it is
a subquotient of a direct sum of representations of the form F ⊗ (V ⊕ E∗)⊗k

with F is a quasicoherent sheaf on X and k > 0. We note that if V and W
are polynomial representations then V ⊗ W (tensor product as OX -modules) is
again a polynomial representation. We write Reppol(G(E)) for the category of
polynomial representations.

PROPOSITION 5.4. We have a natural equivalence of categories Mod0
A(E) =

Reppol(G(E)), under which the tensor product � corresponds to the tensor
product ⊗.

Proof. Let M be an A(E)-module. Since A(E) is the universal enveloping algebra
of the abelian Lie algebra V ⊗ E , the A(E)-module structure on M gives a
representation of the algebraic group V ⊗ E on M . Moreover, the GL(V)-action
on M interacts with the V⊗E action in the appropriate way to define an action of
G(E) on M . We show that this construction induces the equivalence of categories.

We first observe that this construction is compatible with tensor products, that
is, if M and N are A(E)-modules then the G(E)-representation on M � N is
just the tensor product of the G(E)-representations on M and N . This follows
immediately from the definitions.

Next we show that if M is a torsion A(E)-module then the associated G(E)-
representation is polynomial. It suffices to treat the case where M is finitely
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generated, since a direct limit of polynomial representations is still polynomial. In
this case, we can embed M into a module of the form F ⊗ Jλ by Proposition 5.1.
By the previous paragraph, we see that Jλ = Sλ(E∗ ⊕ V) as a representation of
G(E), and thus is polynomial. Thus M embeds into a polynomial representation,
and is therefore polynomial.

It is clear from the construction that one can recover the A(E)-module structure
on M from the G(E)-representation, and so the functor in question is fully
faithful. Moreover, it follows that if M is an A(E)-module and N is a G(E)-
subrepresentation then N is in fact an A(E)-submodule. From this, it follows
that the essential image of the functor in question is closed under formation of
subquotients. Since the essential image includes all representations of the form
F ⊗ (E∗ ⊕ V)⊗n , it follows that our functor is essentially surjective.

COROLLARY 5.5. We have the following:

(a) If F is an injective OX -module then F ⊗ Sλ(V⊕ E∗) is an injective object
of Reppol(G(E)).

(b) Every finitely generated object M of Reppol(G(E)) admits a resolution M→
N • where each N i is a finite direct sum of representations of the form F ⊗
Sλ(V⊕ E∗) with F ∈ Modfg

X and N i
= 0 for i � 0.

(c) Every finitely generated object of Reppol(G(E)) admits a finite length
filtration where the graded pieces have the form F ⊗ Sλ(V), where F ∈
Modfg

X . Moreover, if X is connected then Sλ(V) admits no nontrivial OX -flat
quotients.

5.4. The generic category. We now study the category Modgen
A . The key result

is:

PROPOSITION 5.6. There exists an OX -linear equivalence of categories
Φ : Modgen

A → Reppol(G) that is compatible with tensor products and carries
T (A ⊗ V) to the standard representation E∗ ⊕ V.

Here is the idea of the proof: an A-module is a quasicoherent equivariant
sheaf on the space Hom(E∗,V). The category Modgen

A can be identified with
quasicoherent equivariant sheaves on the open subscheme Hom(E∗,V)◦ where the
map is injective. The group GL(V)X acts transitively on this space with stabilizer
G (almost), and so Modgen

A is equivalent to Rep(G). We now carry out the details
rigorously. This is unfortunately lengthy.
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Proof. First suppose that E is trivial. Let d be the rank of E , and choose
a decomposition V = V0 ⊕ V′ where V0 has dimension d . Also choose an
isomorphism i : E→ V ∗0 ⊗OX . This isomorphism induces a pairing E⊗V→OX ,
which in turn induces a homomorphism A → OX . For an A-module M , let
Ψi(M) = M ⊗A OX .

Suppose now that i ′ is a second choice of isomorphism, and write i ′ = gi
where g is a section of GL(V0)X . Regard GL(V0) as a subgroup of GL(V) in the
obvious manner. Since GL(V) acts on M , there is an induced map g : M → M .
One readily verifies that this induces an isomorphism Ψi(M)→ Ψi ′(M). We thus
see that Ψi(M) is canonically independent of i , and so denote it by Ψ (M). (To
be more canonical, one could define Ψ (M) as the limit of the Ψi(M) over the
category of isomorphisms i .)

Let G′ be defined like G, but using V′, that is, G′ = GL(V′)n (E⊗V′). Let G′′
be the subgroup of GL(V)X consisting of elements g such that g(V′) = V′ and the
map g : V0 → V/V′ = V0 is the identity. Note that G′′ = GL(V′)X n (V ∗0 ⊗V′X ),
and so i induces an isomorphism G′ ∼= G′′. The group G′′ stabilizes the pairing
E ⊗ V → OX , and thus acts on Ψi(M). The group GL(V0) acts on G′′, via its
action on V0. If i ′ = gi then the induced isomorphism ϕ : Ψi(M) → Ψi ′(M) is
compatible with the G′′ actions in the sense that ϕ(hx) = ghϕ(x) for h ∈ G′′. It
follows that if we let G′ act on Ψi(M) via the isomorphism G′ ∼= G′′ induced by i ,
then ϕ(hx) = hϕ(x) for h ∈ G′. We thus see that G′ canonically acts on Ψ (M).

Now suppose that E is arbitrary. Then we can define Ψ (M) with its G′ action
over a cover trivializing E . Since everything is canonical, the pieces patch to
defineΨ (M) over all of X . We have thus defined a functorΨ : ModA→ Rep(G′).
We will eventually deduce the desired equivalence Φ from this functor.

It is clear that Ψ is a tensor functor: indeed, working locally,

Ψi(M ⊗A N ) = (M ⊗A N )⊗A OX = (M ⊗A OX )⊗OX (N ⊗A OX )

= Ψi(M)⊗OX Ψi(N ).

Working locally, we have Ψi(A ⊗ V) = VX = (V0)X ⊕ V′X . This globalizes to
Ψ (A⊗V) = E∗⊕V′, the standard representation of G′. We thus see that Ψ (A⊗
V⊗n) = (E∗ ⊗ V′)⊗n is a polynomial representation of G′. Since every A-module
is a quotient of a sum of modules of the form A⊗ V⊗n , it follows that Ψ (M) is a
polynomial representation of G′ for any A-module M .

Suppose now that E is trivial and M is finitely generated. Let V be a sufficiently
large finite-dimensional vector space, and choose a decomposition V = V0 ⊕ V ′.
Then Ψ (M)(V ) is identified with M(V )⊗A(V )OX . Now, the spectrum of A(V ) is
identified with the space Hom(E, V ∗) over X , and so Ψ (M)(V ) is identified with
the pullback of the coherent sheaf M(V ) along the section X → Hom(E, V ∗)

https://doi.org/10.1017/fms.2018.27 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2018.27


GL-equivariant modules II 35

induced by i . This section lands in the open subscheme Hom(E, V ∗)◦ consisting
of injective maps.

We now claim that Ψ is exact. This can be checked locally. Furthermore, since
Ψ commutes with direct limits, it suffices to check on finitely generated modules.
We can therefore place ourselves in the situation of the previous paragraph. We
can compute Ψ (M)(V ) in two steps: first restrict from Hom(E, V ∗) to Hom(E,
V ∗)◦, and then restrict again to X . The first step is exact since restriction to an
open subscheme is always exact. Now the key point: Hom(E, V ∗)◦ is a GL(V )X -
torsor over X , and so any equivariant sheaf or equivariant map of such sheaves
is pulled back from X . Thus pullback of such modules to X is again exact. This
completes the proof of the claim.

We next claim that Ψ kills torsion modules. Again, we can work locally and
assume M is finitely generated. If M is torsion then the support of M(V ) in
Hom(E, V ∗) does not meet Hom(E, V ∗)◦, and so the pullback to X vanishes. This
proves the claim.

We thus see that Ψ induces an exact tensor functor Ψ : Modgen
A → Reppol(G′).

We claim that Ψ is fully faithful. This can again be checked locally for finitely
generated modules after evaluating on V of dimension n � 0. Since GL(V )X

acts transitively on Hom(E, V ∗)◦ with stabilizer G′, giving a map of GL(V )X -
equivariant quasicoherent sheaves on Hom(E, V ∗)◦ is the same as giving maps at
the fibers at i , as G′-representations.

Suppose that M → N is a map of A-modules such that the induced map
Ψ (M)→ Ψ (N ) vanishes. Then the map M(V )→ N (V ) vanishes over Hom(E,
V ∗)◦. This implies that the image of M(V )→ N (V ) is torsion, and so the image
of M → N is torsion, and so the map M → N is 0 in Modgen

A . This proves
faithfulness of Ψ .

Now suppose that a map Ψ (M)(V ) → Ψ (N )(V ) of G′-representations is
given. This is induced from a map M(V ) → N (V ) over Hom(E, V ∗)◦. This
induces a map of quasicoherent sheaves M(V )→ j∗(N (V )), where j is the open
immersion. Now, j∗(N (V )) is a GL(V )-equivariant A(V )-module, but may not
be polynomial. Let N (V )′ be the maximal polynomial subrepresentation, which
is an A(V )-submodule containing N (V ). Let N ′ be the canonical A-module with
`(N ′) 6 n satisfying N ′(V ) = N (V )′. The map M(V )→ N (V )′ is induced from
a map of A-modules M → N ′. Now, N ′(V )/N (V ) = j∗( j∗(N (V )))/N (V ) pulls
back to 0 under j∗, and is thus torsion. It follows that N ′/N is torsion, and so
N = N ′ in Modgen

A . Thus the constructed map M → N ′ of A-modules gives the
required map M → N in Modgen

A . This proves fullness of Ψ .
We now claim that Ψ is essentially surjective. Since all categories are

cocomplete and Ψ is cocontinuous and fully faithful, it suffices to show that
all finitely generated objects are in the essential image. By Proposition 5.5(b),

https://doi.org/10.1017/fms.2018.27 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2018.27


S. V Sam and A. Snowden 36

a finitely generated object M of Reppol(G) can be realized as the kernel of a
map f : P → Q, where P and Q are each sums of representations of the form
F ⊗ (E∗ ⊕ V)⊗n with F an OX -module. We have already shown that such
modules are in the essential image of Ψ . Thus P = Ψ (P ′) and Q = Ψ (Q ′) for P ′

and Q ′ in Modgen
A . Since Ψ is full, f = Ψ ( f ′) for some f ′ : P ′ → Q ′ in Modgen

A .
Finally, since Ψ is exact, M = ker( f ) = Ψ (ker( f ′)), which shows that M is in
the essential image of Ψ .

We have thus shown that Ψ is an equivalence of categories Modgen
A →

Reppol(G′). Combining this with the obvious equivalence Reppol(G′) = Reppol(G)
coming from a choice of isomorphism V′ ∼= V, we obtain the desired
equivalence Φ.

There is a canonical map V ⊗ A → E∗ ⊗ A. We let K be the kernel of the
corresponding map in Modgen

A . Under the equivalence Φ in the proposition, we
have Φ(K) = V. Combining the proposition with Corollary 5.5, we obtain:

COROLLARY 5.7. We have the following:

(a) If F is an injective object in VX then T (F ⊗ A) is injective in Modgen
A .

(b) Every finitely generated object M of Modgen
A admits a resolution M → N •

where each N i has the form T (F ⊗ A) with F ∈ V fg
X and N i

= 0 for i � 0.

(c) Every finitely generated object of Modgen
A admits a finite length filtration

where the graded pieces have the form F ⊗ Sλ(K) where F ∈ Modfg
X .

Moreover, if X is connected then Sλ(K) has no nontrivial OX -flat quotients.

The category Modgen
A is naturally a module for the tensor category V . Thus

K(Modgen
A ) is a module for Λ = K(V). The following result describes K(Modgen

A )

as a Λ-module.

COROLLARY 5.8. The map K(X) → K(Modgen
A ) taking [V ] to [T (A ⊗ V )]

induces an isomorphism Λ⊗ K(X)→ K(Modgen
A ).

Proof. This follows from Corollary 5.7(c).

REMARK 5.9. Combining the results of the previous several sections, we obtain
an equivalence Ψ : Modgen

A → Mod0
A. Note that this equivalence is not V-linear!

Indeed, Ψ (Sλ(V)⊗A) = Jλ, and this is not isomorphic to Sλ(V)⊗Ψ (A) = Sλ(V).
This computation also shows that the isomorphism K(Modgen,fg

A ) → K(Mod0,fg
A )

induced by Ψ is not Λ-linear.

https://doi.org/10.1017/fms.2018.27 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2018.27


GL-equivariant modules II 37

REMARK 5.10. Suppose that R = Sym(V ) is a general polynomial tca, where
V is a finite length object of V . One can then show (by direct calculation) that
the subcategory of Modgen

R spanned by the images of the projective objects is
equivalent to the subcategory of Mod0

R spanned by the injective objects. From this,
it follows that there is a unique left-exact functor Mod0

R → Modgen
R taking each

injective to the corresponding localized projective. We expect that this functor
is an equivalence in general. However, we have only been able to prove this
in essentially two cases: the one above, and the case where V is Sym2(C∞) or∧2
(C∞), which is treated in [NSS]. In each case, it has been essential to use

the description of Modgen
R as the representation category of a generic stabilizer;

without this, we have not found a way to show that objects in Modgen
R behave as

we expect.

5.5. The section functor. We now study the section functor S : Modgen
A →

ModA using a geometric approach. Let n > rank(E) be an integer. Let Hn be the
space of linear maps Cn

→ E∗, thought of as a scheme over X ; in fact, Hn is just
Spec(A(Cn)). Let Un be the open subscheme of Hn where the map is surjective,
and write j : Un → Hn for the inclusion.

By a polynomially (respectively algebraically) equivariant sheaf on Hn we
mean a GLn-equivariant quasicoherent sheaf that is a subquotient of a direct sum
of sheaves of the form F⊗V⊗OHn , where F is a quasicoherent sheaf on X and V
is a polynomial (respectively algebraic) representation of GLn . We write ModHn

(respectively Modalg
Hn

) for the category of polynomially (respectively algebraically)
equivariant sheaves. We make similar definitions for Un , though we will only use
polynomially equivariant sheaves on Un .

We can identify ModHn (respectively Modalg
Hn

) with the category of GLn-
equivariant A(Cn)-modules that decompose as a polynomial (respectively
algebraic) representation of GLn . If V is an algebraic representation of GLn over
OX then it has a maximal polynomial subrepresentation V pol, and the construction
V 7→ V pol is exact. This construction induces an exact functor Modalg

Hn
→ ModHn ,

denoted M 7→ Mpol.
Let Y = Grd(Cn)X , let π : Y → X be the structure map, and let Q be the

tautological bundle on Y . A point in Un is a surjection f : Cn
→ E∗. We thus

obtain a map ρ : Un → Y by associating to f the quotient coker( f ) of Cn . In fact,
specifying f is the same as specifying an isomorphism coker( f )→ E∗, and so we
see that Un is identified with the space Isom(Q, E∗) over Grd(Cn). In particular,
the map ρ is affine: Isom(Q, E∗) is the relative spectrum of the algebra⊕

λ

Sλ(Q)⊗ Sλ(E),
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the sum taken over all dominant weights λ. We thus see that Rn j∗ can be identified
with Rnπ∗ ◦ ρ∗, where we identify Hn-modules with A(Cn)-modules on X .

LEMMA 5.11. Let M be a GLn-equivariant quasicoherent sheaf on Y that is a
subquotient of a direct sum of sheaves of the form π∗F ⊗ Sλ(Cn) where F is an
OX -module. Then Riπ∗(M) is an algebraic representation of GLn over OX , for
any i .

Proof. This can be checked locally on X , so we can assume X is affine. Write
Y = G/H where G = (GLn)X and H is an appropriate parabolic subgroup of
G. Then M corresponds to an algebraic representation N of H over OX . The
pushforward Riπ∗(M) is then identified with the derived induction from H to G
of N by [Ja, Proposition I.5.12(a)], which is an algebraic representation of G by
definition.

LEMMA 5.12. Let M ∈ ModUn . Then Rn j∗(M) ∈ Modalg
Hn

.

Proof. By definition, M is a subquotient of a sheaf of the form V ⊗OUn , where
V is a polynomial representation of GLn over OX . We thus see that ρ∗(M) is a
subquotient of

ρ∗(V ⊗OUn ) = V ⊗
⊕
λ

Sλ(Q)⊗ Sλ(E).

Thus ρ∗(M) is a GLn-equivariant quasicoherent sheaf on Y that is a subquotient
of a direct sum of sheaves of the form π∗F ⊗ Sν(Cn) where F is an OX -module.
The result now follows from Lemma 5.11.

LEMMA 5.13. (a) If M ∈ ModHn then the natural map M → j∗( j∗(M))pol

has kernel and cokernel supported on the complement of Un , as does the
cokernel of the inclusion j∗( j∗(M))pol

→ j∗( j∗(M)).

(b) If M ∈ModUn then the inclusion j∗(M)pol
→ j∗(M) has cokernel supported

on the complement of Un .

Proof. (a) The map M → j∗( j∗(M)) has kernel and cokernel supported on the
complement of Un , and factors through the inclusion j∗( j∗(M))pol

→ j∗( j∗(M)).
The result follows.

(b) If M has the form j∗(N ) for N ∈ ModHn then the result follows from
(a). Since every object of ModUn is, by definition, a subquotient of one this
form, it suffices to show that if (b) holds for M then it holds for subs and
quotients of M . Thus let M be given and let N be a submodule of M . Then
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j∗(N ) is a submodule of j∗(M), and j∗(N )pol
= j∗(N ) ∩ j∗(M)pol. Thus the map

j∗(N )/j∗(N )pol
→ j∗(M)/j∗(M)pol is injective. Since the target is supported on

the complement of Un , it follows that the source is as well. Now let N be a
quotient of M . The cokernel of the map j∗(M) → j∗(N ) is then supported on
the complement of Un , by general theory. Thus the same is true for the cokernel
of the map j∗(M)/j∗(M)pol

→ j∗(N )/j∗(N )pol. Since the source is supported on
the complement of Un , the same is thus true for the target.

LEMMA 5.14. The restriction functor ModHn → ModUn identifies ModUn with
the Serre quotient of ModHn by the subcategory of sheaves supported on the
complement of Un .

Proof. Let C be the subcategory of sheaves supported on Hn \ Un . Restriction
to the open subscheme Un is an exact functor and annihilates C, so we get a
functor ModHn /C → ModUn . To see that it is faithful, consider a morphism
f : M → N of sheaves on Hn whose restriction to Un is 0. This means that the
image of f is supported on Hn \ Un , so f = 0 in the Serre quotient ModHn /C.
To get fullness, let g : j∗(M) → j∗(N ) be a morphism of sheaves. Then we
get j∗g : j∗( j∗(M)) → j∗( j∗(N )), which induces a map g′ : j∗( j∗(M))pol

→

j∗( j∗(N ))pol. By Lemma 5.13(a), we have g = j∗(g′). Also by Lemma 5.13(a),
the map M → j∗( j∗(M))pol is an isomorphism in ModHn /C, and similarly for N ,
and so g′ actually defines a map g′ : M → N in the quotient category. Finally, for
essential surjectivity, let M ∈ ModUn be given. By Lemma 5.13(b), the natural
map j∗( j∗(M)pol) → j∗( j∗(M)) is an isomorphism. By general theory, there is
a natural isomorphism j∗( j∗(M)) → M . We thus see that M ∼= j∗(N ) where
N = j∗(M)pol is an object of ModHn .

Suppose M is an A-module. Then M(Cn) is a polynomially GLn-equivariant
A(Cn)-module, and thus defines an Hn-module. This gives an exact functor
ModA → ModHn .

LEMMA 5.15. We have a commutative (up to isomorphism) diagram

ModA
T //

��

Modgen
A

��
ModHn

j∗ // ModUn

where the left map is M 7→ M(Cn).

Proof. By the universal property of Serre quotients, it suffices to show that if M
is an A-module with T (M) = 0 then the Hn-module M(Cn) is supported on the

https://doi.org/10.1017/fms.2018.27 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2018.27


S. V Sam and A. Snowden 40

complement of Un . If T (M) = 0 then the annihilator a of M is nonzero, and so
a(Cn) is also nonzero (since n > rank(E) = `(A)). We thus see that the support of
M(Cn) is a proper closed subset of Hn . It is therefore contained in the complement
of Un , as this is the maximal proper closed GLn-stable subset.

The following theorem is the key to our understanding of the saturation functor
and its derived functors.

THEOREM 5.16. We have a diagram

Modgen
A

Rn S //

��

ModA

��
ModUn

(Rn j∗)pol
// ModHn

that commutes up to a canonical isomorphism. Here the vertical maps are as in
Lemma 5.15.

Proof. In this proof, a torsion A-module is one localizing to 0 in Modgen
A , and a

torsion Hn-module is one restricting to 0 on Un .
We first construct a canonical injection S(M)(Cn) → j∗(M(Cn)) for M ∈

Modgen
A . First suppose that N is an A-module. Then Σ(N ) is torsion-free and

so Σ(N )(Cn) is as well. Thus N (Cn) → Σ(N )(Cn) is a map from N (Cn)

to a torsion-free object with torsion kernel and cokernel. However, N (Cn) →

j∗(N (Cn)|Un ) is the universal such map, and so we obtain a canonical map
Σ(N )(Cn)→ j∗(N (Cn)|Un ), which is necessarily injective. Now, let M = T (N ).
Then Σ(N ) = S(M) and N (Cn)|Un = M(Cn), by definition. We thus obtain the
desired map.

We now claim that the map just constructed is an isomorphism if M = T (V ⊗
A), with V ∈ VX . We have maps

(V ⊗ A)(Cn)→ S(M)(Cn)→ j∗(M(Cn)).

Since the second map is injective, it suffices to show that the composite map is
an isomorphism. For this, we will compute the rightmost object. The Hn-module
(V⊗A)(Cn) is V (Cn)⊗OHn , and so we see that the Un-module M(Cn) is V (Cn)⊗

OUn . We thus have

ρ∗(M(Cn)) = V (Cn)⊗
⊕
λ

Sλ(Q)⊗ Sλ(E) (5.16a)

where the sum is over all dominant weights λ. We now apply π∗, and use the fact
that π∗(Sλ(Q)) = Sλ(Cn) if λ is a partition and π∗(Sλ(Q)) = 0 otherwise. We
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obtain

j∗(M(Cn)) = V (Cn)⊗
⊕
λ

Sλ(Cn)⊗ Sλ(E) = V (Cn)⊗ A(Cn)

where now the sum is over all partitions λ. We leave to the reader the verification
that the natural map (V ⊗ A)(Cn) → j∗(M(Cn)) is the identity with the above
identification.

We now claim that the map S(M)(Cn)→ j∗(M(Cn)) is an isomorphism for all
M ∈ Modgen

A . To see this, let M be given and choose an exact sequence

0→ M → I 0
→ I 1

where I 0 and I 1 have the form T (V ⊗ A) for V ∈ VX . We then obtain a
commutative diagram

0→ S(M)(Cn) //

��

S(I 0)(Cn) //

��

S(I 1)(Cn)

��
0→ j∗(M(Cn)) // j∗(I 0(Cn)) // j∗(I 1(Cn))

with exact rows. Since the right two vertical maps are isomorphisms, so is the left
vertical map.

We have thus proved the result for n = 0. (In fact, we showed that one does
not even need to take the polynomial piece in this case.) We now prove the result
for arbitrary n. The functors Rn j∗ : ModUn → Modalg

Hn
form a cohomological δ-

functor. Since formation of the polynomial subrepresentation is exact on Modalg
Hn

, it
follows that the functors (Rn j∗)pol

: ModUn →ModHn also form a cohomological
δ-functor. Since evaluation on Cn is exact, the functors (Rn S(−))(Cn) and
Rn j∗((−)(Cn))pol are both cohomological δ-functors Modgen

A → ModHn . The
first is clearly universal, since the higher derived functors kill injective objects
of Modgen

A . Thus to prove the result, it suffices to show that the second one is
universal, and for this it suffices to show that it is coeffaceable. Since every object
of Modgen

A injects into an object of the form M = T (V ⊗ A) with V ∈ VX ,
it suffices to show that Rn j∗(M(Cn))pol

= 0 for n > 0. Applying Rnπ∗ to
equation (5.16a), and using the projection formula, we find

Rn j∗(M(Cn)) = V (Cn)⊗
⊕
λ

Sλ(E)⊗ Rnπ∗(Sλ(Q)).

We now come to the point: Rnπ∗(Sλ(Q))pol
= 0 for all n > 0. Indeed, if λ is

a partition then Rnπ∗(Sλ(Q)) = 0 for n > 0. Now suppose λ is not a partition.
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By Borel–Weil–Bott (Theorem A.1), either Rnπ∗(Sλ(Q)) vanishes for all n, or
vanishes for all n 6= n0 and for n = n0 has the form Sν(Cn). In the latter case,
ν = σ • λ′ where λ′ = (λ1, . . . , λd, 0, . . . , 0) ∈ Zn and σ ∈ Sn . If λ is not a
partition then λd < 0, and it is clear from the formulation of Theorem A.1 that ν
has a negative entry. Thus ν is not a partition, and so Sν(Cn)pol

= 0.

COROLLARY 5.17. The functor Rn S is VX -linear. Precisely, if V ∈ VX is OX -
flat then there is a canonical isomorphism Rn S(V ⊗ M) = V ⊗ Rn S(M) for

all M ∈ Modgen
A . More generally, we have a canonical isomorphism RS(V

L
⊗OX

M) = V
L
⊗OX RS(M).

Proof. Let V• be an OX -flat complex quasi-isomorphic to V and let M → I (M)
be an injective resolution of M in Modgen

A . For each i , choose an injective
resolution Vi ⊗ M → I (Vi ⊗ M), the iterated mapping cone of these complexes
is denoted by I (V• ⊗ M). Then both V• ⊗ I (M) and I (V• ⊗ M) are quasi-
isomorphic to V⊗M and we can lift the identity map on V⊗M to get a morphism
V• ⊗ I (M)→ I (V• ⊗ M). Apply S to both sides to get

V
L
⊗OX RS(M)→ RS(V

L
⊗OX M).

Now evaluate this map on Cn . By Theorem 5.16, this replaces Modgen
A by ModUn

and ModA by ModHn , in which case RS is identified with R j∗. Then the map
above is a quasi-isomorphism by the usual projection formula.

COROLLARY 5.18. If V ∈ VX then A⊗V is derived saturated, that is, the natural
map A ⊗ V → RΣ(A ⊗ V ) is an isomorphism.

Proof. It suffices to show this after evaluating on Cn for all n. This was shown in
the course of the proof of Theorem 5.16.

COROLLARY 5.19. If V ∈ VX is injective then V ⊗ A is an injective A-module.
In particular, if X = Spec(C) then all projective A-modules are also injective.

Proof. The functor S takes injectives to injectives. By Corollary 5.7, T (V ⊗ A)
is injective in Modgen

A , and we have just shown that S(T (V ⊗ A)) = Σ(V ⊗ A) is
V ⊗ A.

COROLLARY 5.20. If M ∈ Modgen
A is finitely generated then RS(M) is

represented by a finite length complex of modules of the form V ⊗ A with
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V ∈ V fg
X . In particular, Rn S(M) is finitely generated for all n > 0 and vanishes

for n � 0.

Proof. Using Corollary 5.7, pick a resolution M → T (V • ⊗ A) where V i
∈ V fg

X
and V i

= 0 for i � 0. Since V i
⊗ A is Σ-acyclic, it follows that T (V i

⊗ A) is S-
acyclic. We can thus use this resolution to compute RS. SinceΣ(V i

⊗ A) = V i
⊗

A, we obtain a quasi-isomorphism RS(M)→ V • ⊗ A. The result follows.

Finally, we compute the derived saturation of the objects Sµ(K). Recall that K
is the kernel of the canonical map V ⊗ A → E∗ ⊗ A in Modgen

A . For a weight λ
and partition ν, write λ

n
−→ ν if Bott’s algorithm applied to λ terminates after n

steps on ν, see Remark A.2.

COROLLARY 5.21. For a partition µ, we have

Ri S(Sµ(K)) =
⊕
[λ,µ]

i
−→ν

Sν(V)⊗ Sλ(E),

where the sum is over all partitions λ and ν with `(λ) 6 d and thus related, and
[λ,µ] is the weight (λ1, . . . , λd, µ1, µ2, . . .). In particular,

S(Sµ(K)) =
⊕
λd>µ1

S[λ,µ](V)⊗ Sλ(E).

Proof. Take n > rank E + `(µ). Using Theorem 5.16, we have

Ri S(Sµ(K))(Cn) = (Ri j∗Sµ(K(Cn)))pol

where j : Un → Hn is the inclusion. As discussed above, we have a factorization
Ri j∗ = Riπ∗ ◦ ρ∗ where π : Grd(Cn)X → X is the structure map and ρ : Un →

Grd(Cn)X sends a map in Un to its cokernel. Note that K(Cn) = ρ∗R, and since
pullback commutes with tensor operations, we get

ρ∗((SµK)(Cn)) = SµR⊗ ρ∗OUn = SµR⊗
⊕
λ

SλQ⊗ SλE

where the sum is over all dominant weights λ. Hence, the desired result follows
from Borel–Weil–Bott (Theorem A.1), noting that any λ with negative entries are
deleted from the final computation since we need to take the polynomial piece.

REMARK 5.22. When d = 1 and X = Spec(C), this essentially recovers [SS1,
Proposition 7.4.3]. To be precise, Corollary 5.7(d) says that the SµK are the
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simple objects of Modgen
A , so they are the simple objects Lµ defined in [SS1]. The

local cohomology calculation there for i > 2 agrees with Ri S by [SS1, Corollary
4.4.3], and the discussion in [SS1, §7.4] connects the border strip combinatorics
mentioned there with Borel–Weil–Bott.

6. Rank subquotient categories

6.1. Set-up. We fix, for all of Section 6, a scheme X over C (noetherian,
separated, and of finite Krull dimension, as always) and a vector bundle E of
rank d on X . We let A = A(E).

We introduce some notation mirroring that from Section 4.2. We write ModA,6r

for the category of A-modules supported on V (ar ), that is, that are locally
annihilated by powers of ar . This gives an ascending chain of Serre subcategories

ModA,60 ⊂ ModA,61 ⊂ · · · ⊂ ModA,6d = ModA

that we refer to as the rank stratification. We define quotient categories

ModA,>r = ModA /ModA,6r

ModA,r = ModA,6r /ModA,6r−1 .

We let T>r : ModA→ModA,>r be the localization functor and S>r its right adjoint.
We putΣ>r = S>r ◦ T>r , as usual, and let Γ6r : ModA →ModA,6r be the functor
that assigns to a module the maximal submodule supported on V (ar ).

We let D(A)6r be the full subcategory of D(A) on objects M such that
RΣ>r (M) = 0, and we let D(A)>r be the full subcategory on objects M such that
RΓ6r (M) = 0. We also put D(A)r = D(A)6r∩D(A)>r . These are all triangulated
subcategories of D(A). By Section 4, we have a semiorthogonal decomposition
D+(A) = 〈D+(A)0, . . . ,D+(A)d〉.

6.2. The category ModA,r[ar]. We let ModA[ar ] be the category of A-
modules annihilated by ar . This is a subcategory of ModA,6r . We let ModA,r [ar ]

be the subcategory of ModA,r on objects of the form T>r (M), where M is an A-
module such that ar M is supported on V (ar−1). Obviously, T>r carries ModA[ar ]

into ModA,r [ar ]. In fact:

PROPOSITION 6.1. The functor T>r : ModA[ar ] → ModA,r [ar ] identifies
ModA,r [ar ] with the Serre quotient of ModA[ar ] by ModA,<r [ar ].

Proof. The functor T>r is exact and kills ModA,<r [ar ], and thus induces a functor

Φ :
ModA[ar ]

ModA,<r [ar ]
→ ModA,r [ar ].
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We must show that the functor Φ is an equivalence. We write C for the domain
of Φ.

We first claim that the functor Φ is essentially surjective. It suffices to show
that the functor T>r : ModA[ar ] → ModA,r [ar ] is essentially surjective. Thus let
T>r (M) ∈ ModA,r [ar ] be a typical object, so that M is an A-module such that
ar M is supported on V (ar−1). Then M = M/ar M belongs to ModA[ar ]. Since the
map M → M is surjective and has kernel supported on V (ar−1), it follows that
T>r (M)→ T>r (M) is an isomorphism. Since M ∈ModA[ar ], this establishes the
claim.

We now show that Φ is fully faithful. Let M, N ∈ ModA[ar ]. Let
T : ModA[ar ] → ModA,r [ar ] be the localization functor. Then

HomModA,r [ar ](T (M), T (N )) = lim
−→

HomModA[ar ](M
′, N ′),

where the colimit is over M ′ ⊂ M such that M/M ′ ∈ ModA,<r [ar ] and quotients
N → N ′ with kernel in ModA,<r [ar ]. On the other hand,

HomModA,r [ar ](T>r (M), T>r (N )) = lim
−→

HomA(M ′′, N ′′),

where the colimit is over M ′′ ⊂ M such that M/M ′′ ∈ ModA,<r and quotients
N → N ′′ with kernel in ModA,<r . Since M and N are killed by ar , it follows that
M/M ′′ and ker(N → N ′′) are as well, and so this colimit is exactly the same as
the previous one.

We write S>r : ModA,r [ar ] →ModA[ar ] for the right adjoint of the localization
functor T>r appearing in the proposition. We write RS>r for the derived functor
of S>r . The notation RS>r always means the derived functor of S>r : ModA,>r →

ModA. Thus for M ∈ ModA,r [ar ] one computes RS>r (M) by using an injective
resolution of M in the category ModA,r [ar ], while one computes RS>r (M) by
using an injective resolution in ModA,>r (or simply ModA,r ). Injective objects in
these two categories are quite different; nonetheless, we have:

PROPOSITION 6.2. The functor RS>r is isomorphic to the restriction of RS>r to
the derived category of ModA,r [ar ].

Proof. Let I0 be an injective of ModA,r [ar ], and put I = S>r (I0), an injective
of ModA[ar ]. It suffices to show that the map I → RΣ>r (I ) is an isomorphism.
Indeed, suppose this is the case. Then I0 = T>r (I ) is S>r -acyclic and satisfies
S>r (I0) = I = S>r (I0). Thus if M → I • is an injective resolution in ModA,r [ar ]

then S>r (I •) computes RS>r (M), since the objects I k are S>r -acyclic, and equals
S>r (I •), which computes RS>r .
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To prove that I → RΣ>r (I ) is an isomorphism, it suffices (by Proposition 4.1)
to show Ext j

A(N , I ) = 0 for all N ∈ ModA,<r and j > 0. We first treat the j = 0
case, that is, we show that any map N → I with N ∈ ModA,<r is zero. It suffices
to treat the case where N is finitely generated and thus annihilated by a power of
ar−1. By dévissage, we can assume ar−1 N = 0. But then ar N = 0 as well, and
so N ∈ ModA,<r [ar ]. Since I is saturated with respect to this category, the result
follows.

We now consider the case j > 0. Since I is an A/ar -module, derived adjunction
gives

R HomA(N , I ) = R HomA/ar (N
L
⊗A A/ar , I ).

As I is injective as an A/ar -module, this R Hom can be changed to Hom. We find

Ext j
A(N , I ) = HomA/ar (TorA

j (N , A/ar ), I ).

Since N is supported on V (ar−1), so are the Tor’s. Thus, by the j = 0 case, the
above Hom vanishes. This completes the proof.

COROLLARY 6.3. Let M be an A-module annihilated by ar . Then RnΣ>r (M) is
annihilated by ar for all n > 0.

Proof. Indeed, RnΣ>r (M) is by definition Rn S>r (T>r (M)), which by
Proposition 6.2 is identified with Rn S>r (T>r (M)), and S>r (and its derived
functors) take values in ModA[ar ].

REMARK 6.4. We note that, a priori, RnΣ>r (M) is supported on V (ar−1) for
n > 0, and thus locally annihilated by a power of ar−1. However, this does not
directly imply that RnΣ>r (M) is annihilated by ar .

We now give a complete description of the category ModA,r [ar ]. Let Y =
Grr (E) be the Grassmannian of rank r quotients of E . Let π : Y → X be the
natural map, and let Q be the tautological rank r quotient bundle of π∗(E). Let
B = A(Q). We let S′ and T ′ be the usual functors between ModB and Modgen

B . We
have a natural map π∗(A)→ B, which induces a functorΦ : ModA→ModB via
M 7→ π∗(M)⊗π∗(A) B.

THEOREM 6.5. The functor T ′ ◦ Φ : ModA[ar ] → Modgen
B is exact and kills

ModA,<r [ar ]. The induced functor

Ψ : ModA,r [ar ] → Modgen
B

is an equivalence and compatible with tensor products.
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Proof. Let Hn be defined as in Section 5.5, let H6r
n be the closed subscheme

defined by ar (Cn), and let H=r
n be the complement of H6r−1

n in H6r
n . Specialization

defines a functor ModA[ar ] → Mod
H

6r
n

, which induces a functor ModA,r [ar ] →

ModH=r
n

, just as in Lemma 5.15. Let U′n be defined like Un as in Section 5.5 but
with respect to B; thus U′n is the scheme of surjections Cn

→ Q∗. There is an
isomorphism of schemes U′n → H=r

n , since a map Cn
→ E∗ of rank r determines

a rank r quotient of E∗. Consider the diagram

ModA[ar ]
//

��

T ′◦Φ

((
ModA,r [ar ]

Ψ //

��

Modgen
B

��
Mod

H
6r
n

// ModH=r
n

// ModU′n
.

Both functors in the bottom row are exact. It follows that T ′ ◦Φ is exact. Indeed,
it is right-exact, so it suffices to verify that it preserves injections. If M → N
were an injection such that T ′(Φ(N )) → T ′(Φ(M)) were not injective, then
for n � 0 the specialization of the kernel to Cn would be a nonzero object of
ModU′n

, contradicting exactness of the bottom row. Thus T ′◦Φ is exact. It follows
from the above diagram that T ′ ◦ Φ kills ModA,<r [ar ]: indeed, if M were in this
category then its specialization to Cn would restrict to 0 on H=r

n for all n, and so
T ′(Φ(M)) = 0. We thus get the induced functor Ψ as in the diagram.

We first show that Ψ is fully faithful. Let M, N ∈ ModA,r [ar ] be
finitely generated, and thus bounded. To verify that HomModA,r [ar ](M,
N ) → HomModgen

B
(Ψ (M), Ψ (N )) is an isomorphism, we can do so after

specializing to Cn for n sufficiently large. But this is clear, since the bottom
right map in the above diagram is an equivalence.

We now claim that every object of Modgen
B is a quotient of one of the form

T ′(π∗(V )⊗B)with V ∈ VX . By definition, a B-module is a quotient of W⊗B for
some W ∈ VY . It thus suffices to show that if F is an OY -module then T ′(F ⊗ B)
is a quotient of T ′(π∗(V ) ⊗ B) for some V ∈ VX . We note that the natural map
T ′(V⊗ B)→ T ′(Q∗⊗ B) is surjective. Indeed, under the equivalence Modgen

B =

Mod0
B , this corresponds to the natural surjection Q∗ ⊕ V→ Q∗. We thus have a

surjection T ′(V⊗r
⊗ B)→ T ′(L∗ ⊗ B), where L =

∧r
(Q). Since L is an ample

line bundle relative to X , any OY -module F can be written as a quotient of a sum
of OY -modules of the form π∗(G)⊗ (L∗)⊗n where G is an OX -module and n > 0
is an integer. In this way, we obtain a surjection T ′(π∗(V ) ⊗ B)→ T ′(F ⊗ B)
where V ∈ VX .
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We now verify that Ψ is essentially surjective. Let M ∈ Modgen
B be given.

Choose a presentation

T ′(π∗(W )⊗ B)
f
→ T ′(π∗(V )⊗ B)→ M → 0

with V,W ∈ VX , which is possible by the previous paragraph. Since Ψ is fully
faithful, we can write f = Ψ (g) for some morphism g : W ⊗ A/ar → V ⊗ A/ar

in ModA,r [ar ]. Since Ψ is exact, we have M = Ψ (coker(g)).
It is clear from the construction that Ψ is compatible with tensor products.

PROPOSITION 6.6. The functor π∗ : ModB → ModA[ar ] is the right adjoint to
the functor Φ : ModA[ar ] → ModB . Moreover, Rπ∗ is the derived functor of π∗
on ModB .

Proof. We can identify ModA and ModB with categories of quasicoherent sheaves
on the schemes Spec(A(V)) and Spec(B(V)). The map π∗(A) → B induces
a map f : Spec(B(V)) → Spec(A(V)). Under the previous identifications, π∗
corresponds to f∗ and Φ to f ∗. The adjointness statement follows from the usual
adjointness of f∗ and f ∗.

We now show that the Rπ∗ is the derived functor of π∗ on ModB . It suffices to
show that injective B-modules are π∗-acyclic. Thus let I be an injective B-module.
Then each multiplicity space Iλ is injective as an OX -module by Proposition 2.9,
and therefore acyclic for π∗ (see [Stacks, Tag 0BDY]). Since π∗ is computed
on VX simply by applying π∗ to each multiplicity space, it follows that I is π∗-
acyclic.

The following diagram summarizes the picture:

ModA[ar ]

T>r

��

Φ // ModB
π∗

oo

T ′

��
ModA,r [ar ]

Ψ //

S>r

OO

Modgen
B .

S′

OO

LEMMA 6.7. S>r = π∗ ◦ S′ ◦ Ψ .

Proof. The two paths from ModA[ar ] to Modgen
B commute by definition of Ψ .

Since Ψ is an equivalence, it follows that S>r ◦Ψ
−1 is the right adjoint to Ψ ◦T>r .

On the other hand, since S′ is right adjoint to T ′ and π∗ is right adjoint to Φ, it
follows that π∗ ◦ S′ is right adjoint to T ′ ◦Φ. Thus the two paths from Modgen

B to
ModA[ar ] (one of which uses the undrawn Ψ −1) also agree.
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PROPOSITION 6.8. Let M ∈ ModA,r [ar ], and let N = Ψ (M) be the
corresponding object of Modgen

B . Then RS>r (M) is canonically isomorphic
to Rπ∗(RS′(N )).

Proof. By Lemma 6.7, S>r = π∗ ◦ S′ ◦ Ψ . We thus see that RS>r = Rπ∗ ◦
RS′ ◦ Ψ . Here we have used the fact that Rπ∗ is the derived functor of π∗ on
ModB (Proposition 6.6) and the fact that RS>r is the derived functor of S>r on
ModA,r [ar ] (Proposition 6.2).

COROLLARY 6.9. Let M ∈ Modfg
A,r . Then Rn S>r (M) is a finitely generated A-

module for all n > 0, and vanishes for n � 0.

Proof. By dévissage, we can reduce to the case M ∈ Modfg
A,r [ar ]. By

Proposition 6.8, we have RS>r (M) = Rπ∗(RS′(N )), where N = Ψ (M) is a
finitely generated object of Modgen

B . Since RS′ carries Db
fg(Modgen

B ) into Db
fg(ModB)

(Corollary 5.20) and Rπ∗ carries Db
fg(ModB) to Db

fg(ModA) (Corollary 2.11), the
result follows.

6.3. Finiteness of local cohomology and derived saturation. The following
theorem is one of the fundamental results of this paper.

THEOREM 6.10. Let M ∈ Db
fg(A). Then RΣ>r (M) and RΓ6r (M) also belong to

Db
fg(A).

Proof. We proceed by descending induction on r . When r = d , we have that Γ6r

is the identity functor andΣ>r = 0, so the statement is clear. Now let us prove the
statement for r , assuming it has been proved for r + 1. Consider the triangle

RΓ6r+1(M)→ M → RΣ>r+1(M)→ .

Applying RΣ>r , we obtain a triangle

RΣ>r (RΓ6r+1(M))→ RΣ>r (M)→ RΣ>r (RΣ>r+1(M))→ .

But Σ>rΣ>r+1 = Σ>r+1, so the rightmost term is RΣ>r+1(M), which belongs
to Db

fg(A) by the inductive hypothesis. Since RΓ6r+1(M) belongs to Db
fg(A) and

is supported on V (ar+1), it follows from Corollary 6.9 that RΣ>r (RΓ6r+1(M))
belongs to Db

fg(A). It now follows from the above triangle that RΣ>r (M) belongs
to Db

fg(A). From the canonical triangle relating RΣ>r and RΓ6r , we see that
RΓ6r (M) also belongs to Db

fg(A).

The theorem exactly states that the hypothesis (Fin) from Section 4.3 holds, and
so all the consequences of (Fin) given there hold as well.
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REMARK 6.11. We summarize the proof of Theorem 6.10. There are two parts.
The first is that we can compute RΣ>r (M) if M is an A/ar -module since we can
relate it to cohomology of sheaves on Grassmannians by Proposition 6.8. (Note
that in the formula in that proposition, Rπ∗ is sheaf cohomology on Grr (E), while
RS′ is essentially sheaf cohomology on Grr (C∞) by Theorem 5.16.) The second
is that we can formally deduce the full result from this particular case via the
inductive procedure in the above proof.

REMARK 6.12. One can define local cohomology functor with respect to any
ideal of A. However, the finiteness observed in the theorem for determinantal
ideals does not hold in general. In fact, it seems plausible that finiteness essentially
holds only for determinantal ideals (essentially because the property only depends
on the radical).

6.4. Generators for Db
fg(A). Let T be a triangulated category and let S be a

collection of objects in T . The triangulated subcategory of T generated by S
is the smallest triangulated subcategory of T containing S. The following result
gives a useful set of generators for Db

fg(A)r . We use notation as in Section 6.2:
Y = Grr (E), Q is the tautological bundle, B = A(Q), and π : Y → X is the
structure map.

PROPOSITION 6.13. The category Db
fg(A)r is the triangulated subcategory of

Db
fg(A) generated by the objects Rπ∗(V ⊗ B) with V ∈ V fg

Y .

Proof. By Proposition 4.14, the functor RS>r : Db
fg(ModA,r ) → Db

fg(A)r is an
equivalence. Now, Db

fg(ModA,r ) is generated by Modfg
A,r (thought of as complexes

in degree 0). Every object of Modfg
A,r has a finite length filtration where the

graded pieces belong to Modfg
A,r [ar ], and so it follows that Modfg

A,r [ar ] generates
Db

fg(ModA,r ). By Theorem 6.5, Modfg
A,r [ar ] is equivalent to (Modgen

B )fg, and under
this equivalence, RS>r corresponds to Rπ∗ ◦ RS′ (Proposition 6.8). We thus see
that the image of (Modgen

B )fg in Db
fg(A) under Rπ∗ ◦ RS′ generates Db

fg(A)r .
Now, by Corollary 5.7, every object of (Modgen

B )fg admits a finite length forward
resolution by objects of the form T ′(V ⊗ B) with V ∈ V fg

Y . It follows that the
objects Rπ∗(RΣ ′(V ⊗ B)) generate Db

fg(A)r . By Corollary 5.7, RΣ ′(V ⊗ B) =
V ⊗ B, so the proposition follows.

REMARK 6.14. Let us spell out a little more precisely what Proposition 6.13
means. Given M ∈ Db

fg(A)r , Proposition 6.13 implies that there are objects 0 =
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M0, . . . ,Mn = M ∈ Db
fg(A)r , objects V1, . . . , Vn ∈ V fg

Y , integers k1, . . . , kn , and
exact triangles

Mi → Mi+1 → R f∗(Vi+1 ⊗ B)[ki ] → .

This gives a way of inductively building arbitrary objects of Db
fg(A)r from objects

of the form R f∗(V ⊗ B). One often has tools to study these more simple objects,
which is why Proposition 6.13 is useful.

REMARK 6.15. If one takes V = Sλ(Q) in Proposition 6.13, then there are
no higher pushforwards, and π∗(SλQ ⊗ B) is the module Kr,λ appearing in
Theorem 1.9. Since the objects π∗(F) ⊗ Sλ(Q), with λ ⊆ r × (d − r) and F a
finitely generated OX -module, generate Db

fg(Y ) (see Corollary A.6), we find that
the objects π∗(F)⊗Sµ(V)⊗Kr,λ generate Db

fg(A)r . This proves (a generalization
of) Theorem 1.9.

COROLLARY 6.16. The category Db
fg(A) is generated by the objects from

Proposition 6.13, allowing r to vary.

Proof. This is immediate since, by Theorem 6.10, Db
fg(A) is generated by the

Db
fg(A)r .

6.5. An axiomatic approach to A-modules. Using Proposition 6.13, we now
formulate an axiomatic approach to proving results about A-modules. By a
property of A-modules we mean a rule that assigns to every triple (X, E,M)
consisting of a scheme X , a locally free coherent sheaf E on X , and an object M
of Db

fg(A(E)) a Boolean value PX,E(M).

PROPOSITION 6.17. Let P be a property of A-modules. Suppose the following:

(a) If PX,E is true for two terms in an exact triangle then it is true for the third.

(b) If PX,E(M) is true then so is PX,E(M[n]) for all n ∈ Z.

(c) If E →Q is a surjection then PX,Q(M) H⇒ PX,E(M) for M ∈ Db
fg(A(Q)).

(d) Suppose f : Y → X is a proper map of schemes and E is a locally
free coherent sheaf on X. Then PY, f ∗(E)(M) H⇒ PX,E(R f∗(M)) for
M ∈ Db

fg(A( f ∗(E))).

(e) PX,E is true for modules of the form A(E)⊗ V with V ∈ V fg
X .

Then PX,E(M) is true for all X, E , and M.
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Proof. Let X and E be given, and let us prove PX,E holds on all of Db
fg(A(E)). We

note that by (a) and (b), the full subcategory on objects for which PX,E holds is a
triangulated subcategory of Db

fg(A(E)). Let Y = Grr (E), let Q be the tautological
bundle on Y , and let f : Y → X be the structure map. By (e), PY,Q holds for all
modules of the form A(Q) ⊗ V with V ∈ V fg

Y . Thus by (c), PY, f ∗(E) holds for
all such modules as well. By (d), we see that PX,E holds for all modules of the
form R f∗(A(Q) ⊗ V ) with V ∈ V fg

Y . By Proposition 6.13, it follows that PX,E
holds for all objects in Db

fg(A(E))r , for all r . Finally, Db
fg(A(E)) is generated by

the categories Db
fg(A(E))r as r varies (Corollary 6.16), so PX,E holds on all of

Db
fg(A(E)), completing the proof.

REMARK 6.18. It is clear from the proof that the conditions in Proposition 6.17
are stronger than what is actually needed: for instance, in (d) it is enough to
consider Y that are relative Grassmannians. For our applications, the above
proposition is enough though.

6.6. Grothendieck groups. The category ModA is naturally a V-module, and
so K(A) is a Λ-module. We now describe its structure as a Λ-module. Let
πr : Grr (E) → X be the structure map, and let Qr be the tautological quotient
bundle on Grr (E). Define

ir : K(Grr (E))→ K(A), ir ([V ]) = [Rπr ∗(V ⊗ A(Qr ))].

The main result is then:

THEOREM 6.19. The maps ir induce an isomorphism of Λ-modules

d⊕
r=0

Λ⊗ K(Grr (E))→ K(A).

Proof. We have K(A) =
⊕d

r=0 K(Db
fg(A)r ) by Proposition 4.17. We now have

identifications

K(Db
fg(A)r ) = K(ModA,r ) = K(ModA,r [ar ]) = K(Modgen

A(Qr )
) = Λ⊗ K(Grr (E)).

(6.19a)
The first follows from Proposition 4.16; the second from the fact that everything
in ModA,r has a filtration with graded pieces in ModA,r [ar ]; the third from the
equivalence of ModA,r [ar ] with Modgen

A(Qr )
(Theorem 6.5); and the fourth from

Proposition 5.8. We thus have an isomorphism K(A) =
⊕d

r=0Λ⊗K(Grr (E)). It
only remains to verify that this isomorphism is given by the claimed formula.
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Both isomorphisms are Λ-linear, so it suffices to check that they agree on
[V ] ∈ K(Grr (E)). We now trace [V ] backwards through the identifications in
equation (6.19a), using notation as in Section 6.2. It gives [M] in K(Modgen

A(Qr )
),

with M = T ′(A(Qr ) ⊗ V ); which gives [Ψ −1(M)] in K(ModA,r ); which gives
[RSr−1(Ψ

−1(M))] in K(Db
fg(A)r ). From Proposition 6.8 we have an isomorphism

RS>r (Ψ
−1(M)) = Rπr ∗RS′(M).

By Corollary 5.18 we have RS′(M) = A(Qr ) ⊗ V . We thus see that [V ] gives
[Rπr ∗(A(Qr )⊗ V )] in K(A), which is exactly ir ([V ]).

COROLLARY 6.20. K(A) is isomorphic to a direct sum of 2d copies ofΛ⊗K(X).
In particular, if X = Spec(C), then K(A) is free of rank 2d as a Λ-module.

Proof. By Corollary A.7, K(Grr (E)) ∼= K(X)⊕(
d
r), and

∑d
r=0

(d
r

)
= 2d .

REMARK 6.21. Suppose X = Spec(C). Since A(C)⊗d
= A(Cd), there is a natural

map
K(A(C))⊗d

→ K(A(Cd)),

given by taking the external tensor product of modules. One can take the tensor
product on the left as Λ-modules, and so both sides are free Λ-modules of rank
2d . However, this map is not an isomorphism. We explain for d = 2. Write L1

and L2 for two copies of C. The Λ-module K(A(L i)) is free of rank 2, and
the classes of C and A(L i) form a basis. Thus the image of the above map is
the Λ-module spanned by the external tensor product of these modules. These
products are C, A(L1), A(L2), and A(L1⊕ L2) = A(C2). However, the classes of
A(L1) and A(L2) coincide: indeed, under the description of K(A(C2)) in terms
of Grassmannians the class of A(L1) corresponds to the class of the point 0 ∈ P1

(or rather, its structure sheaf), while the class of A(L2) corresponds to the class of
the point∞. Since all points in P1 represent the same class in K-theory, we see
that [A(L1)] = [A(L2)] in the K-groups of A(C2). Thus the image of the external
tensor product map on K-theory has rank at most 3 over Λ.

7. Koszul duality

7.1. Three formulations of Koszul duality.

7.1.1. Formulation 1: Exterior coalgebra comodules We let X and E and A =
A(E) be as in previous sections. Let B =

∧
(E〈1〉). We note that B is naturally a

coalgebra; this structure will be relevant. Let K = K(E) be the Koszul complex
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resolving A/A+ =OX : this has Ki
=
∧
−i
(E〈1〉)⊗A for i 6 0 and Ki

= 0 for i >
0, and has the usual Koszul differential. Given a complex M• of A-modules, the
tensor product complex K⊗A M is naturally a dg-comodule over Sym(E〈1〉[−1]).
We now modify this construction to get a complex of B-comodules.

For a complex M of objects in VX , define the right shear by

(M R)n =
⊕
i∈Z

Mn−i
i .

Here Mn−i
i denotes the degree i piece of Mn−i . The right shear shifts the degree i

piece of the complex i units to the right. We also define the left shear by

(M L)n =
⊕
i∈Z

Mn+i
i .

This is inverse to the right shear.
For a complex M of A-modules we now define

KE(M) = (K⊗A M)R.

Since the right shear of Sym(E〈1〉[−1]) is B, this is a complex of B-comodules.
To be completely explicit, we have

KE(M)n = B ⊗
⊕
i>0

Mn−i
i = B ⊗ (M R)n.

The B-comodule structure on KE(M)n is the obvious one (it is cofree). The
differential (in the case where X is affine) is given by

d(x1 ∧ · · · ∧ xn ⊗ m) = x1 ∧ · · · ∧ xn ⊗ dm

+

n∑
i=1

(−1)i+k+1x1 ∧ · · · ∧ x̂i ∧ · · · ∧ xn ⊗ xi m,

where x1, . . . , xn ∈ E〈1〉 and m ∈ Mk . We note that if M is bounded below then
so is KE(M). Furthermore, KE induces a functor D(ModA)→ D(CoModB).

We now define a functor in the reverse direction. The degree 0 copy of OX in
B is a subcomodule. Let L = L(E) be the Koszul complex resolving it: this has
Li
= Symi(E〈1〉)⊗B for i > 0 and Li

= 0 for i < 0. Suppose that N is a complex
of B-comodules. We put

LE(N ) = (L⊗B N )L .
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Explicitly,
LE(N )n = A ⊗

⊕
i>0

N n+i
i = A ⊗ (N L)n.

The A-module structure on LE(N )n is the obvious one (it is free). Consider the
comultiplication map N → B ⊗ N and, in particular, the graded component
∇ : N k

n → B1 ⊗ N k
n−1. When X is affine, the differential on LE(N ) is the sum

of the following two maps:

Am ⊗ N k
i

1⊗∇
−−→ Am ⊗ B1 ⊗ N k

i−1
µ⊗1
−−→ Am+1 ⊗ N k

i−1

Am ⊗ N k
i

(−1)k⊗dN
−−−−−→ Am ⊗ N k+1

i

where µ : Am⊗ B1→ Am+1 is the multiplication map and dN is the differential on
N . Note that this is dual to the differential that we have defined on KE(M) above.
To see that this is a complex, consider the following diagram:

Am ⊗ N k
i

1⊗∇ //

1⊗dN

��

Am ⊗ B1 ⊗ N k
i−1

µ⊗1 //

1⊗1⊗dN

��

Am+1 ⊗ N k
i−1

1⊗dN

��
Am ⊗ N k+1

i
1⊗∇ // Am ⊗ B1 ⊗ N k+1

i−1
µ⊗1 // Am+1 ⊗ N k+1

i−1 .

The left hand square commutes since N is a complex of A-modules, while
the right hand square commutes since the horizontal and vertical maps act on
different tensor factors. Hence the main rectangle commutes and the signed sum
of the boundaries of this rectangle compute the components of the square of the
differential of LE(N ). If N is bounded above then so is LE(N ). Furthermore,
LE induces a functor D(CoModB)→ D(ModA).

We can identify LE(KE(M)) with the complex A ⊗ B ⊗ M with the
cohomological grading

(A ⊗ B ⊗ M)n = A ⊗
⊕
i>0

Bi ⊗ Mn−i

and differential ( f ∈ A, x1, . . . , xi ∈ E〈1〉, m ∈ Mn−i )

d( f ⊗ x1 ∧ · · · ∧ xi ⊗ m) =
i∑

k=1

(−1)k−1xk f ⊗ x1 ∧ · · · x̂k · · · ∧ xi ⊗ m

+ (−1)n f ⊗ x1 ∧ · · · ∧ xi ⊗ d(m)

+

i∑
k=1

(−1)i+k+1 f ⊗ x1 ∧ · · · x̂k · · · ∧ xi ⊗ xkm.
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We define maps (A ⊗ B ⊗ M)n → Mn as follows. We have (A ⊗ B ⊗ M)n =
A⊗

⊕
i>0 Bi⊗Mn−i , and for i = 0, we take the multiplication map A⊗Mn

→ Mn ,
and define it to be 0 on all other components. This defines a morphism of chain
complexes. Consider the corresponding cone LE(KE(M)) → M . We can filter
this complex by the cohomological grading on M . The associated graded complex
is a direct sum of complexes of the form

· · · → A ⊗ B2 ⊗ M i
→ A ⊗ B1 ⊗ M i

→ A ⊗ B0 ⊗ M i
→ M i

→ 0

which are everywhere exact. Hence the cone is acyclic and the map
LE(KE(M))→ M is a quasi-isomorphism.

Similarly, there is a canonical map N → KE(LE(N )) of complexes of B-
comodules that is always a quasi-isomorphism. Thus KE and LE induce mutually
quasi-inverse equivalences of D(ModA) and D(CoModB).

For the benefit of later use, we record the following simple result here.

PROPOSITION 7.1. Let M be a complex of A-modules. Then

Hn(KE(M)) =
⊕
i∈Z

TorA
i−n(M,OX )i .

7.1.2. Formulation 2: Exterior algebra modules We now want to modify the
constructions of the previous section to replace the comodules that appear with
modules. We do this by applying a duality to VX that interchanges B-modules
and B-comodules.

In this section, we assume that X has a dualizing complex ω (see [Ha, Chapter
V] for definitions and basic properties). Then ω induces a duality D of Dfg(X) via
D(M) = R HomX (M, ω). We say that M ∈ VX is degree-wise finitely generated
(dfg) if Mλ is a coherent sheaf on X for all λ. Similarly, we say that a complex
M in VX is dfg if each Hi(M) is. We let Ddfg(VX ) be the full subcategory of
D(VX ) on the dfg objects. We extend D to Ddfg(VX ) by simply applying D to the
multiplicity spaces. That is, for M ∈ Ddfg(VX ) we write M =

⊕
λ Mλ ⊗ Sλ(V),

where Mλ ∈ Dfg(X), and then define D(M) =
⊕

λ D(Mλ)⊗ Sλ(V).

LEMMA 7.2. D(M ⊗ Sλ(V)) is canonically isomorphic to D(M)⊗ Sλ(V).

Proof. The Sν(V) multiplicity space of M ⊗ Sλ(V) is
⊕

µ Mµ ⊗ HomV(Sν,
Sλ ⊗ Sµ), so it suffices to construct a canonical isomorphism HomV(Sν,Sλ ⊗
Sµ)∗ ∼= HomV(Sν,Sλ ⊗ Sµ). The former can be identified with HomV(Sλ ⊗ Sµ,
Sν). Note that there is a duality on V given (in the polynomial functor perspective)
by F∨(V ) := F(V ∗)∗ for finite-dimensional V . When F is the identity, we
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canonically have F∨ = F , and hence, we get a canonical identification for any
Schur functor and their tensor products.

Suppose now that M is a complex of B-comodules. We thus have a
comultiplication map M → M ⊗ E〈1〉. Applying D to this map yields a
map D(M ⊗ E〈1〉) → D(M). Recall that E〈1〉 is just E ⊗ V. Then V pulls
out of D by Lemma 7.2. Since E is a locally free coherent sheaf, we have
D(E ⊗ −) = E∗ ⊗ D(−). We thus have a map E∗〈1〉 ⊗ D(M) → D(M). In
fact, one can show that D(M) naturally has the structure of a B∗-module, where
B∗ =

∧
(E∗〈1〉). This construction gives an equivalence between Ddfg(CoModB)

and Ddfg(ModB∗). It interchanges the bounded-below and bounded-above
subcategories, and preserves the bounded subcategory.

We now define

K ∗

E : Ddfg(ModA)
op
→ Ddfg(ModB∗), K ∗

E = D ◦KE

and
L ∗

E : Ddfg(ModB∗)
op
→ Ddfg(ModA), L ∗

E = LE ◦ D.

(We note that the functors KE and LE preserve the dfg condition.) It is clear that
K ∗

E and L ∗

E are mutually quasi-inverse equivalences. We note that both K ∗

E and
L ∗

E take the bounded-below subcategory to the bounded-above subcategory. We
also note that K ∗

E and L ∗

E depend on the choice of dualizing complex ω, though
this dependence is absent from the notation.

7.1.3. Formulation 3: Symmetric algebra modules We now want to modify
the constructions of the previous section to replace modules over the exterior
algebra with modules over the symmetric algebra. We do this by applying the
transpose functor to VX . Recall that this is a covariant functor (−)† that is ModX -
linear and satisfies Sλ(V)† = Sλ†(V), where λ† is the transpose of the partition λ.
Furthermore, while it is a tensor functor, it is not a symmetric tensor functor: it
interchanges the usual symmetry and the graded symmetry of the tensor product
on VX (see [SS2, §7.4]). Let A∗ = Sym(E∗〈1〉) = (B∗)†. Then we have an
equivalence of categories ModB∗ → ModA∗ via M 7→ M†. We now define

K ∗,†
E : Ddfg(ModA)

op
→ Ddfg(ModA∗), K ∗,†

E = (−)† ◦K ∗

E

and
L ∗,†

E : Ddfg(ModA∗)
op
→ Ddfg(ModA), L ∗,†

E = L ∗

E ◦ (−)
†.

Once again, it is clear that K ∗,†
A and L ∗,†

A are mutually quasi-inverse
equivalences.
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PROPOSITION 7.3. We have K ∗,†
E = L ∗,†

E∗ and L ∗,†
E =K ∗,†

E∗ .

Proof. We have

K ∗,†
E (M) = D((K(E)⊗A M)R)† = (D(K(E)† ⊗B M†))L

= (K(E)∗,† ⊗B∗ D(M†))L .

The second equality uses that (−)† commutes with D and is a tensor functor.
The third equality uses that K(E) is a complex of locally free sheaves. Finally,
K(E)∗,† = L(E∗), so we see that K ∗,†

E = L ∗,†
E∗ . The other identity is similar.

7.2. The Fourier transform. We now define the Fourier transform

FE : Ddfg(A(E))op
→ Ddfg(A(E∗))

to be the functor K ∗,†
E . It is an equivalence of categories. We gather some of its

basic properties here.

PROPOSITION 7.4. We have the following:

(a) FE and FE∗ are canonically quasi-inverse to each other.

(b) FE carries D+dfg(A(E)) into D−dfg(A(E∗)).

(c) FE(Sλ(V)⊗−) = Sλ†(V)[−n] ⊗FE(−), where n = |λ|.

(d) If M is a locally free coherent sheaf on X then FE(M ⊗ −) = M∗
⊗

FE(−).

(e) If E → Q is a surjection of vector bundles and M ∈ Ddfg(A(Q)) then
FE(M) is canonically isomorphic to FQ(M)⊗A(Q∗) A(E∗).

(f) If M is a coherent sheaf on X then FE(A(E)⊗M) = D(M), regarded as
a trivial A(E∗)-module.

(g) If F ′

E is defined with respect to a different dualizing complex then there is
an integer d and a line bundle L on X such that F ′

E(M) ∼=FE(M)[d]⊗L.

Proof. (a) This follows from Proposition 7.3.
(b) We have already noted this for K ∗,†

E .
(c) We have K (Sλ(V)⊗−) = Sλ(V)[n] ⊗K (−). Thus K ∗(Sλ(V)⊗−) =

Sλ(V)[−n] ⊗K ∗(−). Finally, taking transposes yields the stated formula.
(d) This is clear.
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(e) We have

FE(M) = (D(K(E)⊗A(E) M)R)†

= (D(K(E)⊗K(Q) (K(Q)⊗A(Q) M))R)†

= A(E∗)⊗A(Q∗) (D(K(Q)⊗A(Q) M)R)†.

(f) K(E)⊗A(E) (A(E)⊗M) is quasi-isomorphic to M concentrated in degree
0, so K (M)† 'M, which gives FE(A(E)⊗M) = D(M).

(g) Follows from [Ha, §V.3].

We now examine how the Fourier transform interacts with pushforwards. We
first set some notation. Let f : Y → X be a proper map of schemes, let EX be a
vector bundle X , and let EY = f ∗(EX ) be its pullback to Y . Put AY = A(EY ) and
AX = A(EX ). We let BX , B∗X , and A∗X be defined as in previous sections. Let ωX

be a dualizing sheaf on X and let ωY = f !(ωX ) be the corresponding one on Y .
Write DY and DX for the duality functors they give.

PROPOSITION 7.5. We have canonical functorial isomorphisms of functors on
D+dfg(ModAY ):

(a) R f∗ ◦KEY =KEX ◦ R f∗.

(b) R f∗ ◦K ∗

EY
=K ∗

EX
◦ R f∗.

(c) R f∗ ◦FEY =FEX ◦ R f∗.

Proof. (a) Let M ∈ D+dfg(ModAY ) and pick a quasi-isomorphism M → I with I
a bounded-below complex of injective AY -modules. Note that each multiplicity
space of an injective AY -module is injective as an OY -module (Proposition 2.9).
Thus R f∗(M) ∼= f∗(I ). Recall that

KEY (I )
n
= BY ⊗

⊕
i>0

I n−i
i .

This is a bounded-below complex. As BY = f ∗(BX ), the projection formula
implies that the sheaf BY ⊗ I n−i

i is f∗-acyclic. We can thus compute R f∗ of
the above complex by simply applying f∗. Doing this, and using the projection
formula again, gives

f∗(KEY (I ))
n
= BX ⊗

⊕
i>0

f∗(I )n−i
i .

However, this exactly coincides with KEX ( f∗(I )).
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(b) Precompose the identity in part (a) with DX and use the duality theorem
DX ◦ R f∗ = R f∗ ◦ DY .

(c) Simply apply transpose to the identity in part (b).

We now carry out a fundamental computation. Let Y = Grr (E), let Q and R
be the usual bundles on Y , and let π : Y → X be the structure map. Let Y ′ =
Grd−r (E∗), and let Q′, R′, and π ′ be defined analogously. We note that Y and Y ′

are canonically isomorphic.

PROPOSITION 7.6. Let M be a finitely generated OY -module, and let M′ be
the corresponding OY ′-module. Let λ be a partition of size n. Then there is a
canonical isomorphism

FE(Rπ∗(Sλ(V)⊗M⊗ A(Q))) = Rπ ′
∗
(Sλ†(V)[−n] ⊗ D(M′)⊗ A(Q′)).

Proof. We compute the left side. We first note that we can switch FE and
Rπ∗ by Proposition 7.5. Next, Sλ(V) pulls out of FE and becomes Sλ†(V)[−n]
by Proposition 7.4(c). We have FQ(M ⊗ A(Q)) = D(M), a trivial A(Q∗)-
module, by Proposition 7.4(f), and so FE(M ⊗ A(Q)) = D(M) ⊗ A(R∗) by
Proposition 7.4(e). We have thus shown

FE(Rπ∗(Sλ(V)⊗M⊗ A(Q))) = Rπ∗(Sλ†(V)[−n] ⊗ D(M)⊗ A(R∗)).

We now move everything to Y ′ via the isomorphism between Y and Y ′. This
changes π to π ′ and M to M′ and R∗ to Q′. This yields the stated result.

7.3. The finiteness theorem. The following is the fundamental finiteness
result about the Fourier transform:

THEOREM 7.7. The Fourier transform FE carries Db
fg(A(E)) into Db

fg(A(E∗)).

Proof. Let PX,E(M) be the truth value of the statement ‘FE(M) is bounded with
finitely generated cohomology.’ (Note that while FE depends on the choice of a
dualizing sheaf on X , the value of PX,E does not by Proposition 7.4(g).) Then P
is a property of A-modules. We show that P holds for all modules by verifying
the five conditions in Proposition 6.17. The first two conditions are clear. We now
consider the other three.

(c) Let E → Q be a surjection of locally free coherent sheaves on X and
let M ∈ Db

fg(A(Q)). Then FE(M) is isomorphic to FQ(M) ⊗A(Q∗) A(E∗) by
Proposition 7.4(e). Thus if PX,Q(M) holds then so does PX,E(M).

https://doi.org/10.1017/fms.2018.27 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2018.27


GL-equivariant modules II 61

(d) Suppose f : Y → X is a proper morphism of schemes, E is a locally
free coherent sheaf on X , and M ∈ Db

fg(A( f ∗(E))). Proposition 7.5(c) gives
an isomorphism R f∗(F f ∗(E)(M)) = FE(R f∗(M)). (We assume here that ωY is
chosen to be f !(ωX ).) So PY, f ∗(E)(M)⇒ PX,E(R f∗(M)) by Corollary 2.11.

(e) This follows from Proposition 7.4(c,f).

COROLLARY 7.8. A finitely generated A-module has finite regularity.

7.4. The duality theorem. The following is a sort of duality theorem
involving the Fourier transform and the rank stratification.

THEOREM 7.9. Set d = rank(E). We have natural identifications of functors
Db

fg(A(E))→ Db
fg(A(E∗)):

(a) FE ◦ RΓ6r = RΣ>d−r ◦FE .

(b) FE ◦ RΣ>r = RΓ6d−r ◦FE .

(c) FE ◦ RΠr = RΠd−r ◦FE .

Proof. It follows immediately from Propositions 6.13 and 7.6 that FE carries
Db

fg(A)r into Db
fg(A

∗)d−r . Now, let M ∈ Db
fg(A). We then have an exact triangle

RΓ6r (M)→ M → RΣ>r (M)→ .

Applying FE yields an exact triangle

FE(RΣ>r (M))→FE(M)→FE(RΓ6r (M))→ .

Since RΓ6r (M) belongs to Db
fg(A)6r , it follows that FE(RΓ6r (M)) belongs to

Db
fg(A

∗)>d−r . Similarly, FE(RΣ>r (M)) belongs to Db
fg(A

∗)<d−r . We also have an
exact triangle

Γ<d−r (FE(M))→FE(M)→ Σ>d−r (FE(M)).

Since Db
fg(A

∗) admits a semiorthogonal decomposition 〈Db
fg(A

∗)<d−r ,

Db
fg(A

∗)>d−r 〉, it follows that there are canonical isomorphisms FE(RΣ>r (M)) =
RΓ<d−r (FE(M)) and FE(RΓ6r (M)) = RΣ>d−r (FE(M)). This proves (a) and
(b). As for (c), we have

FE ◦ RΠr =FE ◦ RΓ6r ◦ RΣ>r

= RΣ>d−r ◦FE ◦ RΣ>r

= RΣ>d−r ◦ RΓ6d−r ◦FE

= RΠd−r ◦FE .
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In the first and fourth lines we used the definition of RΠr , in the second line we
used part (a), and in the third line we used part (b).

7.5. The induced map on Grothendieck groups. Let (−)∗ : Λ → Λ

be the map taking sλ to (−1)|λ|sλ† . This is a ring homomorphism. Since
FE is an equivalence Db

fg(A(E)) → Db
fg(A(E∗)), it induces an isomorphism

ϕ : K(A(E)) → K(A(E∗)). This map is ∗-linear, meaning ϕ(ax) = a∗ϕ(x) for
a ∈ Λ and x ∈ K(A(E)), by Proposition 7.4(c). The following result gives a
complete description of ϕ.

PROPOSITION 7.10. We have a commutative diagram⊕d
r=0Λ⊗ K(Grr (E)) //

��

K(A(E))

ϕ

��⊕d
r=0Λ⊗ K(Grr (E∗)) // K(A(E∗))

where the horizontal maps are the ones from Theorem 6.19, and the left vertical
map is (−)∗ on the Λ factors, and takes [M] ∈ K(Grr (E)) to [D(M′)] ∈

K(Grd−r (E∗)), where M′ corresponds to M under the isomorphism Grr (E) =
Grd−r (E∗).

Proof. This follows immediately from the description of the maps in
Theorem 6.19 and the calculation in Proposition 7.6.
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Appendix A. Basic facts about Grassmannians

Let X be a noetherian separated scheme of finite Krull dimension over a field
of characteristic 0 and let E be a vector bundle of rank d . Let Y = Grr (E), let
π : Y → X be the structure map, and let Q and R be the tautological bundles.

A.1. Borel–Weil–Bott. Let Sd denote the symmetric group on d letters, more
precisely the group of bijections of [d] = {1, . . . , d}.Given σ ∈ Sd , define its
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length to be

`(σ ) = #{(i, j) | 1 6 i < j 6 d, σ (i) > σ( j)}.

Also define
ρ = (d − 1, d − 2, . . . , 1, 0) ∈ Zd .

Given v ∈ Zd , define σ(v) = (vσ−1(1), . . . , vσ−1(d)) and σ • v = σ(v + ρ) − ρ.
Note that given any v ∈ Zd , either there exists σ 6= 1 such that σ • v = v, or there
exists a unique σ such that σ • v is weakly decreasing.

Let α = (α1, . . . , αr ) ∈ Zr and β = (β1, . . . , βd−r ) ∈ Zd−r be weakly
decreasing and set v = (α1, . . . , αr , β1, . . . , βd−r ). For the following, see [Wey,
Corollary 4.1.9].

THEOREM A.1 (Borel–Weil–Bott). Exactly one of the following two cases
happens:

(a) If there exists σ 6= 1 such that σ • v = v, then R jπ∗(Sα(Q)⊗ Sβ(R)) = 0
for all j .

(b) Otherwise, there exists unique σ such that γ = σ • v is weakly decreasing,
and

R jπ∗(Sα(Q)⊗ Sβ(R)) ∼=
{

Sγ (E) if j = `(σ )
0 if j 6= `(σ ).

Note that Sλ(Q∗) ∼= SµQ where µ = (−λr , . . . ,−λ1), and similarly for any
vector bundle.

REMARK A.2. The length `(σ ) of a permutation is also equal to the minimal
number of adjacent transpositions si = (i, i + 1) needed to write σ , that is, the
minimal ` such that we can write σ = si1 si2 · · · si` . The operation si • v has the
effect of replacing vi , vi+1 with vi+1 − 1, vi + 1.

So in (b) above, the process of getting γ from v can be thought of in terms of
a bubble sorting procedure: if vi < vi+1, apply si• to get a new sequence with
v′i > v′i+1; the number of times needed to do this is `(σ ). We will refer to this
procedure as ‘Bott’s algorithm,’ and keeping the notation of (b), we write v

n
−→ γ

where n = `(σ ).

COROLLARY A.3. Suppose α, β ⊆ r × (d − r) and F is a coherent sheaf on X.
Then

R jπ∗(Sα(Q∗)⊗ Sβ†(R)⊗ π∗F) ∼=
{
F if α = β and j = |α|
0 otherwise.
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Proof. Using the projection formula, we may assume that F = OX . In that case,
this is [Ka, Lemma 3.2] when X is a point, but the combinatorics is exactly the
same in the general setting. Here is a sketch of how this can be proven. Pick
σ ∈ Sd and consider c = σ • 0. Then c1 > · · · > cr and cr+1 > · · · > cd if and
only if σ−1(1) 6 · · · 6 σ−1(r) and σ−1(r + 1) 6 · · · 6 σ−1(d); furthermore,
c = (−λr , . . . ,−λ1, λ

†
1, . . . , λ

†
d−r ) where λ ⊆ r × (d − r), so we write σ = wλ;

also `(wλ) = |λ|. Then what remains to show is: if λ 6= µ, then ((wλ • 0)1,...,r ,
(wµ • 0)r+1,...,d) has a repeated element, and this follows since we have w−1

λ (i) =
w−1
µ ( j) for some 1 6 i 6 r and r + 1 6 j 6 d .

A.2. Derived category and K-theory. This is adapted from [Ka].
Let πi : Y ×X Y → Y denote the projection maps for i = 1, 2. Given sheaves

F ,G on Y , define F � G = π∗1F ⊗ π∗2G. We have the following maps:

R�OY → V �OY = OY � V → OY �Q.

The composition corresponds to a section of R∗ � Q, whose zero locus is the
diagonal∆Y of Y ×X Y , and has codimension equal to the rank of R∗�Q. Hence
the following Koszul complex is exact:

0→
r(d−r)∧

(R�Q∗)→ · · · →
2∧
(R�Q∗)→R�Q∗→ OY×X Y → O∆Y → 0.

Using the Cauchy identity, we can write

i∧
(R�Q∗) =

⊕
λ⊆r×(d−r)
|λ|=i

Sλ†(R)� Sλ(Q∗).

Given M ∈ Db(Y ), we have a quasi-isomorphism

M ' R(π2)∗(Lπ∗1 M ⊗L
Y O∆Y ). (A.4)

This is a formal verification: let ι : Y ∼= ∆Y → Y ×X Y be the inclusion. Then

R(π2)∗(Lπ∗1 M ⊗L
Y O∆Y ) = R(π2)∗(Lπ∗1 M ⊗L

Y Rι∗OY )

= R(π2)∗(Rι∗(Lι∗Lπ∗1 M ⊗L
Y OY )) = M.

In the second equality, we used the projection formula; in the final equality, we
used that π1ι = π2ι = idY . The right hand side of equation (A.4) can be computed
using the Koszul complex, which gives a spectral sequence

E1
p,q =

⊕
λ⊆r×(d−r)
|λ|=q

R−pπ∗(M ⊗ Sλ†(R))⊗ Sλ(Q∗)
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which converges to M concentrated in degree (0, 0). So we conclude the
following:

PROPOSITION A.5. Db
fg(Y ) is generated by objects of the form π∗(F)⊗ Sλ(Q∗)

where F ∈ Db
fg(X) and λ ⊆ r × (d − r).

COROLLARY A.6. Db
fg(Y ) is generated by objects of the form π∗(F) ⊗ Sλ(Q)

where F ∈ Db
fg(X) and λ ⊆ r × (d − r).

Proof. Let λc be the complement of λ in the r × (d− r) rectangle, thought of as a
partition. Then Sλ(Q∗) is isomorphic to Sλc(Q)⊗ det(Q∗)⊗r , and tensoring with
det(Q∗) is an automorphism of the derived category.

For each λ ⊆ r × (d − r), define uλ : K(X) → K(Y ) by uλ(M) = Lπ∗M ⊗
Sλ(Q∗). Define

u :
⊕

λ⊆r×(d−r)

K(X)→ K(Y )

as the sum u =
∑

λ uλ.

COROLLARY A.7. u is an isomorphism, so K(Y ) ∼= K(X)⊕(
d
r). In particular, if X

is a point, then K(Y ) ∼= Z⊕(
d
r).

Proof. For λ ⊆ r×(d−r), define vλ : K(Y )→ K(X) by vλ(M) = Rπ∗(Sλ†(R)⊗
M) and define v : K(Y ) →

⊕
λ⊆r×(d−r) K(X) using vλ as the components. It

follows from Corollary A.3 that vu is a diagonal matrix whose diagonals are ±1,
so u is injective. It follows from Proposition A.5 that u is also surjective, so we
are done.

Appendix B. Finiteness properties of resolutions

In this appendix, we outline an alternative, direct approach to proving finiteness
properties of resolutions of finitely generated A(E)-modules in the case that E is
a C-vector space.

Let C be a graded coalgebra with finite-dimensional components and let N
be a graded C-comodule with finite-dimensional components. We say that N is
finitely cogenerated if there is a finite length quotient N → N ′ such that the
composition N → N ⊗C → N ′⊗C is injective. This is equivalent to saying that
the graded dual of N is a finitely generated module over the graded dual of C .

Given a module M over A, let M6n be the quotient of M by the sum of all
Schur functors with more than n rows.
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PROPOSITION B.1. Fix a partition λ and n > 1.

(a) The module (SλC∞ ⊗ A)6n has finite regularity. If λn > dim E, then the
regularity is 0, and otherwise, the regularity is at most n(dim E − λn − 1).

(b) Ext•A((SλC∞ ⊗ A)6n,C) is finitely generated over Ext•A(C,C).

Proof. Let X be the Grassmannian of rank n quotients of the space C∞. Then we
have the tautological exact sequence

0→ R→ C∞ × X → Q→ 0

where Q has rank n. By Theorem A.1, for any partitionµ, we have H0(X;SµQ)=
SµC∞, and all higher cohomology vanishes. In particular,

H0(X;SλQ⊗ Sym(E ⊗Q)) = (SλC∞ ⊗ A)6n

as an A-module. Let ξ = E ⊗R. Using [Wey, Theorem 5.1.2], the minimal free
resolution F• of (SλC∞ ⊗ A)6n is given by

Fi =
⊕
j>0

H j

(
X;
( i+ j∧

ξ

)
⊗ SλQ

)
⊗ A(−i − j).

In particular, the regularity is the supremum over j such that H j is nonzero. By
[Wey, Corollary 2.3.3], we have

e∧
ξ =

⊕
µ

µ16dim E
|µ|=e

Sµ† E ⊗ SµR. (B.1a)

To calculate the cohomology of SλQ⊗ SµR, consider the sequence

α = (λ1, . . . , λn, µ1, µ2, . . . )

and define ρ = (0,−1,−2, . . . ). We have an action of S∞ coming from w • α =

w(α+ρ)−ρ. By Borel–Weil–Bott (Theorem A.1), if there is a nonidentityw ∈ S∞
so that w •α = α, then all cohomology vanishes, and otherwise, there is a unique
such w so that w • α is a partition, and the cohomology is Sw•αC∞ concentrated
in degree `(w).

If λn > dim E , then by equation (B.1a), any α that comes from a summand of∧
•
ξ⊗SλQ is a partition, so the resolution F• is linear and we are done. Otherwise,

let i = dim E − λn . We will show that the cohomology of SλQ⊗ SµR vanishes
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above degree n(i − 1). Assume that α + ρ has no repeated entries, otherwise the
cohomology vanishes. Then

(α + ρ)n = λn − n + 1 = dim E − n − i + 1 > (α + ρ)n+i ,

and the permutationw that sorts α+ρ is in Sn+i−1. Sincew satisfiesw(1) < · · · <
w(n) and w(n + 1) < · · · < w(n + i − 1), its length is at most n(i − 1). This
proves (a).

For (b), we will instead prove that TorA
•
((SλC∞ ⊗ A)6n,C) is a finitely

cogenerated comodule over TorA
•
(C,C). From (a), we know that there are finitely

many linear strands. We will focus on the j th linear strand. First, consider the
comultiplication map

TorA
i+k((SλC

∞
⊗ A)6n,C)i+k+ j → TorA

i ((SλC
∞
⊗ A)6n,C)i+ j ⊗

k∧
(E ⊗ C∞).

We can rewrite this as

H j

(
X;

i+k+ j∧
ξ ⊗ SλQ

)
→ H j

(
X;

i+ j∧
ξ ⊗ SλQ⊗

k∧
(E ⊗ C∞)

)
.

LEMMA B.2. The above map is obtained by applying H j to the composition

i+k+ j∧
ξ ⊗ SλQ→

i+ j∧
ξ ⊗

k∧
ξ ⊗ SλQ→

i+ j∧
ξ ⊗ SλQ⊗

k∧
(E ⊗ C∞),

(B.2a)

where the first map is comultiplication, and the second map comes from the
inclusion ξ ⊂ E ⊗ C∞.

Proof. Recall that over a local ring R with residue field k, and an R-module
M , we construct the comodule structure on TorR

•
(M, k) as follows (this is a

modification of Assmus’ description [Ass] of the coalgebra structure on TorR
•
(k,

k)). Let F• → M be an R-free resolution of M and let K• → k be an R-free
resolution of k. Tensoring both F• and K• with the residue field, we get a map

F• ⊗R K•→ (F• ⊗R k)⊗k (k ⊗R K•), (B.2b)

and taking homology, and using Künneth’s formula, this becomes

TorR
•
(M, k)→ TorR

•
(M, k)⊗k TorR

•
(k, k). (B.2c)

Let E be the total space of the trivial bundle (E⊗C∞)∗ over X . We have a twisted
Koszul complex F• =

∧
•
(ξ)⊗OE ⊗ SλQ on E . Let K• =

∧
•
(E ⊗ C∞)⊗OE
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be the Koszul resolution of OX over OE (here X is the zero section in E). Then
we have the relative version of equation (B.2b)

F• ⊗OE K•→ (F• ⊗OE OX )⊗OX (OX ⊗OE K•).

Now we take the hypercohomology of both sides. Since K• is a complex of free
OE -modules, this is a map of the form equation (B.2c) with M = (SλC∞⊗ A)6n .
We can calculate hypercohomology of a complex of sheaves in two different ways:
either first calculate cohomology (in the complex sense) and then calculate sheaf
cohomology, or else calculate sheaf cohomology first and then cohomology (in
the complex sense). The two different approaches form the E2 page of a spectral
sequence which converges to the hypercohomology.

If we first calculate cohomology in the sense of complexes, then we get a
relative tor comultiplication map

TorOE
•
(SλQ⊗OE ,OX )→ TorOE

•
(SλQ⊗OE ,OX )⊗OX TorOE

•
(OX ,OX ).

The maps equation (B.2a) are graded pieces of this map. Our goal is to understand
the map we get by taking sheaf cohomology of both sides. Note that taking
sheaf cohomology commutes with the tensor product on the right hand side since
TorOE
•
(OX ,OX ) =

∧
•
(E ⊗ C∞) consists of free OE -modules. Taking sheaf

cohomology gives us a map of the form equation (B.2c), so the spectral sequence
degenerates on the E2 page.

If we instead calculate sheaf cohomology first, then we get equation (B.2b).
A few remarks are in order: K• is free over OE , so tensoring with it commutes
with taking cohomology; the sheaves Fi are pullbacks of sheaves F ′i from OX ,
so the sheaf cohomology of Fi ⊗OX is the same as the sheaf cohomology of F ′i
(similarly for Ki ). Taking homology gives us a map of the form equation (B.2c),
so again this spectral sequence degenerates on the E2 page.

Hence both spectral sequences degenerate on the E2 page, so we get an
identification of the desired maps given that the spectral sequences are isomorphic.

Recall that above we have seen that the shifted Weyl group action that we must
perform to calculate the cohomology of SλQ ⊗ SµR only depends on the first
i = max(0, dim E − λn − 1) parts of µ. Since we have µ1 6 dim E , there are
only finitely many possibilities for this subpartition. Write µ = µ◦|ν where µ◦ is
the first i parts of µ, and ν is the rest (the symbol | denotes concatenation). So
from now on, we will focus only on SλQ⊗SµR where µ◦ is a fixed partition. Let
|µ◦| = m. Then in the composition

SλQ⊗
N+m∧

ξ → SλQ⊗
m∧
ξ ⊗

N∧
ξ → SλQ⊗

m∧
ξ ⊗

N∧
(E ⊗ C∞),
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we see the subsheaves

SλQ⊗ S(µ◦)†+ν† E ⊗ Sµ◦|νR→ SλQ⊗ (S(µ◦)† E ⊗ Sµ◦R)⊗ (Sν† E ⊗ SνR)
→ SλQ⊗ (S(µ◦)† E ⊗ Sµ◦R)⊗ (Sν† E ⊗ SνC∞),

and this restriction is an inclusion. In fact, since we are in characteristic 0, the first
map is a direct summand, so applying H j , we still get an inclusion. The cokernel
of the second map is

∑
θ$ν

SλQ⊗ (S(µ◦)† E ⊗ Sµ◦R)⊗ (Sν† E ⊗ Sν/θQ⊗ SθR),

and we can see from Theorem A.1 that it will not contain the sections of the
first module (namely because any partition ζ that appears in its cohomology will
have

∑
k>n+i ζk 6 |θ | < |ν|). So applying H j to the composition also gives an

inclusion.
So for a cogenerating set of SλQ ⊗

∧
•
ξ , we take SλQ ⊗

∧m
ξ where

m 6 (dim E)(dim E − λn − 1) (this is the largest possible size of µ◦ as above).
In particular, TorA

•
((SλC∞ ⊗ A)6n,C) is cogenerated in (homological) degrees

6(dim E)max(0, dim E − λn − 1), which finishes the proof of (b).

COROLLARY B.3. Every object M ∈ModA has finite regularity and Ext•A(M,C)
is a finitely generated Ext•A(C,C)-module.

Proof. Let M be an A-module. Let n be bigger than the number of rows in the
partitions that appear in the presentation of M . Let F• be a finite free resolution
of M(Cn) over A(Cn). Considered as modules over A, the Fi are direct sums of
modules of the form (Sλ ⊗ A)6n . We can construct an A-free resolution of M
using a mapping cone on F• and A-free resolutions on these modules. Since F•
is finite and each Fi has finite regularity over A by Proposition B.1, we conclude
that M has finite regularity.

For finite generation, note that the mapping cone gives us a finitely generated
Ext•A(C,C)-module. Removing redundancies to get a minimal resolution amounts
to throwing away a direct summand.

REMARK B.4. The argument above can be used to show that truncated modules
over degree 2 tca’s like Sym(Sym2(C∞)) have infinite regularity in general (even
after renormalizing the degrees of the generators to 1).
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