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Parametrizing the moduli space of curves and applications to
smooth plane quartics over finite fields

Reynald Lercier, Christophe Ritzenthaler, Florent Rovetta and Jeroen Sijsling

Abstract

We study new families of curves that are suitable for efficiently parametrizing their moduli
spaces. We explicitly construct such families for smooth plane quartics in order to determine
unique representatives for the isomorphism classes of smooth plane quartics over finite fields.
In this way, we can visualize the distributions of their traces of Frobenius. This leads to new
observations on fluctuations with respect to the limiting symmetry imposed by the theory of
Katz and Sarnak.

1. Introduction

One of the central notions in arithmetic geometry is the (coarse) moduli space of curves of a
given genus g, denoted Mg. These are algebraic varieties whose geometric points classify these
curves up to isomorphism. The main difficulty when dealing with moduli spaces, without
extra structure, is the non-existence of universal families, whose construction would allow one
to explicitly write down the curve corresponding to a point of this space. Over finite fields, the
existence of a universal family would lead to optimal algorithms to write down isomorphism
classes of curves. Having these classes at one’s disposal is useful in many applications. For
instance, it serves for constructing curves with many points using class field theory [31] or
for enlarging the set of curves useful for pairing-based cryptography as illustrated in genus 2
by [9, 14, 32]. More theoretically, it was used in [5] to compute the cohomology of moduli
spaces. We were ourselves drawn to this subject by the study of Serre’s obstruction for smooth
plane quartics (see § 5.4).

The purpose of this paper is to introduce three substitutes for the notion of a universal
family. The best replacement for a universal family seems to be that of a representative family,
which we define in § 2. This is a family of curves C → S whose points are in natural bijection
with those of a given subvariety S of the moduli space. Often the scheme S turns out to be
isomorphic to S, but the notion is flexible enough to still give worthwhile results when this is
not the case. Another interesting feature of these families is that they can be made explicit
in many cases when S is a stratum of curves with a given automorphism group. We focus
here on the case of non-hyperelliptic genus 3 curves, canonically realized as smooth plane
quartics.

The overview of this paper is as follows. In § 2 we introduce and study three new notions of
families of curves. We indicate the connections with known constructions from the literature.
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In Propositions 2.3 and 2.4, we also uncover a link between the existence of a representative
family and the question of whether the field of moduli of a curve is a field of definition. In § 3
we restrict our considerations to the moduli space of smooth plane quartics. After a review of
the stratification of this moduli space by automorphism groups, our main result in this section
is Theorem 3.3. There we construct representative families for all but the two largest of these
strata by applying the technique of Galois descent. For the remaining strata we improve on
the results in the literature by constructing families with fewer parameters, but here much
room for improvement remains. In particular, it would be nice to see an explicit representative
(and in this case universal) family over the stratum of smooth plane quartics with trivial
automorphism group.

Parametrizing by using our families, we get one representative curve per k̄-isomorphism
class. Section 4 refines these into k-isomorphism classes by constructing the twists of the
corresponding curves over finite fields k. Finally, § 5 concludes the paper by describing the
implementation of our enumeration of smooth plane quartics over finite fields, along with the
experimental results obtained on distributions of traces of Frobenius for these curves over Fp
with 11 6 p 6 53. In order to obtain exactly one representative for every isomorphism class
of curves, we use the previous results combined with an iterative strategy that constructs a
complete database of such representatives by ascending up the automorphism strata†.

Notation. Throughout, we denote by k an arbitrary field of characteristic p > 0, with
algebraic closure k. We use K to denote a general algebraically closed field. By ζn, we denote
a fixed choice of n-th root of unity in k or K; these roots are chosen in such a way to respect
the standard compatibility conditions when raising to powers. Given k, a curve over k will be
a smooth and proper absolutely irreducible variety of dimension 1 and genus g > 1 over k.

In agreement with [23], we keep the notation Cn (respectively D2n, respectively An,
respectively Sn) for the cyclic group of order n (respectively the dihedral group of order 2n,
respectively the alternating group of order n!/2, respectively the symmetric group of order n!).
We will also encounter G16, a group of 16 elements that is a direct product C4 ×D4, G48, a
group of 48 elements that is a central extension of A4 by C4, G96, a group of 96 elements that
is a semidirect product (C4×C4)oS3 and G168, which is a group of 168 elements isomorphic
to PSL2(F7).

2. Families of curves

Let g > 1 be an integer, and let k be a field of characteristic p = 0 or p > 2g + 1. For S a
scheme over k, we define a curve of genus g over S to be a morphism of schemes C → S that
is proper and smooth with geometrically irreducible fibers of dimension 1 and genus g. Let
Mg be the coarse moduli space of curves of genus g whose geometric points over algebraically
closed extensions K of k correspond with the K-isomorphism classes of curves C over K.

We are interested in studying the subvarieties of Mg where the corresponding curves have
an automorphism group isomorphic with a given group. The subtlety then arises that these
subvarieties are not necessarily irreducible. This problem was also mentioned and studied
in [25], and resolved by using Hurwitz schemes; but in this section we prefer another way
around the problem, due to Lønsted in [24].

In [24, § 6] the moduli space Mg is stratified in a finer way, namely by using ‘rigidified actions’
of automorphism groups. Given an automorphism group G, Lønsted defines subschemes of Mg

that we shall call strata. Let ` be a prime different from p, and let Γ` = Sp2g(F`). Then the
points of a given stratum S correspond to those curves C for which the induced embedding of G

†Databases and statistics summarizing our results can be found at http://perso.univ-rennes1.fr/christophe.
ritzenthaler/programme/qdbstats-v3 0.tgz.
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into the group (∼=Γ`) of polarized automorphisms of Jac(C)[`] is Γ`-conjugate to a given group.
Combining [17, Theorem 1] with [24, Theorem 6.5] now shows that under our hypotheses on
p, such a stratum is a locally closed, connected and smooth subscheme of Mg. If k is perfect,
such a connected stratum is therefore defined over k if only one rigidification is possible for
a given abstract automorphism group. As was also observed in [25], this is not always the
case; and as we will see in Remark 3.2, in the case of plane quartics these subtleties are only
narrowly avoided.

We return to the general theory. Over the strata S of Mg with non-trivial automorphism
group, the usual notion of a universal family (as in [27, p. 25]) is of little use. Indeed, no
universal family can exist on the non-trivial strata; by [1, § 14], S is a fine moduli space
(and hence admits a universal family) if and only if the automorphism group is trivial. In
the definition that follows, we weaken this notion to that of a representative family. While
such families coincide with the usual universal family on the trivial stratum, it will turn
out (see Theorem 3.3) that they can also be constructed for the strata with non-trivial
automorphism group. Moreover, they still have sufficiently strong properties to enable us to
effectively parametrize the moduli space.

Definition 2.1. Let S ⊂ Mg be a subvariety of Mg that is defined over k. Let C → S be
a family of curves whose geometric fibers correspond to points of the subvariety S, and let
fC : S → S be the associated morphism.

(i) The family C → S is geometrically surjective (for S) if the map fC is surjective on
K-points for every algebraically closed extension K of k.

(ii) The family C → S is arithmetically surjective (for S) if the map fC is surjective on
k-points.

(iii) The family C → S is quasifinite (for S) if it is geometrically surjective and fC is
quasifinite.

(iv) The family C → S is representative (for S) if fC is bijective on K-points for every
algebraically closed extension K of k.

Remark 2.2. A family C → S is geometrically surjective if and only if the corresponding
morphism of schemes S → S is surjective.

Due to inseparability issues, the morphism fC associated to a representative family need not
induce bijections on points over arbitrary extensions of k.

Note that if a representative family S is absolutely irreducible, then since S is normal, we
actually get that fC is an isomorphism by Zariski’s main theorem. However, there are cases
where we were unable to find such an S given a stratum S (see Remark 3.4).

The notions of being geometrically surjective, quasifinite and representative are stable under
extension of the base field k. On the other hand, being arithmetically surjective can strongly
depend on the base field, as for example in Proposition 3.5.

To prove that quasifinite families exist, one typically considers the universal family over M
(`)
g

(the moduli space of curves of genus g with full level-` structure, for a prime ` > 2 different
from p, see [1, Theorem 13.2]). This gives a quasifinite family over Mg by the forgetful (and in

fact quotient) map M
(`)
g → Mg that we will denote π` when using it in our constructions below.

Let K be an algebraically closed extension of k. Given a curve C over K, recall that an
intermediate field k ⊂ L ⊂ K is a field of definition of C if there exists a curve C0/L such that
C0 is K-isomorphic to C. The concept of representative families is related with the question
of whether the field of moduli MC of the curve C, which is by definition the intersection of
the fields of definition of C, is itself a field of definition. Since we assumed that p > 2g + 1
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or p = 0, the field MC then can be recovered more classically as the residue field of the moduli
space Mg at the point [C] corresponding to C by [33, Corollary 1.11]. This allows us to prove
the following.

Proposition 2.3. Let S be a subvariety of Mg defined over k that admits a representative
family C → S. Let C be a curve over an algebraically closed extension K of k such that the
point [C] of Mg(K) belongs to S. Then C descends to its field of moduli MC . In case k is
perfect and K = k, then C even corresponds to an element of S(MC).

Proof. First we consider the case where k = MC and K is a Galois extension of k. Let
x ∈ S(K) be the preimage of [C] under fC . For every σ ∈ Gal(K/k) it makes sense to consider
xσ ∈ S(K), since the family C is defined over k. Now since fC is defined over k, we get
fC(x) = fC(x

σ) = s. By uniqueness of the representative in the family, we get x = xσ. Since
σ was arbitrary and K/k is Galois, we therefore have x ∈ S(k), which gives a model for C
over k by taking the corresponding fiber for the family C → S. This already proves the final
statement of the proposition.

Since the notion of being representative is stable under changing the base field k, the
argument in the Galois case gives us enough leverage to treat the general case (where K/k is
possibly transcendental or inseparable) by appealing to [19, Theorem 1.6.9]. 2

Conversely, we have the following result. A construction similar to it will be used in the
proof of Theorem 3.3.

Proposition 2.4. Let S be a stratum defined over a field k. Suppose that for every finite
Galois extension F ⊃ E of field extensions of k, the field of moduli of the curve corresponding
to a point in S(E) equals E. Then there exists a representative family CU → U over a dense
open subset of S. If k is perfect, this family extends to a possibly disconnected representative
family C → S for the stratum S.

Proof. Let η be the generic point of S and again let π` : M
(`)
g → Mg be the forgetful map

obtained by adding level structure at a prime ` > 2 different from p. Note that as a quotient
by a finite group, π` is a finite Galois cover. Let ν be a generic point in the preimage of η by π`
and C → ν be the universal family defined over k(ν). By definition the field of moduli MC is
equal to k(ν) and as k(ν) is a field of definition there exists a family C0 → k(ν) geometrically
isomorphic to C. Since k(ν) ⊃ k(η) is a Galois extension, we can argue as in the proof of
Proposition 2.3 to descend to k(η), and hence by a spreading-out argument we can conclude
that C0 is a representative family on a dense open subset U of S. Proceeding by induction
over the (finite) union of the Galois conjugates of the finitely many irreducible components
of the complement of U , which is again defined over k, one obtains the second part of the
proposition. 2

Whereas the universal family C → M
(`)
g is sometimes easy to construct, it seems hard to

work out C0 directly by explicit Galois descent; the Galois group of the covering M
(`)
g → Mg is

Sp2g(F`), which is a group of large cardinality `g
2 ∏g

i=1(`2i−1) whose quotient by its center is
simple. Moreover, for enumeration purposes, it is necessary for the scheme S to be as simple
as possible. Typically one would wish for it to be rational, as fortunately turns out always
to be the case for plane quartics. On the other hand, for moduli spaces of general type that
admit no rational curves, such as Mg with g > 23, there does not even exist a rational family
of curves with a single parameter [15].
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3. Families of smooth plane quartics

3.1. Review: automorphism groups

Let C be a smooth plane quartic over an algebraically closed field K of characteristic p > 0.
Then since C coincides up to a choice of basis with its canonical embedding, the automorphism
Aut(C) can be considered as a conjugacy class of subgroups PGL3(K) (and in fact of GL3(K))
by using the action on its non-zero differentials.

The classification of the possible automorphism groups of C as subgroups of PGL3(K), as
well as the construction of some geometrically surjective families, can be found in several
articles, such as [16, 2.88], [38, p. 62], [25], [3] and [8] (in chronological order), in which it is
often assumed that p = 0. We have verified these results independently, essentially by checking
which finite subgroups of PGL3(K) (as classified in [19, Lemma 2.3.7]) can occur for plane
quartics. It turns out that the classification in characteristic 0 extends to algebraically closed
fields K of prime characteristic p > 5. In the following theorem, we do not indicate the open
non-degeneracy conditions on the affine parameters, since we shall not have need of them.

Theorem 3.1. Let K be an algebraically closed field whose characteristic p satisfies p = 0
or p > 5. Let C be a genus 3 non-hyperelliptic curve over K. The following are the possible
automorphism groups of C, along with geometrically surjective families for the corresponding
strata:

(i) {1}, with family q4(x, y, z) = 0, where q4 is a homogeneous polynomial of degree 4;
(ii) C2, with family x4 + x2q2(y, z) + q4(y, z) = 0, where q2 and q4 are homogeneous

polynomials in y and z of degree 2 and 4;
(iii) D4, with family x4 + y4 + z4 + rx2y2 + sy2z2 + tz2x2 = 0;
(iv) C3, with family x3z + y(y − z)(y − rz)(y − sz) = 0;
(v) D8, with family x4 + y4 + z4 + rx2yz + sy2z2 = 0;

(vi) S3, with family x(y3 + z3) + y2z2 + rx2yz + sx4 = 0;
(vii) C6, with family x3z + y4 + ry2z2 + z4 = 0;

(viii) G16, with family x4 + y4 + z4 + ry2z2 = 0;
(ix) S4, with family x4 + y4 + z4 + r(x2y2 + y2z2 + z2x2) = 0;
(x) C9, represented by the quartic x3y + y3z + z4 = 0;
(xi) G48, represented by the quartic x4 + (y3 − z3)z = 0;
(xii) G96, represented by the Fermat quartic x4 + y4 + z4 = 0;

(xiii) (if p 6= 7) G168, represented by the Klein quartic x3y + y3z + z3x = 0.

The families in Theorem 3.1 are geometrically surjective. Moreover, they are irreducible and
quasifinite (as we will see in the proof of Theorem 3.3) for all groups except the trivial group
and C2. The embeddings of the automorphism group of these curves into PGL3(K) can be
found in Theorem A.1 in Appendix A. Because of the irreducibility properties mentioned in
the previous paragraph, each of the corresponding subvarieties serendipitously describes an
actual stratum in the moduli space Mnh

3 ⊂ M3 of genus 3 non-hyperelliptic curves as defined in
§ 2 (see Remark 3.2 below). From the descriptions in Theorem A.1, one derives the indicated
inclusions between the strata indicated in Figure 1, as also obtained in [38, p. 65].

Remark 3.2. As promised at the beginning of § 2, we now indicate two different possible
rigidifications of an action of a finite group on plane quartics. Consider the group C3. Up to
conjugation, this group can be embedded into PGL3(K) in exactly two ways; as a diagonal
matrix with entries proportional to (ζ3, 1, 1) or (ζ23 , ζ3, 1). This gives rise to two rigidifications
in the sense of Lønsted.

While for plane curves of sufficiently high degree, this indeed leads to two families with
generic automorphism group C3, the plane quartics admitting the latter rigidification always
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dim 6 {1}

dim 4 C2

dim 3 D4

dim 2 C3 D8 S3

dim 1 C6 G16 S4

dim 0 C9 G48 G96 G168

Figure 1. Automorphism groups.

admit an extra involution, so that the full automorphism group contains S3. It is this fortunate
phenomenon that still makes a naive stratification by automorphism groups possible for plane
quartics. For the same reason, the stratum for the group S3 is not included in that for C3, as
is claimed incorrectly in [3].

3.2. Construction of representative families

We now describe how to apply Galois descent to extensions of function fields to determine
representative families for the strata in Theorem 3.1 with |G| > 2. By Proposition 2.3, this
shows that the descent obstruction always vanishes for these strata.

Our constructions lead to families that parametrize the strata much more efficiently; for the
case D4, the family in Theorem 3.1 contains as much as 24 distinct fibers isomorphic with
a given curve. Moreover, by Proposition 2.3, in order to write down a complete list of the
k-isomorphism classes of smooth plane quartics defined over a perfect field k we need only
consider the k-rational fibers of the new families.

As in Theorem 3.1, we do not specify the condition on the parameters that avoid
degenerations (that is singular curves or a larger automorphism group), but such degenerations
will be taken into account in our enumeration strategy in § 5.

Theorem 3.3. Let k be a field whose characteristic p satisfies p = 0 or p > 7. The following
are representative families for the strata of smooth plane quartics with |G| > 2:
• G ' D4:

(a+ 3)x4 + (4a2 − 8b+ 4a)x3y + (12c+ 4b)x3z + (6a3 − 18ab+ 18c+ 2a2)x2y2

+ (12ac+ 4ab)x2yz + (6bc+ 2b2)x2z2 + (4a4 − 16a2b+ 8b2 + 16ac+ 2ab− 6c)xy3

+ (12a2c− 24bc+ 2a2b− 4b2 + 6ac)xy2z + (36c2 + 2ab2 − 4a2c+ 6bc)xyz2

+ (4b2c− 8ac2 + 2abc− 6c2)xz3 + (a5 − 5a3b+ 5ab2 + 5a2c− 5bc+ b2 − 2ac)y4

+ (4a3c− 12abc+ 12c2 + 4a2c− 8bc)y3z + (6ac2 + a2b2 − 2b3 − 2a3c+ 4abc+ 9c2)y2z2

+ (4bc2 + 4b2c− 8ac2)yz3 + (b3c− 3abc2 + 3c3 + a2c2 − 2bc2)z4 = 0

along with

x4 + 2x2y2 + 2ax2yz + (a2 − 2b)x2z2 + ay4 + 4(a2 − 2b)y3z

+ 6(a3 − 3ab)y2z2 + 4(a4 − 4a2b+ 2b2)yz3 + (a5 − 5a3b+ 5ab2)z4 = 0;

• G ' C3: x3z + y4 + ay2z2 + ayz3 + bz4 = 0 along with x3z + y4 + ayz3 + az4 = 0;

• G ' D8: x4 + x2yz + y4 + ay2z2 + bz4 = 0;

• G ' S3: x3z + y3z + x2y2 + axyz2 + bz4 = 0;

• G ' C6: x3z + ay4 + ay2z2 + z4 = 0;
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• G ' G16: x4 + (y3 + ayz2 + az3)z = 0;

• G ' S4: x4 + y4 + z4 + a(x2y2 + y2z2 + z2x2) = 0;

• G ' C9: x3y + y3z + z4 = 0;

• G ' G48: x4 + (y3 − z3)z = 0;

• G ' G96: x4 + y4 + z4 = 0;

• (if p 6= 7) G ' G168: x3y + y3z + z3x = 0.

We do not give the full proof of this theorem, but content ourselves with some families that
illustrate the most important ideas therein. Let K be an algebraically closed extension of k.
The key fact that we use, which can be observed from the description in Theorem A.1, is
that the fibers of the families in Theorem 3.1 all have the same automorphism group G as a
subgroup of PGL3(K). Except for the zero-dimensional cases, which are a one-off verification,
one then proceeds as follows.

(1) The key fact above implies that any isomorphism between two curves in the family is
necessarily induced by an element of the normalizer N of G in PGL3(K). So one considers the
action of this group on the family given in Theorem 3.1.

(2) One determines the subgroup N ′ of N that sends the family to itself again. The action
of N ′ factors through a faithful action of Q = N ′/G. By explicit calculation, it turns out that
Q is finite for the families in Theorem 3.1 with |G| > 2. This shows in particular that these
families are already quasifinite on these strata.

(3) One then takes the quotient by the finite action of Q, which is done on the level of
function fields over K by using Galois descent. By construction, the resulting family will be
representative. For the general theory of Galois descent, we refer to [40] and [37, Appendix A].

We now treat some representative cases to illustrate this procedure. In what follows, we use
the notation from Theorem A.1 to denote elements and subgroups of the normalizers involved.

Proof. The case G ' S3. Here N = T (K)S̃3 contains the group of diagonal matrices

T (K). Transforming, one verifies that the subgroup N ′ ( N equals S̃3; indeed, since S̃3 fixes
the family pointwise, we can restrict to the elements T (K). But then preserving the trivial
proportionality of the coefficients in front of x3z, y3z, and x2y2 forces such a diagonal matrix
to be scalar. This implies the result; the group Q is trivial in PGL3(K), so we need not adapt
our old family since it is geometrically surjective and contains no geometrically isomorphic
fibers. A similar argument works for the case G ∼= S4.

The case G ' C6. This time we have to consider the action of the group D(K) on the family
x3z+y4 +ry2z2 +z4 = 0 from Theorem 3.1. After the action of a diagonal matrix with entries
λ, µ, 1, one obtains the curve λ3x3z + µ4y4 + µ2ry2z2 + z4 = 0. We see that we get a new
curve in the family if λ3 = 1 and µ4 = 1, in which case the new value for r equals µr. But this
equals ±r since (µ2)2 = 1. The degree of the morphism to M3 induced by this family therefore
equals 2. This also follows from the fact that the subgroup N ′ that we just described contains
G as a subgroup of index 2, so that Q ∼= C2.

We have a family over L = K(r) whose fibers over r and −r are isomorphic, and we want
to descend this family to K(a), where a = r2 generates the invariant subfield under the
automorphism r → −r. This is a problem of Galois descent for the group Q ∼= C2 and
the field extension M ⊃ L, with M = K(r) and L = K(a). The curve C over M that we
wish to descend to L is given by x3z + y4 + ry2z2 + z4 = 0. Consider the conjugate curve
Cσ : x3z+y4− ry2z2 +z4 = 0 and the isomorphism ϕ : C → Cσ given by (x, y, z)→ (x, iy, z).
Then we do not have ϕσϕ = id. To trivialize the cocycle, we need a larger extension of our
function field L.
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Take M ′ ⊃M to be M ′ = M(ρ), with ρ2 = r. Let τ be a generator of the cyclic Galois group
of order 4 of the extension M ′ ⊃ L. Then τ restricts to σ in the extension M ⊃ L, and for
M ′ ⊃ L one now indeed obtains a Weil cocycle determined by the isomorphism C 7→ Cτ = Cσ

sending (x, y, z) to (x, iy, z). The corresponding coboundary is given by (x, y, z) 7→ (x, ρy, z).
Transforming, we end up with x3z+(ρy)4 + r(ρy)2z2 +z4 = x3z+ay4 +ay2z2 +z4 = 0, which
is what we wanted to show. The case G ∼= D8 can be dealt with in a similar way.

The case G ' D4. We start with the usual Ciani family from Theorem 3.1, given by x4 +
y4 + z4 + rx2y2 + sy2z2 + tz2x2 = 0. Using the S̃3-elements from the normalizer N = D(K)S̃3

induces the corresponding permutation group on (r, s, t). The diagonal matrices in D(K) then
remain, and they give rise to the transformations (r, s, t) 7→ (±r,±s,±t) with an even number
of minus signs. This is slightly awkward, so we try to eliminate the latter transformations. This
can be accomplished by moving the parameters in front of the factors x4, y4, z4. So we instead
split up S into a disjoint union of two irreducible subvarieties by considering the family

rx4 + sy4 + tz4 + x2y2 + y2z2 + z2x2 = 0,

and its lower-dimensional complement

rx4 + sy4 + z4 + x2y2 + y2z2 = 0.

Here the trivial coefficient in front of z4 is obtained by scaling x, y, z by an appropriate factor
in the family rx4 + sy4 + tz4 + x2y2 + y2z2 = 0. Note that because of our description of the
normalizer, the number of non-zero coefficients in front of the terms with quadratic factors
depends only on the isomorphism class of the curve, and not on the given equation for it in
the geometrically surjective Ciani family. This implies that the two families above do not have
isomorphic fibers. Moreover, the a priori remaining family rx4 + y4 + z4 + y2z2 = 0 has larger
automorphism group, so we can discard it.

We only consider the first family, which is the most difficult case. As in the previous example,
after our modification the elements of N ′ ∩D(K) are in fact already in G. Therefore the

quotient Q = N ′/G of the subgroup N ′ < N = D(K)S̃3 is in fact already a quotient of the

remaining factor S̃3, which clearly acts freely and is therefore isomorphic with Q. We obtain the
invariant subfield L = K(a, b, c) of M = K(r, s, t), with a = r+s+t, b = rs+st+tr and c = rst
the usual elementary symmetric functions. The cocycle for this extension is given by sending
a permutation of (r, s, t) to its associated permutation matrix on (x, y, z). A coboundary is
given by the isomorphism (x, y, z) 7→ (x+ y+ z, r x+ s y+ t z, st x+ tr y+ rs z). Note that this
isomorphism is invertible as long as r, s, t are distinct, which we may assume since otherwise
the automorphism group of the curve would be larger. Transforming by this coboundary, we
get our result.

The case G ' C3. This case needs a slightly different argument. Consider the eigenspace
decomposition of the space of quartic monomials in x, y, z under the action of the diagonal
generator (ζ3, 1, 1) of C3. The curves with this automorphism correspond to those quartic forms
that are eigenforms for this automorphism, which is the case if and only if it is contained in
one of the aforementioned eigenspaces. We only need consider the eigenspace spanned by the
monomials x3y, x3z, y4, y3z, y2z2, yz3, z4; indeed, the quartic forms in the other eigenspaces
are all multiples of x and hence give rise to reducible curves.

Using a linear transformation, one eliminates the term with x3y, and a non-singularity
argument shows that we can scale to the case x3z + y4 + ry3z + sy2z2 + tyz3 + uz4 = 0. We
can set r = 0 by another linear transformation, which then reduces N ′ to D(K). Depending
on whether s = 0 or not, one can then scale by these scalar matrices to an equation as in
the theorem, which one verifies to be unique by using the same methods as above. The case
G ' G16 can be proved in a completely similar way. 2
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Remark 3.4. As mentioned in Remark 2.2, these constructions give rise to isomorphisms
S → S in all cases except D4, and C3. In these remaining cases, we have constructed a
morphism S → S that is bijective on points but not an isomorphism. It is possible that no
family C → S inducing such an isomorphism exists; see [12] for results in this direction for
hyperelliptic curves.

3.3. Remaining cases

We have seen in Proposition 2.3 that if there exists a representative family over k over a
given stratum, then the field of moduli needs to be a field of definition for all the curves in
this stratum. In [2], it is shown that there exist R-points in the stratum C2 for which the
corresponding curve cannot be defined over R. In fact we suspect that this argument can be
adapted to show that representative families for this stratum fail to exist even if k is a finite
field. However, we can still find arithmetically surjective families over finite fields.

Proposition 3.5. Let C be a smooth plane quartic with automorphism group C2 over a
finite field k of characteristic different from 2. Let α be a non-square element in k. Then C is
k-isomorphic to a curve of one of the following forms:

x4 + εx2y2 + ay4 + µy3z + by2z2 + cyz3 + dz4 = 0 with ε = 1 or α and µ = 0 or 1,

x4 + x2yz + ay4 + εy3z + by2z2 + cyz3 + dz4 = 0 with ε = 0, 1 or α,

x4 + x2(y2 − αz2) + ay4 + by3z + cy2z2 + dyz3 + ez4 = 0.

Proof. The involution on the quartic, being unique, is defined over k. Hence by choosing
a basis in which this involution is a diagonal matrix, we can assume that it is given by
(x, y, z) 7→ (−x, y, z). This shows that the family x4 + x2q2(y, z) + q4(y, z) = 0 of Theorem 3.1
is arithmetically surjective. We have q2(y, z) 6= 0 since otherwise more automorphisms would
exist over K. We now distinguish cases depending on the factorization of q2 over k.

(i) If q2 has a multiple root, then we may assume that q2(y, z) = ry2 where r equals 1 or α.
Then either the coefficient b of y3z in q4 is 0, in which case we are done, or we can normalize
it to 1 using the change of variable z 7→ z/b.

(ii) If q2 splits over k, then we may assume that q2(y, z) = yz. Then either the coefficient
b of y3z in q4 is 0, in which case we are done, or we attempt to normalize it by a change of
variables y 7→ λy and z 7→ z/λ. This transforms by3z into bλ2y3z. Hence we can assume b
equals 1 or α.
(iii) If q2 is irreducible over k, then we can normalize q2(y, z) as y2 − αz2 where α is a

non-square in k. This gives us the final family with five coefficients. 2

Remark 3.6. The same proof shows the existence of a quasifinite family for the stratum
in Proposition 3.5, since over algebraically closed fields we can always reduce to the first or
second case.

We have seen in § 2 that a universal family exists for the stratum with trivial automorphism
group. Moreover, as M3 is rational [20], this family depends on six rational parameters.
However, no representative (hence in this case universal) family seems to have been written
down so far.

Classically, when the characteristic p is different from 2 or 3, there are at least two ways
to construct quasifinite families for the generic stratum. The first method fixes bitangents of
the quartic and leads to the so-called Riemann model; see [13, 29, 39] for relations between

this construction, the moduli of 7 points in the projective plane and the moduli space M
(2)
3 .

The other method uses flex points, as in [35, Proposition 1]. In neither case can we get such
models over the base field k, since for a general quartic, neither its bitangents nor its flex

https://doi.org/10.1112/S146115701400031X Published online by Cambridge University Press

https://doi.org/10.1112/S146115701400031X


parametrizing the moduli space 137

points are defined over k. We therefore content ourselves with the following result which was
kindly provided to us by J. Bergström.

Proposition 3.7 (Bergström). Let C be a smooth plane quartic over a field k admitting a
rational point over a field of characteristic 6= 2. Then C is isomorphic to a curve of one of the
following forms:

m1x
4 +m2x

3y +m4x
2y2 +m6x

2z2 +m7xy
3 + xy2z +m11y

4 +m12y
3z + y2z2 + yz3 = 0,

m1x
4 +m2x

3y +m4x
2y2 +m6x

2z2 + xy3 +m11y
4 +m12y

3z + y2z2 + yz3 = 0,

m1x
4 +m2x

3y +m4x
2y2 +m6x

2z2 +m11y
4 +m12y

3z + y2z2 + yz3 = 0,

m1x
4 +m2x

3y +m4x
2y2 +m6x

2z2 + xy3 + xy2z +m11y
4 +m12y

3z + yz3 = 0,

m1x
4 +m2x

3y +m4x
2y2 +m6x

2z2 + xy2z +m11y
4 +m12y

3z + yz3 = 0,

x4 +m2x
3y +m4x

2y2 +m6x
2z2 +m7xy

3 +m11y
4 +m12y

3z + yz3 = 0,

m2x
3y +m4x

2y2 +m6x
2z2 +m7xy

3 +m11y
4 +m12y

3z + yz3 = 0,

x3z +m4x
2y2 +m7xy

3 +m8xy
2z + xyz2 +m11y

4 +m12y
3z +m13y

2z2 + yz3 = 0,

x3z +m4x
2y2 +m7xy

3 +m8xy
2z +m11y

4 +m12y
3z +m13y

2z2 + yz3 = 0,

x4 +m4x
2y2 +m5x

2yz +m7xy
3 +m8xy

2z +m11y
4 +m12y

3z + yz3 = 0.

Proof. We denote by m1, . . . ,m15 the coefficients of the quartic C, with its monomials
ordered as

x4, x3y, x3z, x2y2, x2yz, x2z2, xy3, xy2z, xyz2, xz3, y4, y3z, y2z2, yz3, z4. (3.1)

As there is a rational point on the curve, we can transform this point to be (0 : 0 : 1)
with tangent equal to y = 0. We then have m15 = m10 = 0, and we can scale to ensure that
m14 = 1. The proof now divides into cases.

Case 1: m6 6= 0. Consider the terms m6x
2(z2 + m3/m6xz). Then by a further change

of variables z → z + m3x/(2m6) we can assume m3 = 0 without perturbing the previous
conditions. Starting with this new equation, we can now cancel m5 in the same way, and
finally m9 (note that the order in which we cancel the coefficients m3,m5,m9 is important, so
as to avoid re-introducing non-zero coefficients).

(i) If m8 and m13 are non-zero, then we can ensure that m8 = m13 = 1 by changing variables
(x : y : z)→ (rx : sy : tz) such that m8rs

2t = α,m13s
2t2 = α, st3 = α for a given α 6= 0

and then divide the whole equation by α. One calculates that it is indeed possible to find
a solution (r, s, t, α) to these equations in k4.

(ii) If m8 = 0,m13 6= 0,m7 6= 0, then we can transform to m13 = m7 = 1 as above.
(iii) If m8 = 0,m13 6= 0,m7 = 0, then we can transform to m13 = 1.
(iv) If m8 6= 0,m13 = 0,m7 6= 0, then we can transform to m8 = m7 = 1.
(v) If m8 6= 0,m7 = m13 = 0, then we can transform to m8 = 1.
(vi) If m13 = m8 = 0,m1 6= 0, then we can transform to m1 = 1.

(vii) If m13 = m8 = m1 = 0, then we need not do anything.

Case 2: m6 = 0,m3 6= 0. As before, working in the correct order we can ensure that
m1 = m2 = m5 = 0 by using the non-zero coefficient m3:
(viii) if m9 6= 0, we can transform to m3 = m9 = 1;
(ix) if m9 = 0, we can transform to m3 = 1.

Case 3: m6 = m3 = 0:
(x) if m1 6= 0, then put m1 = 1. Using m14, we can transform to m9 = m13 = 0 and using

m1, we can transform to m2 = 0.
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The proof is now concluded by noting that if m1 = m3 = m6 = m10 = m15 = 0, then the
quartic is reducible. 2

Bergström has also found models when rational points are not available, but these depend
on as many as nine coefficients. Using the Hasse–Weil–Serre bound, one shows that when k is a
finite field with #k > 29, the models in Proposition 3.7 constitute an arithmetically surjective
family of dimension 7, one more than the dimension of the moduli space.

Over finite fields k of characteristic > 7 and with #k 6 29 there are always pointless
curves [18]. Our experiments showed that except for one single example, these curves all have
non-trivial automorphism group. As such, they already appear in the non-generic family. The
exceptional pointless curve, defined over F11, is

7x4 + 3x3y + 10x3z + 10x2y2 + 10x2yz + 6x2z2 + 7xy2z

+xyz2 + 4xz3 + 9y4 + 5y3z + 8y2z2 + 9yz3 + 9z4 = 0.

4. Computation of twists

Let C be a smooth plane quartic defined over a finite field k = Fq of characteristic p. In this
section we will explain how to compute the twists of C, that is the k-isomorphism classes of
the curves isomorphic with C over k.

Let Twist(C) be the set of twists of C. This set is in bijection with the cohomology set
H1(Gal(k/k),Aut(C)), (see [36, Chapter X.2]). More precisely, if β : C ′ → C is any k-
isomorphism, the corresponding element in H1(Gal(k/k),Aut(C)) is given by σ 7→ βσβ−1.
Using the fact that Gal(k/k) is pro-cyclic generated by the Frobenius morphism ϕ : x 7→ xq,
computing H1(Gal(k/k),Aut(C)) boils down to computing the equivalence classes of Aut(C)
for the relation

g ∼ h ⇐⇒ ∃ α ∈ Aut(C), gα = αϕh,

as in [26, Proposition 9]. For a representative α of such a Frobenius conjugacy class, there will
then exist a curve Cα and an isomorphism β : Cα → C such that βϕβ−1 = α.

As isomorphisms between smooth plane quartics are linear [8, 6.5.1], β lifts to an
automorphism of P2, represented by an element B of GL3(k), and we will then have that
Cα = B−1(C) as subvarieties of P2. This is the curve defined by the equation obtained by
substituting B(x, y, z)t for the transposed vector (x, y, z)t in the quartic relations defining C.

4.1. Algorithm to compute the twists of a smooth plane quartic

We first introduce a probabilistic algorithm to calculate the twists of C. It is based on the
explicit form of Hilbert 90 (see [11, 34]).

Let α ∈ Aut(C) be defined over a minimal extension Fqn of k = Fq for some n > 1, and
let Cα be the twist of C corresponding to α. We construct the transformation B from the
previous section by solving the equation Bϕ = AB for a suitable matrix representation A of
α. Since the curve is canonically embedded in P2, the representation of the action of Aut(C)
on the regular differentials gives a natural embedding of Aut(C) in GL3(Fqn). We let A be the
corresponding lift of α in this representation. As Gal(Fq/Fq) is topologically generated by ϕ
and α is defined over a finite extension of Fq, there exists an integer m such that the cocycle

relation αστ = αστασ reduces to the equality Aϕ
m−1

. . . AϕA = Id. Using the multiplicative
form of Hilbert’s Theorem 90, we let

B = P +

m−1∑
i=1

Pϕ
i

Aϕ
i−1

. . . AϕA
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with P a random matrix 3× 3 with coefficients in Fqm chosen in such a way that at the end B
is invertible. We will then have Bϕ = BA−1, the inverse of the relation above, so that we can
apply B directly to the defining equation of the quartic. Note that the probability of success
of the algorithm is bigger than 1

4 (see [11, Proposition 1.3]).
To estimate the complexity, we need to show that m is not too large compared with n. We

have the following estimate.

Lemma 4.1. Let e be the exponent of Aut(C). Then m 6 ne.

Proof. By definition of n we have αϕ
n

= α. Let γ = αϕ
n−1

. . . αϕα, and let N be the order of

γ in AutFqn
(C). Since γϕ

n

= γ and Id = γN = αϕ
Nn−1

. . . αϕα, we can take m 6 nN 6 ne. 2

In practice we compute m as the smallest integer such that αϕ
m−1

. . . αϕα is the identity.

4.2. How to compute the twists by hand when # Aut(C) is small

When the automorphism group is not too complicated, it is often possible to obtain
representatives of the classes in H1(Gal(Fq/Fq),Aut(C)) and then to compute the twists by
hand, a method used in genus 2 in [6]. We did this for Aut(C) = C2,D4,C3,D8,S3.

Let us illustrate this in the case of D8. As we have seen in Theorem 3.3, any curve C/Fq with
Aut(C) ' D8 is Fq-isomorphic with some curve x4+x2yz+y4+ay2z2+bz4 with a, b ∈ Fq. The
problem splits up into several cases according to congruences of q − 1 (mod 4) and the class
of b ∈ F∗q/(F∗q)4. We will assume that 4 | (q − 1) and b is a fourth power, say b = r4 in Fq. The
eight automorphisms are then defined over Fq: if i is a square root of −1, the automorphism
group is generated by

S =

1 0 0
0 i 0
0 0 −i

 and T =

1 0 0
0 0 r
0 r−1 0

.
Representatives of the Frobenius conjugacy classes (which in this case reduce to the usual
conjugacy classes) are then Id, S, S2, T and ST . So there are five twists.

Let us give details for the computation of the twist corresponding to the class of T . We are
looking for a matrix B such that TB = Bϕ up to scalars. We choose B such that B(x, y, z)t =
(x, αy + βz, γy + δz)t. Then we need to solve the following system:

αϕ = rγ, βϕ = rδ, γϕ = r−1α, δϕ = r−1β.

The first equation already determines γ in terms of α. So we need only satisfy the compatibility
condition given by the second equation. Applying ϕ, we get αϕ

2

= (rγ)ϕ = rγϕ = r(α/r) = α.
Reasoning similarly for β and δ, we see that it suffices to find α and β in Fq2 such that

det
( α β
αϕ/r βϕ/r

)
6= 0. We can take α =

√
τ and β = 1, with τ a primitive element of F∗q .

Transforming, we get the twist

x4 + rx2y2 − rτx2z2 + (ar2 + 2r4)y4 + (−2ar2τ + 12r4τ)y2z2 + (ar2τ2 + 2r4τ2)z4 = 0.

5. Implementation and experiments

We combine the results obtained in §§ 3 and 4 to compute a database of representatives of
k-isomorphism classes of genus 3 non-hyperelliptic curves when k = Fp is a prime field of small
characteristic p > 7.
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5.1. The general strategy

We proceed in two steps. The hardest one is to compute one representative defined over k for
each k̄-isomorphism class, keeping track of its automorphism group. Once this is done, one can
apply the techniques of § 4 to get one representative for each isomorphism class.

In order to work out the computation of representatives for the k̄-isomorphism classes, the
naive approach would start by enumerating all plane quartics over k by using the 15 monomial
coefficients m1, . . . , m15 ordered as in equation (3.1) and for each new curve to check whether
it is smooth and not k̄-isomorphic to the curves we already kept as representatives. This would
have to be done for up to p15 curves. For p > 29, a better option is to use Proposition 3.7 to
reduce to a family with seven parameters.

In both cases, checking for k̄-isomorphism is relatively fast as we make use of the so-called
13 Dixmier–Ohno invariants. These are generators for the algebra of invariants of ternary
quartic forms under the action of SL3(C). Among them, seven are denoted I3, I6, I9, I12,
I15, I18 and I27 (of respective degree 3, 6, . . . , 27 in the mi) and are due to Dixmier [7];
one also needs six additional invariants that are denoted J9, J12, J15, J18, I21 and J21 (of
respective degree 9, 12, . . . , 21 in the mi) and that are due to Ohno [10, 28]. These invariants
behave well after reduction to Fp for p > 7 and the discriminant I27 is 0 if and only if the
quartic is singular. Moreover, if two quartics have different Dixmier–Ohno invariants (seen as
points in the corresponding weighted projective space, see for instance [22]) then they are
not k̄-isomorphic. We suspect that the converse is also true (as it is over C). This is at least
confirmed for our values of p since at the end we obtain p6 + 1 Fp-isomorphism classes, as
predicted by [4].

The real drawback of this approach is that we cannot keep track of the automorphism groups
of the curves, which we need in order to compute the twists. Unlike the hyperelliptic curves
of genus 3 [22], for which one can read off the automorphism group from the invariants of the
curve, we lack such a dictionary for the larger strata of plane smooth quartics.

We therefore proceed by ascending up the strata, as summarized in Algorithm 1. In light of
Proposition 2.3, we first determine the k̄-isomorphism classes for quartics in the small strata by
using the representative families of Theorem 3.3. In this case, the parametrizing is done in an
optimal way and the automorphism group is explicitly known. Once a stratum is enumerated,
we consider a higher one and keep a curve in this new stratum if and only if its Dixmier–Ohno
invariants have not already appeared. As mentioned at the end of § 3, this approach still finds
all pointless curves (except one for F11) for p 6 29. We can then use the generic families in
Propositions 3.5 and 3.7.

5.2. Implementation details

We split our implementation of Algorithm 1 into two parts. The first one, developed with the
Magma computer algebra software, handles quartics in the strata of dimension 0, 1, 2 and 3.
These strata have many fewer points than the ones with geometric automorphism group C2 and
{1} but need linear algebra routines to compute twists. The second part has been developed
in the C-language for two reasons: to efficiently compute the Dixmier–Ohno invariants in the
corresponding strata and to decrease the memory needed. We now discuss these two issues.

5.2.1. Data structures. We decided to encode elements of Fp in bytes. This limits us to
p < 256, but this is not a real constraint since larger p seem as yet infeasible (even considering
the storage issue). As most of the time is spent computing Dixmier–Ohno invariants, we group
the multiplications and additions that occur in these calculations as much as possible in 64-bit
microprocessor words before reducing modulo p. This decreases the number of divisions as
much as possible.
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Algorithm 1: Database of representatives for Fp-isomorphism classes of smooth
plane quartics.

Input : A prime characteristic p > 7.
Output: A list Lp of mutually non-Fp-isomorphic quartics representing all isomorphism

classes of smooth plane quartics over Fp.

1 Lp := ∅;
2 for G :=

G168,G96,G48,C9, // Dim. 0 strata (first)
C6,S4,G16, // Dim. 1 strata (then)
S3,C3,D8, // Dim. 2 strata (then)
D4,C2, {1} // Dim. 3, 4 and 5 strata (finally)

do
3 forall the quartics Q defined by the families of

Theorem 3.3 if G defines a stratum of dim. 6 3,
Proposition 3.5 if G = C2,
Proposition 3.7 if G = {1}

do
4 (I3 : I6 : . . . : J21 : I27) := Dixmier–Ohno invariants of Q;
5 if Lp(I3 : I6 : . . . : J21 : I27) is not defined then
6 Lp(I3 : I6 : . . . : J21 : I27) := {Q and its twists} // cf. Section 4

7 if Lp contains p6 + 1 entries then return Lp

To deal with storage issues in Step 6 of Algorithm 1, only the 13 Dixmier–Ohno invariants of
the quartics are made fully accessible in memory; we store the full entries in a compressed file.
These entries are sorted by these invariants and additionally list the automorphism group,
the number of twists, and for each twist, the coefficients of a representative quartic, its
automorphism group and its number of points.

5.2.2. Size of the hash table. We make use of an open addressing hash table to store the
list Lp from Algorithm 1. This hash table indexes p5 buckets, all of equal size (1+ε)× p for some
overhead ε. Given a Dixmier–Ohno 13-tuple of invariants, its first five elements (eventually
modified by a bijective linear combination of the others to get a more uniform distribution) give
us the address of one bucket of the table of invariants. We then store the last eight elements
of the Dixmier–Ohno 13-tuple at the first free slot in this bucket. The total size of the table is
thus 8 (1 + ε)× p6 bytes.

All the buckets do not contain the same number of invariants at the end of the enumeration,
and we need to fix ε such that it is very unlikely that one bucket in the hash table goes over
its allocated room. To this end, we assume that Dixmier–Ohno invariants behave like random
13-tuples, that is each of them has probability 1/p5 to address a bucket. Experimentally, this
assumption seems to be true. Therefore the probability that one bucket B contains n invariants
after k trials follows a binomial distribution,

P(B = n) =

(
n

k

)
× (p5 − 1)k−n

(p5)k
=

(
n

k

)
×
(

1

p5

)n
×
(

1− 1

p5

)k−n
.

Now let k ≈ p6. Then k × (1/p5) ≈ p, which is a fixed small parameter. In this setting,
Poisson approximation yields P(B = n) ' pn e−p/n !, so the average number of buckets that
contain n entries at the end is about p5 P(B = n) ' p5+n e−p/n ! and it remains to choose
n = (1 + ε) p, and thus ε, such that this probability is negligible. We draw ε as a function
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p
11 23 53 101 151 251

0.5
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1

1.25

1.5

1.75

2

ε

Figure 2. Overhead ε.

of p when this probability is smaller than 10−3 in Figure 2. For p = 53, this yields a hash table
of 340 gigabytes.

5.3. Results and first observations

We have used our implementation of Algorithm 1 to compute the list Lp for primes p between
11 and 53. Table 1 gives the corresponding timings and database sizes (once stored in a
compressed file). Because of their size, only the databases Lp for p = 11 or p = 13, and a
program to use them, are available online†.

As a first use of our database, and sanity check, we can try to interpolate formulas for
the number of Fp- or Fp-isomorphism classes of genus 3 plane quartics over Fp with given
automorphism group. The resulting polynomials in p are given in Table 2. The ‘+[a] condition’
notation means that a should be added if the ‘condition’ holds.

Most of these formulas can actually be proved (we emphasize in bold the ones we are able
to prove in Table 2). In particular, it is possible to derive the number of most of the #Fp-
isomorphic classes from the representative families given in Theorem 3.3; one merely needs
to consider the degeneration conditions between the strata. For example, for the strata of
dimension 1, the singularities at the boundaries of the strata of dimension 1 corresponding
to strata with larger automorphism group are given by Fp-points, except for the stratum S4.
The latter stratum corresponds to singular curves for a ∈ {−2,−1, 2}, and the Klein quartic
corresponds to a = 0. But the Fermat quartic corresponds to both roots of the equation
a2 + 3a + 18 (note that the family for the stratum S4 is no longer representative at that
boundary point). The number of roots of this equation in Fp depends on the congruence class
of p modulo 7.

Table 1. Calculation of Lp on a 32 AMD-Opteron 6272 based server.

p 11 13 17 19 23 29 31 37 41 43 47 53

Time 42 s 1m 48 s 10m 20m 30 s 1 h 7m 4h 36m 6h 48m 22 h 48m 1d 23 h 2 d 7 h 5 d 22 h 7 d 19
Db size 27Mb 68Mb 377Mb 748Mb 2.5 Gb 11.5 Gb 16 Gb 51 Gb 97 Gb 128 Gb 224 Gb 460 Gb

†http://perso.univ-rennes1.fr/christophe.ritzenthaler/programme/qdbstats-v3 0.tgz.
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One proceeds similarly for the other strata of small dimension; the above degeneration turns
out to be the only one that gives a dependence on p. To our knowledge, the point counts for
the strata C2 and {1} are still unproved. Note that the total number of Fp-isomorphism classes
is known to be p6 + 1 by [4], so the number of points on one determines the one on the other.

Determining the number of twists is a much more cumbersome task, but can still be done
by hand by making explicit the cohomology classes of § 4. For the automorphism groups G168,
G96, G48 and S4, we have recovered the results published by Meagher and Top in [26] (a
small subset of the curves defined over Fp with automorphism group G16 was studied there as
well).

5.4. Distribution according to the number of points

Once the lists Lp are determined, the most obvious invariant function on this set of isomorphism
classes is the number of rational points of a representative of the class. To observe the
distributions of these classes according to their number of points was the main motivation
of our extensive computation. In Appendix B, we give some graphical interpretations of the
results for prime field Fp with 11 6 p 6 53†.

Although we are still at an early stage of exploiting the data, we can make the following
remarks.

(1) Among the curves whose number of points is maximal or minimal, there are only curves
with non-trivial automorphism group, except for a pointless curve over F11 mentioned at the
end of § 3.3. While this phenomenon is not true in general (see for instance [30, Table 2]
using the form 43,#1 over F167), it shows that the usual recipe to construct maximal curves,
namely by looking in families with large non-trivial automorphism groups, makes sense over
small finite fields. It also shows that to observe the behavior of our distribution at the borders
of the Hasse–Weil interval, we have to deal with curves with many automorphisms, which
justifies the exhaustive search we made.

Table 2. Number of isomorphism classes of plane quartics with given automorphism group.

G #Fp-isomorphism classes #Fp-isomorphism classes

G168 1 4 + [2]p=1,2,4 mod 7

G96 1 6 + [4]p=1 mod 4

G48 1 4 + [10]p=1 mod 12 + [2]p=5 mod 12 + [4]p=7 mod 12

C9 1 1 + [8]p=1 mod 9 + [2]p=4 mod 9 + [6]p=7 mod 9

C6 p− 2 2× (1 + [2]p=1 mod 3)×#Fp-iso.

S4 p− 4− [2]p=1,2,4 mod 7 5×#Fp-iso.

G16 p− 2 2× (2 (p− 3) + [p− 2]p=1 mod 4)

S3 p2 − 3p + 4 + [2]p=1,2,4 mod 7 3×#Fp-iso.

C3 p2 − p (1 + [2]p=1 mod 3)×#Fp-iso.

D8 p2 − 4p + 6 + [2]p=1,2,4 mod 7 4×#Fp-iso.−3p + 8

D4 p3 − 3p2 + 5p− 5 2p3 − 8p2 + 17p− 19

C2 p4 − 2 p3 + 2 p2 − 3 p+ 1− [2]p=1,2,4 mod 7 2×#Fp-iso.

{1} p6 − p4 + p3 − 2 p2 + 3 p− 1 #Fp-iso.

Total p6 + p4 p6 + p4 − p3 + 2 p2 − 4 p− 1 + 2 (p mod 4)

+ 2 [p2 + p+ 2− (p mod 4)]p=1,4,7 mod 9 + [6]p=1 mod 9

+ [2 p+ 6]p=1 mod 4 + [2]p=1,2,4 mod 7

†The numerical values we exploited can be found at http://perso.univ-rennes1.fr/christophe.ritzenthaler/
programme/qdbstats-v3 0.tgz.

https://doi.org/10.1112/S146115701400031X Published online by Cambridge University Press

http://perso.univ-rennes1.fr/christophe.ritzenthaler/programme/qdbstats-v3_0.tgz
http://perso.univ-rennes1.fr/christophe.ritzenthaler/programme/qdbstats-v3_0.tgz
https://doi.org/10.1112/S146115701400031X


144 r. lercier, c ritzenthaler, f. rovetta and j. sijsling

(2) Defining the trace t of a curve C/Fq by the usual formula t = q + 1 − #C(Fq), one
sees in Figure B.1(a) that the ‘normalized trace’ τ = t/

√
q accurately follows the asymptotic

distribution predicted by the general theory of Katz–Sarnak [21]. For instance, the theory
predicts that the mean normalized trace should converge to zero when q tends to infinity. We
found the following estimates for q = 11, 17, 23, 29, 37, 53:

4 · 10−3, 1 · 10−3, 4 · 10−4, 2 · 10−4, 6 · 10−5, 3 · 10−5.

(3) Our extensive computations enable us to spot possible fluctuations with respect to the
symmetry of the limit distribution of the trace, a phenomenon that to our knowledge has
not been encountered before (see Figure B.1(b)). These fluctuations are related to the Serre’s
obstruction for genus 3 [30] and do not appear for genus 6 2 curves. Indeed, for these curves
(and more generally for hyperelliptic curves of any genus), the existence of a quadratic twist
makes the distribution completely symmetric. The fluctuations also cannot be predicted by
the general theory of Katz and Sarnak, since this theory depends only on the monodromy
group, which is the same for curves, hyperelliptic curves or abelian varieties of a given genus
or dimension. Trying to understand this new phenomenon is a challenging task and indeed the
initial purpose of constructing our database.

Appendix A. Generators and normalizers

As mentioned in Remark 3.2, the automorphism groups in Theorem 3.1 have the property
that their isomorphism class determines their conjugacy class in PGL3(K). Accordingly, the
families of curves in Theorem 3.1 have been chosen in such a way that they allow a common
automorphism group as subgroup of PGL3(K). We proceed to describe the generators and
normalizers of these subgroups, that can be computed directly or by using [19, Lemma 2.3.8].

In what follows, we consider GL2(K) as a subgroup of PGL3(K) via the map A 7→
[
1 0
0 A

]
.

The group D(K) is the group of diagonal matrices in PGL3(K), and T (K) is its subgroup
consisting of those matrices in D(K) that are non-trivial only in the upper left corner. We

consider S3 as a subgroup S̃3 of GL3(K) by the permutation action that it induces on the

coordinate functions, and we denote by S̃4 the degree 2 lift of S4 to GL3(K) generated by the
matrices 1 0 0

0 ζ8 0
0 0 ζ−18

, −1

i+ 1

1 0 0
0 i −i
0 1 1

.
Theorem A.1. The following are generators for the automorphism groupsG in Theorem 3.1,

along with the isomorphism classes and generators of their normalizers N in PGL3(K):

(i) {1} is generated by the unit element. N = PGL3(K);
(ii) C2 = 〈α〉, where α(x, y, z) = (−x, y, z). N = GL2(K);

(iii) D4 = 〈α, β〉, where α(x, y, z) = (−x, y, z) and β(x, y, z) = (x,−y, z). N = D(K)S̃3;
(iv) C3 = 〈α〉, where α(x, y, z) = (ζ3x, y, z). N = GL2(K);

(v) D8 = 〈α, β〉, where α(x, y, z) = (x, ζ4y, ζ
−1
4 z) and β(x, y, z) = (x, z, y). N = T (K)S̃4;

(vi) S3 = 〈α, β〉, where α(x, y, z) = (x, ζ3y, ζ
−1
3 z) and β(x, y, z) = (x, z, y). N = T (K)S̃3;

(vii) C6 = 〈α〉, where α(x, y, z) = (ζ3x,−y, z). N = D(K);
(viii) G16 = 〈α, β, γ〉, where α(x, y, z) = (ζ4x, y, z), β(x, y, z) = (x,−y, z), and γ(x, y, z) =

(x, z, y). N = T (K)S̃4;
(ix) S4 = 〈α, β, γ〉, where α(x, y, z) = (ζ4x, y, z), β(x, y, z) = (x, ζ3y, z), and γ(x, y, z) =

(x, y + 2z, y − z). N is PGL3(K)-conjugate to N = T (K)S̃4;
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Figure B.1. Trace distribution.

(x) C9 = 〈α〉, where α(x, y, z) = (ζ9x, ζ
3
9y, ζ

−3
9 z). N = D(K);

(xi) G48 = 〈α, β, γ, δ〉, where α(x, y, z) = (−x, y, z), β(x, y, z) = (x,−y, z), γ(x, y, z) =
(y, z, x), and δ(x, y, z) = (y, x, z). N = G;

(xii) G96 = 〈α, β, γ, δ〉, where α(x, y, z) = (ζ4x, y, z), β(x, y, z) = (x, ζ4y, z), γ(x, y, z) =
(y, z, x), and δ(x, y, z) = (y, x, z). N = G;

(xiii) G168 = 〈α, β, γ〉, where α(x, y, z) = (ζ7x, ζ
2
7y, ζ

4
7z), β(x, y, z) = (y, z, x), and

γ(x, y, z) = ((ζ47 − ζ37 )x+ (ζ27 − ζ57 )y + (ζ7 − ζ67 )z,

(ζ27 − ζ57 )x+ (ζ7 − ζ67 )y + (ζ47 − ζ37 )z,

(ζ7 − ζ67 )x+ (ζ47 − ζ37 )y + (ζ27 − ζ57 )z).

N = G.

For lack of space, we do not give the mutual automorphism inclusions or the degenerations
between the strata. Most of these can be found in [25].

Appendix B. Numerical results

Given a prime number p, we let Np,3(t) denote the number of Fp-isomorphism classes of non-
hyperelliptic curves of genus 3 over Fp whose trace equals t. Define

NKS
p,3 (τ) =

√
p

#M3(Fp)
·Np,3(t), t = b√p · τc, τ ∈ [−6, 6]

which is the normalization of the distribution of the trace as in [21]. Our numerical results are
summarized in Figure B.1.
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