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A New Formula for the Energy of Bulk
Superconductivity

Ayman Kachmar

Abstract. _e energy of a type II superconductor submitted to an external magnetic ûeld of intensity
close to the second critical ûeld is given by the celebrated Abrikosov energy. If the external magnetic
ûeld is comparable to and below the second critical ûeld, the energy is given by a reference function
obtained as a special (thermodynamic) limit of a non-linear energy. In this note, we give a new
formula for this reference energy. In particular, we obtain it as a special limit of a linear energy
deûned over conûgurations normalized in the L4-norm.

1 Introduction

1.1 A Background

_e behavior of a superconductor subjected to an external magnetic ûeld varies as
the intensity of the applied magnetic ûeld changes. _is has been observed early in
the physics literature on both theoretical and experimental grounds. _ere are two
important key observations regarding a speciûc class ofmaterials called type II super-
conductors, namely, the formation of Abrikosov lattices and the persistence of surface
superconductivity. Abrikosov lattices occurwhen the intensity of themagnetic ûeld is
near a special value called the second critical ûeld and denoted byHC2 . If the intensity
of the external magnetic ûeld is increased above this value, then superconductivity
disappears from the bulk of the sample and remains on a (part) of the surface of the
material. _is phenomenon persists until the intensity of the applied magnetic ûeld
reaches another special value, called the third critical ûeld and denoted byHC3 . When
the intensity of the applied magnetic ûeld is increased further, superconductivity is
destroyed everywhere in the sample, which is set into the normal state. _e reader
may consult deGennes [6] for the description of these important observations. Both
phenomena, Abrikosov lattices and surface superconductivity were observed by theo-
retically investigating the Ginzburg–Landau model. Ginzburg and Landau proposed
themodel on a phenomenological basis to describe the response of a superconductor
to an external magnetic ûeld.

Mathematically, the Ginzburg–Landau model is a functional deûned on a certain
class of conûgurations. _e physically relevant states of the superconductor are those
corresponding to minimizing conûgurations (and critical points) of the functional.
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_e Abrikosov lattice is distinguished by a special behavior of the minimizing con-
ûgurations. _e same applies for the surface superconductivity phenomenon. _e
two monographs [7, 14] contain manymathematical results regarding the Ginzburg–
Landau model together with the discussion of their signiûcance in physics.

1.2 The Ginzburg–Landau Model

Here we describe the Ginzburg–Landau model for a superconducting sample occu-
pying an inûnite cylindrical domain. _e cross section of the cylinder is assumed to
be a smooth and simply connected open subset Ω of R2.

_e sample is subjected to an external magnetic ûeld with direction parallel to the
axis of the cylinder. _e intensity of the external magnetic ûeld is assumed constant.

_e superconducting material is distinguished by a characteristic parameter κ > 0.
When κ is large, thematerial is of Type II. _e intensity of the external magnetic ûeld
is denoted by a parameter hex.

_e behavior of the superconductor is described by awave function ψ∶Ω → C and
a vector ûeld A∶Ω → R2. _e signiûcance of ψ and A is as follows: ∣ψ∣2 measures the
density of the superconducting Cooper pairs, whose presence is necessary to observe
the superconductivity phenomenon, and curlAmeasures the inducedmagnetic ûeld
in the sample, if present. At equilibrium, the conûguration (ψ,A) minimizes the
following energy, which we will call the Ginzburg–Landau energy:

(1.1) E(ψ,A) = ∫
Ω
( ∣(∇− iκHA)ψ∣ 2 + κ2

2
(1 − ∣ψ∣2)2 + κ2H2∣ curlA − 1∣2) dx

in the conûgurations space

(ψ,A) ∈ H1(Ω;C) ×H1(Ω;R2),

where H1 denotes the usual Sobolev space.
We introduce the ground state energy of the functional in (1.1) as follows:

(1.2) Egs(κ,H) = inf{E(ψ,A) ∶ (ψ,A) ∈ H1(Ω;C) ×H1(Ω;R2)} .

Here we use the version of the functional as in [7]. In this version, the intensity of
the external magnetic ûeld is measured by hex = κH, where H > 0 is the parameter
marking the variation of the magnetic ûeld. One way to detect the response of the
superconductor to the external magnetic ûeld is to mark changes in the energy as the
parameter H changes. A large part of the mathematical literature is devoted to the
computation of (1.2) when hex is a function of κ and κ → ∞. _e reader is referred
to the two monographs [7, 14] for a detailed discussion on the behavior of the energy
in (1.2). In two special regimes, the energy in (1.2) is given to the leading order by the
Abrikosov and bulk constants introduced below in (1.6) and (1.7), respectively.

1.3 The Abrikosov Energy

We introduce the Abrikosov energy in a simple situation. More general situations are
discussed in [1], but in the asymptotic limit considered here, they give rise to the same
Abrikosov constant in (1.6). Let R > 0 and consider the lattice in R2 generated by the
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square

(1.3) QR = (−R/2, R/2) × (−R/2, R/2).

Let us suppose that R2 ∈ 2πN. Denote by PR the self-adjoint operator

PR = −(∇− iA0)2 in L2
mag,per(QR)

deûned via the closed quadratic form

qR(u) = ∫
QR

∣(∇− iA0)u∣2 dx .

Here, the vector potential A0 is deûned by

(1.4) A0(x1 , x2) = 1
2 (−x2 , x1),

and generates a unit constant magnetic ûeld, curlA0 = 1. _e space L2
mag,per(QR) and

the form domain D(qR) are deûned as follows,

L2
mag,per(QR) = {u ∈ L2

loc(R2) ∶ u(x1 + R, x2) = e iRx1/2u(x1 , x2)
and u(x1 , x2 + R) = e−iRx2/2u(x1 , x2)} ,

D(qR) = H1
mag,per(QR) ∶= {u ∈ L2

mag,per(QR) ∶ (∇− iA0)u ∈ L2
loc(R2)} .

_e space L2
mag,per(QR) is aHilbert space with the inner product

⟨u, v⟩L2
mag,per(QR) = ∫QR

u v dx .

_e spectrum of the operator PR is explicitly given by the Landau levels

σ(PR) = {(2n − 1) ∶ n ∈ N},

and, as long as R2 ∈ 2πN, all the eigenvalues have ûnitemultiplicity.
Now, we introduce the Abrikosov energy functional (in the square lattice),

(1.5) EAb(u) = ∫
QR

( 1
2
∣u∣4 − ∣u∣2) dx ,

deûned for conûgurations u in the ûnite dimensional space ER ∶= Ker(PR − Id), the
ûrst eigenspace of the operator PR . Minimizing the Abrikosov energy functional leads
us to introduce the quantity

eAb(R) = inf{EAb(u) ∶ u ∈ ER}.

It is a known fact [1,9] that

(1.6) lim
R→∞

R2
∈2πN

eAb(R)
R2 = EAb .

Here, EAb is a universal constant that we will call the Abrikosov constant (or energy).
It is known that EAb ∈ [− 1

2 , 0).
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1.4 The Reference “Bulk” Energy

In this section,we recall how one can deûne the Abrikosov constant in (1.6) via a non-
linear energy. Let b ∈ (0, 1] be a ûxed constant, R > 0 and let QR be the square in (1.3).
Deûne the following non-linear functional in H1(QR):

(1.7) Eblk(u; b, R) = ∫
QR

(b∣(∇− iA0)u∣2 − ∣u∣2 + 1
2
∣u∣4) dx .

Here, A0 is themagnetic potential in (1.4). By minimizing this functional in various
spaces, we get the ground state energies,

eD(b, R) = inf{Eblk(u; b, R) ∶ u ∈ H1
0(QR)},

eN(b, R) = inf{Eblk(u; b, R) ∶ u ∈ H1(QR)},
e p(b, R) = inf{Eblk(u; b, R) ∶ u ∈ H1

mag,per(QR)}.

It is a known fact that [1,3,9]

lim
R→∞

e○(b, R)
R2 = Eblk(b) (○ ∈ {D,N , p}),

where Eblk( ⋅ ) is a continuous and increasing function such that Eblk(0) = − 1
2 and

Eblk(1) = 0. _e function Eblk( ⋅ ) is independent of the boundary condition and will
be called the reference bulk energy .

_e Abrikosov constant in (1.6) can be deûned in the alternative way [1,9]:

(1.8) EAb = lim
b→1−

Eblk(b)
(b − 1)2 .

_is formula displays a relationship between the non-linear simpliûed Ginzburg–
Landau energy in (1.7) and the Abrikosov energy in (1.5).

1.5 The Connection with the Full GL Functional

To illustrate how the quantities discussed so far are useful, let us cite the following
two results from [10, 15]. (We will use the following notation: If a(κ) and b(κ) are
two non-negative functions of κ, then by writing a(κ) ≪ b(κ), wemean that a(κ) =
δ(κ)b(κ) and δ(κ)→ 0 as κ →∞.)
(a) If b ∈ (0, 1] is a constant, H = bκ and κ → ∞, then the ground state energy in

(1.2) satisûes,
Egs(κ,H) = κ2∣Ω∣Eblk(b) + o(κ2).

(b) If H = κ − µ(κ) and
√

κ ≪ µ(κ) ≪ κ, then as κ →∞,

(1.9) Egs(κ,H) = [κ −H]2∣Ω∣EAb + o([κ −H]2) .

1.6 The New Formula

Here,wewill deûne the function Eblk( ⋅ ) via a non-linear eigenvalue problem. Again,
let b ∈ (0, 1], R > 0, QR be the square in (1.3) and let A0 be themagnetic potential in
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(1.4). Let us deûne the linear functional,

(1.10) Elin(u; b, R) = ∫
QR

(b∣(∇− iA0)u∣2 − ∣u∣2) dx .

Wewill minimize this functional in various spaces but for the constrained conûgura-
tions

∫
QR

∣u∣4 dx = 1.

_at way, we get the following ground state energies:

mD(b, R) = inf { Elin(u; b, R)
(∫QR

∣u∣4 dx) 1/2 ∶ u ∈ H1
0(QR) ∖ {0}} ,(1.11)

mN(b, R) = inf { Elin(u; b, R)
(∫QR

∣u∣4 dx) 1/2 ∶ u ∈ H1(QR) ∖ {0}} ,

mp(b, R) = inf { Elin(u; b, R)
(∫QR

∣u∣4 dx) 1/2 ∶ u ∈ H1
mag,per(QR) ∖ {0}} .

We will prove that

lim
R→∞

m○(b, R)
R

= Enew(b) (○ ∈ {D,N , p})

and that

Enew(b) = −
√
−2Eblk(b).

More precisely, we have the following theorem.

_eorem 1.1 Let b ∈ (0, 1). _ere exist two constants C > 0 and R0 > 1 such that, for
all R ≥ R0 and ○ ∈ {D,N , p},

−( − 2Eblk(b))
1/2 − C

R
( − 2Eblk(b))

−1/2 ≤ m○(b, R)
R

≤ −( − 2Eblk(b))
1/2 + C

R
.

In particular, we can deûne the function Eblk( ⋅ ) via the formula

Eblk(b) = −
1
2
( lim

R→∞

m○(b, R)
R

)
2

(b ∈ (0, 1)) ,

with ○ ∈ {D,N , p}.
For the Dirichlet boundary condition, the lower bound is as follows

−( − 2Eblk(b))
1/2 ≤ mD(b, R)

R
,

and is valid for all b ∈ (0, 1] and R ≥ 1.

Let us compare the various ground state energies discussed so far. _e Abrikosov
functional in (1.5) is deûned via a simple expression that does not involve diòerenti-
ation operations but is minimized in the non-trivial space of the ground state eigen-
functions of the operator PR . Among the remaining functionals we discussed, the
expression of the non-linear functional in (1.7) is themost complicated, but it is min-
imized in the space of Sobolev functions (this space is less complicated than the space
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of the ground state eigenfunctions of the operator PR). _e expression of the func-
tional in (1.10) is linear, but again this functional is minimized for constrained con-
ûgurations. _e three functionals serve in deûning the Abrikosov constant EAb in
(1.6), but each time one singles a simpler expression of the functional, a price is paid
through a constraint in the deûnition of the ground state energy.

Recently, there has been progress in the analysis of semi-classical non-linear eigen-
value problems with a magnetic ûeld (cf. [12]). _e result in _eorem 1.1 may fall in
this area as well.

_e rest of the paper consists of three sections. _e proof of _eorem 1.1 occu-
pies Sections 2 and 3. In Section 4, we apply _eorem 1.1 to write a new proof of an
important theorem by Almog devoted to the full Ginzburg–Landau functional (cf.
[2,_m. 3.3]).

2 Proof of Theorem 1.1: Upper Bound

Let b ∈ (0, 1). _is section is devoted to the proof of the following inequality

(2.1) m○(b, R) ≤ −R( − 2Eblk(b))
1/2 + C ,

valid for ○ ∈ {D,N , p} and R ≥ R0, where C > 0 and R0 > 1 are two constants that
depend on b.
For the proof of (2.1), the following two lemmas are needed.

Lemma 2.1 ([4,9])
_ere exists a constant C > 0 such that, for all b ∈ (0, 1], R > 1 and ○ ∈ {D,N , p},

Eblk(b) −
C
R
≤ e

○(b, R)
R2 ≤ Eblk(b) +

C
R
.

For the Dirichlet boundary condition, the lower bound is

Eblk(b) ≤
eD(b, R)

R2 .

Lemma 2.2 _ere exists a constant C > 0 such that, for all b ∈ (0, 1], R > 1 and
○ ∈ {D,N , p}, if ub ,R is aminimizer of e○(b, R), then,

−2R2Eblk(b) − CR ≤ ∫
QR

∣ub ,R ∣4 dx ≤ −2R2Eblk(b) + CR.

Proof _eminimizer ub ,R satisûes the following equation

−b(∇− iA0)2ub ,R = (1 − ∣ub ,R ∣2)ub ,R in QR ,

with adequate boundary conditions along the boundary of QR (Dirichlet for ○ = D,
Neumann for ○ = N , andmagnetic periodic for ○ = p).

Multiplying the equation of ub ,R by ub ,R , integrating over QR then applying an
integration by parts, we obtain a�er a rearrangement of the terms

− 1
2 ∫QR

∣ub ,R ∣2 dx = Eblk(ub ,R) = e○(b, R).
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Now, applying Lemma 2.1 to estimate e○(b, R), we get the conclusion in Lemma 2.2.

Proof of (2.1) Let b ∈ (0, 1], R > 1 and let ub ,R be a minimizer of e○(b, R) for ○ ∈
{D,N , p}. _e ground state energy e○(b, R) is displayed right a�er introducing the
bulk functional Eblk in (1.7).

We write using in particular the deûnition ofm○(b, R),

e○(b, R) = Eblk(ub ,R)

≥ m○(b, R)(∫
QR

∣ub ,R ∣4 dx)
1/2
+ 1

2 ∫QR
∣ub ,R ∣4 dx .

Next, we estimate the L4-norm of ub ,R by using Lemma 2.2 towrite, for some univer-
sal constant C > 0,

e○(b, R) ≥ m○(b, R)( − 2R2 Eblk(b) − CR) 1/2
+

+ 1
2
( − 2R2 Eblk(b) − CR) .

Now, we estimate e○(b, R) as in Lemma 2.1, arrange the terms, and get, for a possibly
new value of the constant C > 0,

R2Eblk(b) + CR ≥ R( − 2 Eblk(b) − CR−1) 1/2
+

m○(b, R) − R2 Eblk(b) − CR.

Now we select R0 suõciently large (depending on b) such that the term
−2Eblk(b) − CR−1 is always positive for R ≥ R0; then we divide both sides by
R(−2 Eblk(b) − CR−1)1/2 and rearrange the terms above to get (2.1).

3 Proof of Theorem 1.1: Lower Bound

_is section is devoted to the proof of the inequality

(3.1) m○(b, R) ≥ −R( − 2Eblk(b))
1/2 − C( − 2Eblk(b))

−1/2 ,

valid for some universal constant C > 0 and for all b ∈ (0, 1), R > 1 and ○ ∈ {D,N , p}.

Proof of (3.1) Let b ∈ (0, 1), R > 1, and let wb ,R be a minimizer of m○(b, R) for
○ ∈ {D,N , p}. _e ground state energy m○(b, R) is displayed right a�er introducing
the bulk functional Elin in (1.10).

Let us normalize wb ,R in L4 as follows:

w∗

b ,R = (−2R2Eblk(b))1/4

∥wb ,R∥L4(QR)

wb ,R .

_e L4-norm of the normalized function satisûes

∥w∗

b ,R∥L4(QR) = ( − 2R2Eblk(b))
1/4 .

By deûnition of the functional in (1.10) andm○(b, R), we see that

(3.2) m○(b, R) = Elin(wb ,R)
∥wb ,R∥2

L4(QR)

= ( − 2R2Eblk(b))
−1/2

Elin(w∗

b ,R).
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Now, we write using in particular the normalization of w∗

b ,R and the deûnition of
e○(b, R),

Elin(w∗

b ,R) = Eblk(w∗

b ,R) −
1
2 ∫QR

∣w∗

b ,R ∣4 dx = Eblk(w∗

b ,R) + R2Eblk(b)

≥ e○(b, R) + R2Eblk(b).
We estimate e○(b, R) from below using Lemma 2.1 to obtain

Elin(w∗

b ,R) ≥ 2R2Eblk(b) − CR.

We insert this into (3.2) to get the inequality in (3.1). _e improved lower bound for
the Dirichlet boundary condition holds, since (cf. Lemma 2.1)

eD(b, R) ≥ R2Eblk(b).
Also, this last bound trivially holds for b = 1, since Eblk(1) = 0 and the spectral
theory of the magnetic Laplacian with a Dirichlet boundary condition yields that
eD(1, R) ≥ 0.

4 Application: Almog’s L4-bound

In [2], Almog estimates the L4-normof theGinzburg–Landau order parameter for the
three dimensional functional (the proof is valid for the two dimensional functional
as well). _is bound is of particular importance to estimate the error terms when
seeking a ûne approximation of the ground state energy, as in [9, 11].

Here, we consider the same question as in [2] but in two dimensions. _emethod
we give works in three dimensions as well, but we restrict to two dimensions for the
sake of simplicity.

We prove the following theorem.

_eorem 4.1 Let Λ ∈ (0, 1). _ere exist two constants C > 0 and κ0 such that, if
κ ≥ κ0, Λκ ≤ H ≤ κ, and (ψ,A)κ ,H is a critical point of (1.1), then

(4.1) 1
∣Qκ ∣ ∫Qκ

∣ψ∣4 dx ≤ C
κ
+ C( H

κ
− 1)

2
,

where Qκ ⊂ Ω is any square of side-length 2κ−1/2 and satisfying

Qκ ⊂ {dist(x , ∂Ω) > 2κ−1/2} .

We stress again that the estimate in (4.1) is proved in [2] for three dimensional
domains andwhen Qκ = Ω. _e proofwe give to_eorem4.1 is based on_eorem 1.1
and diòers from the one used in [2].

Sharper versions of the bound in (4.1) are given in [10, 13]. However, these im-
proved versions of (4.1) are based on energy expansions of the form in (1.9). _e
proof of (1.9) requires a rough control of the order parameter similar to the one in
(4.1). In [10], a key element in the proof of (1.9) was a strong L∞ bound on the order
parameter, namely (cf. [8, 10])

(4.2) ∥ψ∥L∞(ω) ≤
C

κ1/2 + C(
H
κ
− 1)

1/2
,
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where ω ⊂⊂ Ω. Having (4.1) in hand, we can derive the energy expansion in (1.9)
without using the L∞ bound in (4.2).

Unlike the hard proof of (4.2), the proof we give to (4.1) seems quite general, does
not require toomuch regularity of the critical points, andworks for functionalshaving
a similar structure as that in (1.1), e.g., the functional with a variablemagnetic ûeld or
with a pinning term (cf. [3, 5]).

_e rest of this section is devoted to the proof of _eorem 4.1. We will use C to
denote positive constants independent of κ andH. _e value of C might change from
one formula to another without explicit notice.

4.1 Preliminaries

A critical point (ψ,A) of the functional in (1.1) is a solution of the following system
of PDE:

−(∇− iκHA)2ψ = κ2(1 − ∣ψ∣2)ψ,
−∇� curlA = (κH)−1Im(ψ (∇− iκHA)ψ), in Ω,

ν ⋅ (∇− iκHA)ψ = 0, curlA = 1 on ∂Ω.

(4.3)

We collect useful a priori estimates in the following lemma.

Lemma 4.2 Let Λ ∈ (0, 1). _ere exist two constants C > 0 and κ0 > 0 such that, if
κ ≥ κ0, Λκ ≤ H ≤ κ, and (ψ,A)κ ,H is a solution of (4.3), then,

∥ψ∥∞ ≤ 1 and ∥ curlA − 1∥C 1(Ω) ≤ Cκ−1 .

We refer the reader to [7, Prop. 11.4.4] for the proof of Lemma 4.2. Based on the
estimates in Lemma 4.2, one can construct the gauge transformation given in the next
lemma (cf. [10, Eq. (5.30)]).

Lemma 4.3 Let Λ ∈ (0, 1). _ere exist two constants C > 0 and κ0 > 0 such that the
following is true.

Suppose that κ ≥ κ0, Λκ ≤ H ≤ κ, and (ψ,A)κ ,H is a solution of (4.3). Let ℓ ∈ (0, 1)
and Bℓ ⊂ Ω be a disk of radius 2ℓ. _ere exists a function ϕ ∈ H2(Bℓ) such that,

(4.4) ∀ x ∈ Bℓ , ∣A(x) − (A0(x) −∇ϕ(x)) ∣ ≤ Cκ−1ℓ.

Here, A0 is themagnetic potential in (1.4).

4.2 Local Estimates: Proof of Theorem 4.1

Here we work under the assumptions in _eorem 4.1. We will estimate the following
local energy of the critical conûguration (ψ,A):

E0,κ(ψ,A) = ∫
Qκ

( ∣(∇− iκHA)ψ∣2 − κ2∣ψ∣2 + κ2

2
∣ψ∣4) dx .

Let Q2κ be the square having the same center as Qκ but with side-length 4κ−1/2, i.e.,
twice the side-length of Qκ . Obviously the square Q2κ contains Qκ . Let f ∈ C∞c (Q2κ)
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be a cutoò function satisfying, for all κ ≥ 1,

f = 1 in Qκ , 0 ≤ f ≤ 1 and ∣∇ f ∣ ≤ Cκ1/2 in Q2κ ,
where C is a constant independent of κ.
An integration by parts and the ûrst equation in (4.3) yield (cf. [10, Eq. (6.2)])

(4.5) E0,2κ( fψ,A) = κ2 ∫
Q2κ

f 2(−1 + 1
2
f 2) ∣ψ∣4 dx + ∫

Q2κ
∣∇ f ∣2∣ψ∣2 dx ≤ C .

Note thatwe dropped the term involving −1+ 1
2 f

2, since 0 ≤ f ≤ 1. _e term involving
∣∇ f ∣ is estimated using the bounds ∥ψ∥∞ ≤ 1, ∣∇ f ∣ ≤ Cκ1/2, and ∣Q2κ ∣ ≤ Cκ−1.

Now we estimate the linear energy

(4.6) L0,κ( fψ,A) = ∫
Q2κ

( ∣(∇− iκHA) fψ∣2 − κ2∣ fψ∣2) dx .

Choose C > 0 large enough such that Q2κ ⊂ BCκ−1/2 , then apply Lemma 4.3 in BCκ−1/2

to get a function ϕ ∈ H2(BCκ−1/2) satisfying the estimate in (4.4). Notice that, using
the Gauge invariance then the Cauchy–Schwarz inequality,
L0,κ( fψ,A)

= L0,κ( fψe−iκHϕ ,A −∇ϕ)

≥ ∫
Q2κ

((1 − κ−1/2)∣(∇− iκHA0) fψe−iκHϕ ∣2 − κ2∣ fψe−iκHϕ ∣2 − Cκ3/2∣ fψ∣2)dx .

Let b = (1−κ−1/2)H
κ , R = 4κ−1/2

√
κH = 4

√
H, and xκ be the center of the square Q2κ .

Apply the change of variable y =
√

κH (x − xκ) to get

L0,κ( fψ,A) ≥ κ3/2H−1/2mD(b, R)∥ fψ∥2
4 − Cκ3/2∥ fψ∥2

2 ,

where mD(b, R) is the energy introduced in (1.11). We use the lower bound for
mD(b, R) in _eorem 1.1 andHölder’s inequality for the term ∥ fψ∥2 to get,

L0,κ( fψ,A) ≥ κ3/2H−1/2( − (−2Eblk(b))1/2)R∥ fψ∥2
4 − Cκ∥ fψ∥2

4 .

Recall that R = 4
√

H and insert the result into (4.6) and the right side of (4.5) to get,
a�er a rearrangement of the terms,

(4.7) κ3/2{( − 4∣2Eblk(b)∣1/2 − Cκ−1/2) + κ1/2
2 ∥ fψ∥2

4}∥ fψ∥2
4 ≤ C .

Two cases may occur:

Case I: ( − 4∣2Eblk(b)∣
1/2 − Cκ−1/2) + κ1/2

2
∥ fψ∥2

4 ≤ κ−1/2 .

Case II: ( − 4∣2Eblk(b)∣
1/2 − Cκ−1/2) + κ1/2

2
∥ fψ∥2

4 ≥ κ−1/2 .

Clearly, in both cases, (4.7) yields the upper bound

(4.8) ∥ fψ∥2
4 ≤ 8κ−1/2∣2Eblk(b)∣1/2 + Cκ−1 .

Since f = 1 in Qκ , then (4.8) says that

(4.9) (∫
Qκ

∣ψ∣4 dx)
1/2

≤ 8κ−1/2∣2Eblk(b)∣1/2 + Cκ−1 .
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Recall that b = (1 − κ−1/2)H
κ ≤ 0. _e assumption in _eorem 4.1 and the formula in

(1.8) together yield that

∣2Eblk(b)∣1/2 ≤ C∣b − 1∣ ≤ C∣ H
κ
− 1∣ + Cκ−1/2 .

Inserting this into (4.9) and remembering that ∣Qκ ∣ = 4κ−1, we get the estimate in
(4.1). _is ûnishes the proof of_eorem 4.1.
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