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POLYNOMIAL
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1. Introduction

Kontsevich's integral is a knot invariant which contains in itself all knot in-

variants of finite type, or Vassiliev's invariants. The value of this integral lies in

an algebra d0, spanned by chord diagrams, subject to relations corresponding to

the flatness of the Knizhnik-Zamolodchikov equation, or the so called infinitesimal

pure braid relations [11].

For a Lie algebra g with a bilinear invariant form and a representation p : g

—» End(V) one can associate a linear mapping WQtβ from dQ to C[[Λ]], called the

weight system of g, t, p. Here t is the invariant element in g ® g corresponding to

the bilinear form, i.e. t = Σa ea ® ea where iea} is an orthonormal basis of g

with respect to the bilinear form. Combining with Kontsevich's integral we get a

knot invariant with values in C [[/*]]. The coefficient of h is a Vassiliev invariant

of degree n.

On the other hand, for a simple Lie algebra g, t ^ g ® g as above, and a fi-

nite dimensional irreducible representation p, there is another knot invariant, con-

structed from the quantum i?-matrix corresponding to g, t, p. Here i?-matrix is

the image of the universal quantum i?-matrix lying in °Uq(φ ^ ^ ( g ) through the

representation p. The construction is given, for example, in [17, 18, 20]. The in-

variant is a Laurent polynomial in q, by putting q — exp(h) we get a formal

series in h. By a theorem of Bar-Natan, Birman and Lin the coefficient of h is a

Vassiliev invariant of degree n, and its n-th derivative is the same as that of the

invariant defined in the previous case. Bar-Natan conjectured that these two in-

variants are the same.

Kontsevich invented his integral by using ideas from Drinfeld's works on

quasi-Hopf algebras [6, 7]. From these works it is also more or less clear that

Kontsevich's integral, via weight system, should be the same as the invariant com-

ing from quantum groups. But since Drinfeld's work does not treat knot invariant
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thoroughly, and since Kontsevich's integral was invented after this work and now

is presented in literature without quasi-Hopf algebra theory, here we present a

direct proof that these invariants are the same for the case when g is Lie algebra

of series Bγy Cγy Dr and p is the fundamental representation. The case of series A

was treated in our previous work [13]. From the coincidence of the two invariants

we can derive some unexpected relations between values of Zagier's multiple zeta

functions.

In Section 2 we recall definition of Kontsevich's integral for knots and links,

and then give a generalization for framed links. Kontsevich's integral for framed

links is technically more convenient for our purpose. In Section 3 we prove the

main theorem about coincidence of the two invariants. In the last section we derive

some relations between values of multiple zeta functions. In Appendix we give a

description of Drinfeld's associator and compute its coefficients.

Acknowledgment. The authors would like to thank M. Kontsevich, D. Zagier

for useful discussions and X.S. Lin for sending his preprints. We also thank A.

Bolibruch for help in proving Theorem A.8. We are grateful to the Max-Planck

Institut fur Mathematik for hospitality and support.

2. Kontsevich's integral for framed links

In this section, we extend the definition of Kontsevich's integral for framed

links. For details on "usual" Kontsevich's integral see [12] and [3].

2.1. Algebra and modules of chord diagrams

Let k be a positive integer. A chord diagram is k oriented circles with finitely

many chords, which will be represented

\ A X/

FIGURE 1. 4-term relation

FIGURE 2. Multiplication
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KONTSEVICH'S INTEGRAL FOR KAUFFMAN POLYNOMIAL 4 1

as dashed lines, marked on it, regarded up to orientation and component preserv-

ing diffeomorphisms of the circles. Here dashed lines mean that two different

chords never intersect each other. We also suppose that the vertices of chords are

all different. The circles are called the Wilson loops, we suppose that they are

numbered. Denote the collection of all chord diagrams on k circles by S) . This

collection is naturally graded by the number of chords in such a diagram. Denote
(k) (k)

the piece of degree d of ® by $rf® . vβ) is simply the collection of all chord di-

agrams having precisely d chords.
(k)

Let the vector space d be the quotient
d = span(® )/span(4-term relations).

(k)

The 4-term relation is described in Figure 1. The completion of d by the gra-

duation §dd is also denoted by d . The module d will also be denoted by d.

Let Dlt D2 be two chord diagrams, each with noted Wilson loops. Remove an arc

on each noted Wilson loop which does not contain any vertex and then using two

lines to combine the two Wilson lines into one single loop (Figure 2) we get a

chord diagram called the product (or connected sum) of Dv D2 along the noted

Wilson loops. As in [3] it can be proved that this operation does not depend on the

location of the arcs removed.

With this multiplication d becomes an algebra. Unit in this algebra is the cir-

cle without any chord. Using connected sum we can define an action of d on d

if the number of the Wilson loop to be acted is indicated. And there is an action of

d®k ondik\

= 0

FIGURE 3. Extra relation

FIGURE 4. The chord diagram Θ

Suppose X is a compact 1-dimensional oriented piece-wise smooth manifold

with or without boundary. The components of X are circles or lines. A chord dia-

gram with support X is a set of dashed chords with end points lying in the interior

of X, regarded up to diffeomorphism which preserves each component and the
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orientation of X. Connected components of X are called Wilson lines or Wilson

loops. Let d(X) be the space spanned by chord diagrams with support in X sub-

ject to the 4-term relation. Let do(X) be the space spanned by chord diagrams

with support in X subject to the 4-term relation and every chord diagram contain-

ing a part like in Figure 3 is equal to zero. If/ :X~*Xr is a homeomorphism

then there is an associate isomorphism between d(X) and d(Xf). If X is a circle

then d(X) is isomorphic to d. We denote by d0 the factored algebra of d by the

ideal generated by Θ where Θ is the chord diagram in Figure 4. Using connected

sum and an evident isomorphism we can define an action of d on d{X) if the Wil-

son line or loop to be acted is indicated. The action is the connected sum with the

indicated Wilson line. As in [3] it is proved that this action is well-defined. Simi-

larly d0 acts on do(X).

2.2. Tangles

We will consider R as the product of R and C with a fixed orientation. A

point of R has coordinates (ί, z), let z = x + iy. A plane parallel to C is called

horizontal.

A tangle T is a 1-dimensional compact oriented piece-wise smooth subman-

ifold of R lying between two horizontal planes, called the top plane and the bot-

tom plane of this tangle, such that all the boundary points of T is lying in the top

plane or in the bottom plane and there are only a finite number of points at which

the tangent vector is parallel to a horizontal plane. There may be some interior

points of T lying in the top or bottom planes. This definition is a little more gener-

al than, for example, that of [21, 18].

A tangle T is called of type 1 (or braid-like tangle) if:

a) Except for endpoints T has no local maximum or minimum.

b) T contains an even number of connected components, each is called a Wil-

son line of T. The orientation of half of the components point upwards, the others

point downwards.

A tangle is of type 2 if:

a') Except for endpoints T has exactly one extremal point which lies in the

top or bottom plane. Of course this point is a maximal (minimal) point if it lies in

the top (bottom) plane. The component containing this point is is called the disting-

uished Wilson line of this tangle.

b') Except for the distinguished line there are an even number of components,

half of them are directed upwards.

A tangle of type 2 can be treated as a tangle of type 1 if we consider the only

extremal point as two end points. Two tangles of type 1 (or type 2) are horizontal
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equivalent if there is an isotopy transferring the first into the second such that

the isotopy preserves every horizontal plane and every point of the top and bot-

tom planes are fixed.

For two tangles Tv T2 of both types we can define the product Tx X T2 if the

bottom plane of Tλ coincides with the top plane of T2, the end points in this plane

are also coincident, and if we combine the two tangle then the orientation on each

component is definitely defined. The product is the combined 1-dimensional man-

ifold. The product of two tangles of type 1 is a tangle of type 1, but the product of

two tangles of different type or two tangles of type 2 may not be neither of type 1

nor type 2, but it is a tangle.

X I \
FIGURE 5.

If T= 7\ x T2 then for Dλ e d(T^, D2 e d(T2) we can define D, x D2 ̂

d(T) in an obvious way, just combining the two diagrams.

Consider n straight lines parallel to R and going through (0, i ) , i = 1,. . .,

n. Let Tγ (resp. T2, T) be the tangle which is the intersection of these line with the

set 0 < t < 1 (resp. 1 < t < 2, 0 < t < 2). Then T = 7\ x T2. But there is an

obvious homeomorphism T ~ 7\ ~ Γ2, by shrinking. Let Sw = d{T). Then 58W is

an algebra. The unit is the chord diagram without any chord.

2.3. Kontsevich's integral

Tangle of type 1: Let T be a tangle of type 1 with 2n Wilson lines, numbered

by 1, 2, . . .2n. Suppose the bottom (top) plane is defined by t = tmin (t = £m a x). An

applicable state (abbreviation AS) of degree m of T is m unordered pairs (jv ./[),

• >0m> ϊn)'» e a c n i s a P a i r oί distinct numbers from {1,2,. . ., 2n). For t ^ ltmin,

tmax\ let Zi(t), Zjif) be the projections onto C of the intersection points of the Wil-

son lines numbered j i f j \ with the horizontal plane going through t, for i = 1,. . .,

nt. Fix tmin < tλ < t2 < < tm < tmax, let DP be the chord diagram of d(T)

obtained by connecting pairs ^ ( ^ ) , z[{t^) by dashed lines. Let # P i be the num-

ber of points of the form Zfitf), z\{t^), i = 1, 2. . . , m at which the orientation of T

is downwards. Of course DP and # P 1 do not depend on the choice of tv. . ., tm.

We define Z(T) e d(T) as follows:
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Σ
Σ Σ ( ) ^ V

m=0 (2TCΪ) Jt^n<tι< <tm<tm^ AS of degree m i=\ zι zι

In fact this is the holonomy along the corresponding curve in the configuration

space with a flat connection (see [3]).

EXAMPLE 2.1. Consider three tangles T+y T_, T in Figure 5, the first two

have end points (0,0), (0,1), (1,0), (1,1), in the third the distance between two top

end points is lt, the distance between two bottom end points is lb. Then

Z(T+) = e x p ( β / 2 ) ,

Z(TJ = e x p ( - β / 2 ) ,

Here in each case the symbol Ω for a non-negative integer d is the chord diagram

containing d chords (= dashed lines), each is parallel to the plane C and connects

the two Wilson lines.

Tangle of type 2: Now suppose Γ is a tangle of type 2. In the integral

Z{T) the coefficient of some applicable states is infinity. To get rid of these irre-

gularities we take the value of the integral not in d but in d0. Formally one can

proceed as follows. Let Tε be the tangle obtained from T by cutting a part near the

plane containing extremal point. The cut is carried by a horizontal plane lying be-

tween top and bottom planes and having distance ε to the plane containing the ex-

tremal point. Of course Tε is a submanifold of T and hence there is mapping

d(Tε) -+d(T). Combining with d(T) —> d0(T) we can view Z(Tε) as an ele-

ment of do(T). Then there exists the limit limε_0Z(T£) which belongs to do(T).

The reason is if the coefficient of an applicable state of Tε tends to infinity when ε

—» 0 then the chord diagram of this applicable state is zero in do(T) (but not in

d(Tε)). Denote this integral also by Z(T), it is a well defined element of d0.

General tangle: Now suppose T is a tangle. Using horizontal planes going

through maximal and minimal points of T and some other planes lying between

them we can decompose T into the product of several tangles of type 2, T = 7\ x

T2 X x Tn. Put Z{T) = Z(TJ x X Z(Tn). It can be proved that Z(T)

does not depend on the decomposition, if T — Tr x T" then Z(T) = Z(T') x

Z(T"). The most important of Z(T) is the following
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r

FIGURE 6.

FIGURE 7. Diagram U

PROPOSITION 2.2 ([3, 12). a) Z(T) remains unchanged under isotopy which pre-

serves the bottom and the top planes and does not change the number of maximal and

minimal points of each Wilson line or loop.

b) // T' differs from T only in a neighborhood of a ball in which T and Tf are as

in Figure β then

(2.1) Z(Γ') - γ. Z(T),

where y is Kontsevich's integral of the tangle U in Figure 7, y belongs to sέ0 and the

right side of this equality should be understood as the action of γ on the Wilson line

containing this part of the tangle.

Suppose L is an embedding of k circle into R in generic position. The compo-

nents of L are numbered. For i — 1,. . ., k let s{ be the number of maximal points

of the i-th string. Let

z(L) = r" S l Θ ••• ® Λ z(L),

here in the right hand side we use the action of (sd0) on sέ0 .

THEOREM 2.3. Z(L) is an isotopy invariant of oriented links.

Proof Using Proposition 2.2 one easily proves that Zf(L) is invariant under

all the moves listed in [21, Theorem 3.2). Hence Zf(L) is an ambient isotopy in-

variant, ϋ

This is an easy generalization of Kontsevich's integral for links.
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FIGURE 8. d-th power of ω

2.4. A generalization for framed links

A tangle of type 3 is a tangle of type 2 such that a neighborhood of the only

extremal point is lying in the plane (t, x), the extremal point is not a smooth point

and in a neighborhood of this point the two parts of the distinguished lines are

straight lines forming an angle τr/4, (see Fig. 8).

Suppose T is a tangle of type 3. Let Tε for small ε €= R, ε > 0 be the tangle

obtained from T by cutting a part near the extremal point by a horizontal plane.

Here ε is the distance between two intersection points of the distinguished line

with the cutting horizontal plane. Then T = Tε X (T — Tε) and Tε is a tangle of

type 1. We can define Z(Tε) which belongs to s4(Tε). Let ω stand for the chord

diagram in d(T— Tε) which consists of d parallel dashed lines near the maximal

(minimal) point and connecting points of the distinguished lines as in Figure 8. We

regard ω as the formal d-th power of ω.

LEMMA 2.4 (Lemma about regularization of Kontsevich's integral). If T is a

tangle of type 3 containing a minimal point then there exist

Zf(T) = lim Z(Tε) exp - ^-7 log

which belongs to s4(T). If T contains a maximal point then there exists

Zf(T) = lim e x p ( ~ log ε)z(Γ ε ) .

This lemma is proved in [14]. We will write uω for exp(ω log u).

EXAMPLE 2.5. Suppose 7\, T2 are two tangles in Figure 9, the distance be-

tween two end points in both tangles is /. Then

y ( rp \ jθ)/2πΐ

Zf(T2) = Γω/2πi.

While Z(Tλ), Z(T2) are "unit", that is, chord diagram without any chord.
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FIGURE 9.

L+ L_ L

FIGURE 10. Changing frame

Now suppose L is a framed link. We represent L a s a framed link diagram on

the plane (t, x) with blackboard framing (see for example [10]). We suppose that

all points of L belongs to the plane (ί, x) except for a neighborhood of double

points. After a deformation at extremal points we can decompose / into several

tangles of the type 3, L = 7\ x x Tn. Put Zf(L) = Zf(Tx) x x Zf(Tn).

It is easy to see that Zf(L) does not depend on the decomposition. We call it the

framed Kontsevich's integral of L. Let φ be the framed Kontsevich's integral of the

framed link diagram U in Figure 7. Let s{ be defined as in Theorem 2.3. Put

Zf(L) = φ'Sl <g> ® φ'H'Zf(L).

Here in the right hand side we use the action of d on d .

THEOREM 2.6. a) Zf is an invariant of framed oriented links.

b) If L, L+, L_ are three framed links represented in the blackboard framing by

diagrams coincident everywhere except for a disk in which they are as in Figure 10

then

Zf(L+) = e x p ( θ / 2 ) Z / ( L ) ,

Zf(L_) = e x p ( - θ/2)Zf(L),

here exp(β/2) and exp(— θ / 2 ) belong to d and the right hand sides of these

equalities should be understood as the action on the Wilson loop concerned.

This theorem is also proved in [14].
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Remark 2.7. 1) The relation between Zf(L) and Z(L) is very simple and is

explained in [14].

2) Supppose / is a C-valued invariant of framed links of finite type, this

means there is d ^ N such that the {d + l)-th derivative Vd+ι(I) of / is zero,

then the d-th derivative of I defined a linear mapping from ^ d ( Θ f c ^ ) into C.

Conversely every functional on ^ r f ( © ^ ) *s the d-th derivative of a framed knot

of degree (d + 1). This is proved in exactly the same way as in the case of in-

variant of "unframed knots" using the integral Zf instead of Z.

3) The invariant Zf contains every framed knot invariant of finite type. This

means if Zf{K^) = Zf(K2) then KKJ = I(K2) for every framed knot invariant of

finite type. Hence, the question that the system of invariants of finite type is com-

plete is reduced to the question: Are there two different framed knots with the

same framed Kontsevich's integral?

3. Weight systems and the Kauffman polynomial

3.1. Semi-simple Lie algebra

A weight systems on d (resp. on si0 ) is a linear mapping from w (resp.

from sd0 ) to C. Let g be a Lie algebra with a non-degenerate invariant bilinear

form. Let t be the corresponding Casimir element in °ll(φ ®°U{φ. Suppose pt,: g

—• End(Ft), i = 1,2,... be a set of representations of g. We generalize the notion

of weight system of [3, 15] as follows. Choose a base e) for each vector space V{.

Let D be a chord diagram such that each Wilson loop or line is enhanced with a

number from N, called the color of this Wilson loop (or line). A connected subset

of Wilson loops and lines of D is called an arc if it has no vertex (of chords) in the

interior of it and its boundaries are vertices or a boundary of the strings. An arc

of D is called internal arc if both boundary points of it are vertices of chords, and

called boundary arc if otherwise. Define a state as a mapping from arcs of D to

{βj) such that an arc of the Wilson loop or line of color i is βj for some j . For a

chord in Figure 11 we associate the number ht£d, called the weight of this chord

in this state, where h is a formal parameter, af b, c, d are the values of the four

arcs

'd

FIGURE 11. State of a chord
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under the state-mapping, i, if are the colors of the Wilson lines (or lines), and t

here is considered as the mapping t\Vt® Vv —• Vt ® VΓ corresponding to the

Casimir element t. Suppose D contains only loops. Let

(3.1) W,
w v = Σ π ht;

states chords

W{p}(D) is called the weight of D. Correctness of this mapping follows from the

fact that t satisfies the following equation, the graphical representation of which is

the 4-term relation:

(3.2) [tl2, y + ul2, y - o.

A colored framed link is a framed link such that component is enhanced with a

number from N called the color of the component. Combining the above mapping

with Zf we get an invariant of colored framed link with valued in C [[/*]]. As a

special case for any operator r : V® V~* V® V satisfying (3.2) we get a weight

system Wr.

3.2. The case g = soN and all pt are the fundamental representation

First consider the case when p{ = p : g—•End(V). We will denote Wp simply

by W. Suppose D is a chord diagram, maybe with open Wilson lines. Denote the

set of all end points of D at which the orientation of D is inwards (outwards) by

An (Άmt) Then the number of points in Din is equal the number of points in Dout.

We define W(D) as an operator from V(D0Ut) to V(Din), where V(D0Ut) =

®p(ΞDoV(p), V(Din) = ®pςΞDJ(p) and all V(p) are equal to V. Let ev. . ., enbe a

base of V. Consider the state sum (3.1) as above, only with fixed values of the

external arcs. Then by varying the values of the external arcs we get an operator

from V(D0Ut) to V(Din). This operator does not depend on the choice of the base e{

and commute with the action of g on V(D0Ut) and V^An) (see [3]).

1

Ί

2

(

1 2

D>2

FIGURE 12.

PROPOSITION 3.1. Suppose p is irreducible, Dv D2 are two diagrams from d '
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and Dλ # D2 is the connected sum along arbitrary components, then

W(DX#D2) = W(DX) W(D2)/dim V.

Proof. After removing a small arc from D1 and D2 we get chord diagrams D[>

Ώ2, each has two end points (see Fig. 12). Then W(D[), W(D2) are operator from

V to V. It is easy to see that W(Dt) = TrWΦί), i = 1,2. While W(D1 # D2) =

Tτ[W(DΪ)W(Dζ)]. Since p is irreducible and both W(D{), i = 1,2 commute with

actions of p we have W(D[) = const, id, W(D2) = const, id. It follows that

ΎτlW(D0W(D0] = [TrFΓ(Z)ί)][TrίΓ(Z)ί)] /dim V. D

Now suppose g = 5% and p : soN-+ End(K) = End(C ) is the fundamental repre-

sentation. After a normalization we have

tcd - 2{δdδb - δ δcd).

A specific property of this case is the following important:

LEMMA 3.2. We have t = — th = — t h where th is the transpose of t on the

first space and t2 is the transpose of t on the second space.

The proof is trivial and follows from the explicit form of t.

The following graphical representation of t allows us to compute quickly

W(D).

W(ϊ-l) = 2 ( X - X ) ,

W(O) = N, W(D UO) = NW(D),

where D is a chord diagram and D U O is the union of D and a circle which is

far away.

EXAMPLE 3.3. For the tangle T+, T_ in Figure 5 W(T+), W(TJ are oper-

ators from 7 ® 7 to F ® V. Then

(3.3) W(Zf(T+)) =

(3.4) m Z / Γ J ) = Pexp(

where P is the permutation P(x®y) = y ® x. This can be proved easily by us-

ing the result of Example 2.1.
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Note that for a chord diagram D in general if we change the orientation of a

Wilson line then W(D) changes.

PROPOSITION 3.4. If we change the orientation of a Wilson line then the operator

p(T) — W(Zf(T)) remains unchanged.

Proof When we change the orientation of a Wilson line, then for an Applic-

able state, for a chord having one vertex on this Wilson line the term # P j is

changed by ~ 1, and the associate number of this chord must be replaced by the

corresponding number of the matrix obtained from t by transpose on the first or

on the second place. From Lemma 3.2 we see that the result is unchanged. For a

chord having both vertices on the string we have to change t to t* 2 which is equal

to t D

If L is a framed link then it follows that W(Zf(L)) does not depend on the

orientation of the link.

3.3. Kauffman's polynomial

LEMMA 3.5. Let η = N / — Γ~Γ\
1 \ exph — exp(— h)

[Pexp(hp(t)/2) - Pexp(- hp(t)/2)Tb

c

d = (exp h - exp(- A)) [id - δacδbd/η].

This lemma is proved by explicitly calculating matrices exp(hp(h)),

e x p ( ~ hp(t)). Recall that P is the permutation acting on V®V.

The operator δ δbd can be represented graphically as X . We have seen that

W(Zf) is an isotopy invariant of framed links, but W^Z/O)) =£ 1. We will use

another normalization. Let fc(L) = N~1W(φ)W(Zf(D), in this case /c(O) = 1. If

L is a framed link diagram with 5 maximal points then from Proposition 3.1

(3.5) ιc(L) =
NS~2W(ZΛD)

ς 1

(Wiφ))8'1

Denote W(exp(Θ/2)/N by σ. Then W(exp(~ Θ/2)/N= σ~\ by Proposi-

tion 3.1. We have seen that fc(L) is a formal power series on h and is an invariant

of framed oriented links.

PROPOSITION 3.6. If L, L+, L_ are three framed links such that in some black-

board representation they differ only in a disk in which they are as in Figure 10, then
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κ(L+) = σκ(L), ιc(L_) = σ ιιc(L). Hence σ x(L)/c(L) where w(L) is the writhe num-

ber of the framed link L is an ambient isotopy invariant of oriented links.

This proposition follows from Theorem 2.6 and Proposition 3.1.

Let fc(L) = Σ^iCjh1. Then from the construction of the integral it follows

that each Kt is an invariant of framed links of degree i and its z-th derivative is

computed by the weight system W. On the other hand the coefficients of Kauff-

man's polynomials are also invariant of finite type with the same derivatives (see

[15]). We will prove that these two invariants are the same.

THEOREM 3.7. fc(L) does not depend on the orientation of L and if L+, L_, Lo,

Loo ewe four framed link diagrams coincident outside some disk and looking as in Fi-

gure 13 in this disk then

(3.6) κ(L+) - i c t t J = (exp(A) - e x p ( - h))[/c(L0) - κ(LJ].

Hence K (L) is the Kauffman polynomial.

DC (—*
Lo

FIGURE 13.

FIGURE 14. Scheme to prove Theorem 3.7

Proof. The fact that κ(L) does not depend on the orientation follows from

Proposition 3.4. By regular isotopy we can push the local part containing the dif-

ference of the four links far away as in Figure 14. In this figure the different

parts of the four link are in the box denoted T. The complement parts are the

same and is denoted by X. We suppose that the end points of X are (0,0), (0,1),

(1,0), (1,1). In Figure 14 L is decompose into three tangle, the top is denoted by

Tv the middle by T2, the bottom by T3. The middle contains T and two extra lines

parallel to the straight line R. We suppose the upper end points of these two lines
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are (/, 1) and (/ + 1,1). We will consider the limit when /—-> oo, and write 7\(/),

Γ2(/), T3(l). Let Z(T2(l)) = A + B(l) where B(l) is the part containing all the

chord diagrams with at least one "long" chord connecting a Wilson line of the left

part of T2 and a Wilson line of the right part of T2 and A = Z(T) is the remain-

ing. Of course A does not depend on /. The coefficient of a diagram of B{1) tends

to zero when / tends to infinity at least as fast as log(l + 1//). This follows

easily from the formula of the integral.

For all chord diagrams with less than k chords of Z f (7\(/)) or Zf(T3(D), the

coefficients tends to infinity when / tends to infinity, but at most as fast as

(log/) . This also follows easily from the integral formula. Using limlogQ +

1 //) (log IΫ = 0 we see that ^°°

Zf(L) =limZ /(Γ 1(/)) x Zf{T) x Zf(T3(l)).

Let T be the part of the diagram in Figure 14. For the first three cases we use the

orientation which points downwards in T. For the last case use arbitrary orienta-

tion in T, and then change the orientation of some component of X such that the

combining diagram have definite orientation. Using Lemmas 3.4, 3.5, Equations

(3.3), (3.4) and the previous equation we get

(3.7) W[Zf(L+) - Zf(LJ] = (exp(ft) - exp(- h))W[Zf(L0) - Zf(Lj/η].

Consider the case when the part °U in Figure 14 is trivial (just two parallel lines),

taking into account the number of maxima (see (3.5)) and using Proposition 3.4 we

get

or (W(φ) + N )(W(φ)/ϊ] — 1) = 0. Because W{φ) depends on h we see that

W(φ) = η hence

Using W(φ) = ϊj in (3.7) and Proposition 3.4 concerning the inversion of one

string of a tangle we get (3.6).

Besides /e(O) = 1. Together with (3.6) this defines K uniquely as an in-

variant of framed link. Hence fc(L) is the Kauffman polynomial. In the notation of

Turaev [20, §4.3.4] it is equal to QmΛ(L) with q = exp(A). D
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Remark 3.8. An analogous proof yields the following result: For a weight W

if matrix W(exp(p)) satisfies a polynomial-equation f(t) = 0 then this polyno-

mial annihilates the invariants W(Zf) in the sense of Turaev [20].

4. Some computations and corollaries

We compute explicitly the series W(φ) and deduce some unexpected relations

between the so called values of multiple zeta functions.

r
1-1-1

FIGURE 15. Closing

4.1. Elements 7, φ

Recall that γ = Z(U) is in d0 while φ = Zf(U) is in d.Letf :d~^d be the

mapping which takes a chord diagram with k chords into (— 1) Θ . Recall that

there is a comultiplication Δ defined on d (see [3, 12] for details). Put

φ{D) = m [ ( / ® i d ) 4 ( Z ) ) ] ,

where D is a chord diagram and m is the usual multiplication in d. It follows that

φ is an algebra homomorphism, whose kernel is the ideal generated by Θ hence it

also defines a homomorphism from d0 to d. The composition do-^> d-^ d0 is

identity, and φ :d~+d is equal to φ. The operator φ was also introduced in [3,

16].

PROPOSITION 4.1. We have φ = φ(γ).

The proof is presented in Appendix.

Consider the algebra 383 introduced in §1.2. Let Ω12 be the chord diagram with

one chord connecting the first and the second Wilson lines, Ω23 be the chord dia-

gram with one chord connecting the second and third Wilson lines. For a multi-

index / = (ilf. . ., ik) put Yj = Ωl2Ω
%2z $12^23" '^i2^23~ - Now converting the

orientation of the second Wilson line then closing the three Wilson lines into one

Wilson loop as in Figure 15 we get a closing mapping c l :$ 3 —• d. Let Dr =

cl(F7). We also consider D(I) as an element of d0, by the natural projection d—*
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dQ. Consider the set 3f = {/= (iί9..., ik), iv ^ N, ik > 1}. Let | l\ — Σ y = i zv,

/c(/) be the number of indices in /. For / = (iv..., ik) e 3 set

The right hand side is called a multiple zeta function. When A: = 1 it is the value

of the zeta function at some natural number.

PROPOSITION 4.2. The element γ ^ d0 is given by

γ = 1 + Σ ^ kiI)

This proposition is proved in Appendix (see also [13]).

4.2. Relations between values of multiple zeta functions

It is easy to check that Σb[p(t)]fd — 2{m — l)δa

d. Let

r= p(t) - 2 ( m - Did,

and Wr be the weight system corresponding to r. Then Wr(Θ) = 0 and hence Wr

is a weight system on d0.

PROPOSITION 4.3. For every chord diagram D ^ dQ we have Wr(D) =

W(ψ(D)).

This follows immediately from the definition of ψ and r. As a corollary of this

and Proposition 4.1 we get

PROPOSITION 4.4. One has Wr(γ) = W(φ).

We use a normalization of multiple zeta function by putting ζ(7) =

Now define g(iv..., ik) as follow. Let

' N - \ I - i \ IN-i -i l

u = h I 1 i V - 1 - 1 , ϋ = A I 0 0 0

0 0 0 / \ 1 - l i V - 1

Matrix ί> is obtained from u by permutation of the second and the third coordin-

ates. Let
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g{iv..., ik) = (0, 1, ( W ^ W 2 " 1 • uvk~ι

PROPOSITION 4.5. For / e g

Wr(D(I)) = (-2)mNg(I).

This is proved by induction on the number of chords, using the graphical rep-

resentation of t.

THEOREM 4.6. We have

- N ( e x p ( h ) -exp(-ft))

Proof. Note that if k is odd then ΣU\=kg(I)ζ(I) = 0 due to the inversion

formula for ζ(/) (see [13] and Appendix). Hence the left side of (4.1) does not con-

tain terms with odd power of h. Using Propositions 4.2, 4.4, 4.5 to compute the

left hand side of (3.8) we get the result. •

Both sides of (4.1) belong to C[iV] [[/*]]. By comparing the coefficients of

N h we get different relations between values of multiple zeta functions. It is in-

teresting to notice that these relations are not established by traditional methods

of number theory, but by isotopy invariant of links. For example by comparing the

lowest order of N in both sides of (4.1) when the order of h is fixed we get

(4.2) ζ ( 2 , 2 , . . . , 2 ) = 7Γ2

This can also be derived from the similar formula gotten from the HOMFLY

polynomial case [13]. From (4.2), by induction one can easily reprove a famous

theorem of Euler which expresses ζ(2n) in term of Bernoulli numbers: ζ(2n) =

By combining all relations among the values of multiple zeta functions with

I /1. = 6, using the HOMFLY and the Kauffman polynomials we can evaluate

actually all these values as a Q-linear combination of ζ(3) and π . For example

ζ(l,2,3) = ĝ gQ- π + 3ζ(3)3, ζ(2,4) = 2335 π* + ζ(3)s!.
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For the case when | / | > 8 these relations are not enough to determine ζ(/), and

when I /1 is odd we can not get any relation.

Appendix A. Iterated integral, multiple zeta functions and Drinfeld's

associator

A.I. Iterated integral, multiple zeta functions

We recall here the definition and some properties of iterated integral (see [5,

8]). Suppose ξv..., ξk are 1-forms on [a, b], that is ξ( = ft(u)du, u ̂  [a, b], de-

fine

f fi?2 . . . & = / t M / i ( « i ) Γ άu2(f2(U2) Γ fkl d « * Λ ( « t » •••))•
** a *^a *^a *^a *^a

Let ω 0 = ~2^l~7Γ » ωi = ^ ~ τ u — \ F ° r example for 0 < a < b < 1 we

have

The following properties of iterated integral are well known.

PROPOSITION A.I . Suppose ξv ξ2,..., ξk+ί are 1-forms on [<z, b] then

) ?l . ξ * l €* + ! . . . ? * + / = Σ / ξ σ ( i ) , . . J

the summation is performed with respect to all permutation σ ̂  Sk+1 such that

σ~\l) < σ " 1 ( 2 ) < ••• < σ ~ \ k ) , σ ~ \ k + Ί ) <•••< σ~\k + t).

Note that the sum in the right hand side contains Ck+1 terms.

PROPOSITION A.2. The iterated integral along the inverse path is given by

PROPOSITION A.3. For a < b < c
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X
c fb jc-i ~b s*c ~c

f l . . . f * = J f l . . ^ + Σ j ξ 1 . . . ξ i j ξ i + 1 . . . ξ k + J ? ! . . . ? , .
Ja y=i *̂ a •'ft Λ

Now consider j ξι... ξk when ^ is either ω0 or 0)^ If ξι = ωι or = ω 0 then

it is easy to verify that the integral does not converge. Otherwise the integral ex-

ists and its value can be computed explicitly as follows. Let pίf qv p2, q2,. . ., pn,

qn be natural numbers. Set

τ(p1,pi,...,Pn, qn) = ( - l) ί l+-+9« f ω*ω?.. .ω/V".

Recall that a multiple zeta function ζ(iv . . . , ik) is defined for natural numbers

iί9..., ik with ik > 1 by

ζ ( ^ . . . , ί * ) = Σ -—

If /Λ = 1 the right hand side does not converge.

PROPOSITION A.4. We have

(A.3) τ(pl9 ql9...,pn, qn) = ζ ί l ^ ^ l , q1 + U ^ ^ Λ , q2 + 1 , . . . , ft, + 1).

Pw<?/ Let for ^ e (0, 1)

F(iv..., i M) = Σ

then one verifies at once that

rF(ilf...,ik;v)dvrF(ilf...,ik;v)dv
Jo fZΓ^ = F(t1,...,tk9l;u),

F(iv...,ik;v)dvJ o

Using these equalities and induction on Σ(/>; + #;) it is easy to prove (A.3). •

Note that another form equivalent to (A.3) is

Γ1

ζ(iί9..., ik) = I ω^ω^ω^ω^2'1...ωQω^k'\

https://doi.org/10.1017/S0027763000005638 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000005638


KONTSEVICH'S INTEGRAL FOR KAUFFMAN POLYNOMIAL 5 9

A corollary of the previous proposition and Proposition A.2 is

COROLLARY A.5 (Inversion formula for values of multiple zeta functions). We

have

(A.4) τ ( p l 9 ql9..., p n , q n ) = τ ( q n , p n , . . . f q» pj.

For example ζ ( l , 2) = ζ(3), ζ(l,3) = ζ(4). We see that the function τ is

more "symmetric" and we will use this function instead of ζ.

A.2. Drinfeld's associator

We can not present here Drinfeld's theory of quasi-Hopf algebras (see [6, 7]).

We only mention that the category of representations of a quasi-triangular

quasi-Hopf algebra is a quasi-tensorial category, from which one can construct

invariants of framed links (see [18, 19, 1]). In a quasitriangular quasi-Hopf algeb-

ra A there are two important objects, an element R^A®A, called i?-matrix and

an element Φ^A®A®A, called the associator. There are gauge transformation

which change i?, Φ but do not change the category of representations of A and

hence the corresponding link invariant remains unchanged. For a class of

quasi-Hopf algebras Drinfeld showed that by gauge transformations one can make

i?-matrix very simple (of type R = exp(O), and all the difficulties are placed on

Φ. Drinfeld gave an explicit way to construct Φ in this case. We will describe this

Φ, but without any quasi-Hopf algebra, and point out the connection to element 0,

γ defined in Section 4. In [7] this associator Φ is denoted by φκz.

Let M1 = CXC4, B}} be the module of non-commutative formal series on two

symbols A, B. With the natural multiplication Mx is a non-commutative algebra.

Consider the equation

where G : (0,1) —* Mx is a formal series on A, B with coefficients which are an-

alytic functions in u. Then for any 0 < a < 1 there is a unique solution to (A. 5)

with G(a) = 1, let denote the value of this solution at b e (0,1) by Zβ*(A, B).

We can write

(A.6) Zβ*(A, B) = l + Σfx(a, b)X,

where the summation is over all the words X in Mίt fx(a, b) is an analytic func-

tion in a, b. Here a word in M1 is the product of a finite number of symbols, each

is A or B. By induction one sees that the coefficient fx(a, b) in (A.6) is given by
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(A.7) fx(a, b)= f X,

where the right hand side is the iterated integral on [a, b] in which each symbol

A in X is replaced by ω0, each symbol B is replaced by ωv Hence if X is a word

which begins with A and ends with B then there exists the limit limε_0/χ(ε, 1 — ε).

Otherwise the limit is oo. We will say that a sequence of elements in M — 1 con-

verges to an element of Mx if the coefficients of each word converge to the corres-

ponding coefficient of the limit element.

In order to regularize the limit limε_0 Zε we can use the following two

approaches. Consider module M2 which is a submodule of Mx containing only for-

mal series on words beginning with A and ending with B. At the same time M2 is

a factor of Mx: M2 = Mι/(BM1 = (BMX = 0, MXA = 0). Let φ12 :M1-*M2 be

the factor map. Then we see that there exists the limit.

which belongs to M2. If we write Γ = 1 + Σ ΓXX where the summation is over

all the words in M2, then

(A.8) Γx = f X.

This integral is convergent because X begins with A and ends with B. From (A.3)

it follows that each coefficient Γx is a value of a multiple zeta function.

Another way to regularize limε_0 Zε is the following. There exists uniquely

one solution G^u) of (A.5) with asymptotic Gι(u) ~u πt (for u—+0) where

u = exp(Alogu) and Gλ{u) ~u πt means that Gι(u)u~ πι has an analytic

continuation into a neighborhood of u = 0 and becomes 1 at this point. Similarly

there exists uniquely one solution G2(t) of (A.5) with asymptotic G2(t) ~ (1 —
0*"" (,->!). L e t

Φ = G~ιGv

Then Φ does not depend on t and is an element of Mv it is Drinfeld's associator

and plays an important role in the theory of quasi-Hopf algegras and invariants of

links.
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cί

\
FIGURE 16.

J

Let us write

(A.9) ΦtA, B) = 1 + Σ ΦXX.

We will compute Φx for each word X. It is clear from the definition of Φ that

, . 1 Λ > •*/Λ r»\ v -B/2πι ryl-ε A/2πi

(A.IO) Φ\AyB)—\\mε Zε e

Note that Φ belongs to Mx while F belongs to M2. Since the coefficient of Γ are

given by values of multiple zeta functions, we can compute Φx by using this rela-

tion. We want to find a relation between Φ and Γ. Since the coefficients of Γ are

given by values of multiple zeta functions, we can compute Φx by using this rela-

tion. Recall that £83 is the algebra of chord diagrams whose support is three lines

parallel to R and lying between two horizontal planes {t = 0}, {t = I}. There is

an operator closure D ̂  $ 3 ~* cl(D) ^ d indicated in Figure 15. Recall that φ =

Zf(U), γ = Z(U).

PROPOSITION A.6. We have

1) 0 = d ( Φ ( - β 1 2 , -Ω23)),

2) r = p r ( c l ( Γ ( - fl12, - fl23)))

pr : $? —•• dQ is the natural projection.

Proof. We prove (A.ll), the second identity can be proved in a similar man-

ner, even more easily. Using horizontal deformation we can deform U into a dia-

gram [/'(/) lying in the plane {t, x) like in Figure 16. In this figure the points

Cv C2, C3, C4, C5, C6 have coordinates respectively (0,1), (0,0), (1,1), (1,0),

(/,0), (/,1) Using two horizontal planes {t = 0}, {t = 1} we cut [/'(/) into three

tangles: the top is Γ^/), the middle T2(l) and the bottom T3(l). Then Z / (Γ 1 (/))

= Γ/2πi,Zf(T3(l)) = (l-l)~ω/2πi. While Zf(T2(l)) =Zf(T)+log(l +1/1)0(1)

(for /—> oo). Here T is the part from point Cx to C4 and Z r (T) is defined in ex-
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actly the same manner as for any tangle of type 3. By definition

Zf(T) = lim ε 23 Z(T£ )ε ,

where Z(Te

 ε) is Kontsevich's integral of the tangle obtained from T by cutting

upper and lower parts by two planes {t — 1 — ε}, U = ε}. Let / tend to infinity.

Using lim/_oo(log/)/clog(l + 1//) = 0 we see that φ = cl(Zf(T)). From the de-

finition of the integral we see that Z(Tε

 ε) = Zε

 ε ( — Ω12, ~ Ω23). Hence

φ = Zf(U) = cKZ/Γ)) = cl(Φ(- Ωl2, - Ω23)). D

From (A.12) and (A.8) we get Proposition 4.2.

Now consider the module M3 which consists of formal series with coefficients

in C on four symbols A, B, a, and β such that α and β commute with every other

symbols. Then with the obvious multiplication M3 is an algebra. Every word in M3

can be represented uniquely in the form β Xa where X is a word in Mv Consid-

er the mapping φ31:M3-+ Mίf φ31(βPXaq) = BPXAq. Note that this is a module

homomorphism, but not an algebra homomorphism. Note also that φ31((B — β)Y)

= 0 and Φ31(Y(A — a)) = 0 for every element Y e M3.

Let φ13: Mι~^M3 be the map φ13(H(A, B)) = H(A -a,B-β) where H(A, B)

is an element of Mv Denote Ψ : M1~^ M1 the composition φ31φί3. This ?Fis a mod-

ule homomorphism, but not an algebra homomorphism, and if X is a word in Mx

begins with B or ends with A then Ψ(X) — 0, hence Ψ can be regarded also as a

homomorphism from M2 to Mv If X is a word in Mλ then Ψ(X) = X + Y where Y

is the sum of words which begin with B or ends with A. Hence the composition M2

c_> Mx —* Afj —• M2 is identity. Besides, Ψ , as a homomorphism from Λfx to Λfl5

is coincident with Ψ.

PROPOSITION A.7. We have

(A. 13) Ψ(Φ) = Φ.

Proof. Note that Gλ(A — a, B — β) is a solution to equation

(A - a . B- β\

with asymptotic u a/2πι when u—>0. Then function u a/2m(l—u) β/2πtGl(A1 B)

is also a solution to (A. 14) with the same asymptotic. Hence

G ί Λ r> n\ —a/2πi /-. \ —β/2πi π / A r>\

λ\A — α, B — β) = u (1 — u) Gλ(A, B).
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Similarly we get

G2(A ~a,B-β) = u'a/2πi(l - uVβ/2πiG2(A> B).

Hence (G2"
1G1)(A, B) = (G^GJ (A - a, B - β). In this identity both sides are

elements of M3. From this we get (A. 13) immediately. D

THEOREM A.8. The following identity holds true

(A. 15) Ψ(Γ) = Φ.

Proof Applying ?P*to both sides of (A.10) we get

/ Λ -i A \ i ?rr/ —B/lπirγl—ε —A/2πi\ r /s*\

(A. 16) hm W(ε Zε ε ) = ψ(Φ).

For every element F e Mx one has Ψ(BY) = Ψ(AY) = 0 hence the left hand

side of (A. 16) is l im^o^Z, 1 " ' ) which is Ψ(Γ). While the right hand side of (A. 16)

is Φ by (A.I3). D

From Theorem A.8, one can prove Proposition 4.1. In fact cl(Ψ(Γ(~ Ω12,

Ω23))) is just ψ(cl(Γ(— Ωu, Ω23))) by definition of ¥, and of φ in §4. Combining

with (A. 11), (A. 12) we get Proposition 4.1.

By using Theorem A.8, we can express Φ in terms of values of multiple zeta

functions. For p = (plt. . ., pg), g(p) = g is the length of p. For p and r with the

same length g, p > r means p{ > riy p > r means pt > rif p > 0 means pt > 0,

and p > 0 means p{ > 0 for 1 < i > g. Let | p | = Σ p{.

THEOREM A.9. The associator Φ is given by

(A.17) Φ=1+ΣΣ Σ ( - l ) l q l r ( f c , ί i , • • • , / > , . qg) x
k=2 g>l p>0,q>0,

Σ ( - l ) l r l ( ή (Pi ) ( Qi)
g g g i rj \si

0<r<p, 0<s<q

where τ is given by multiple zeta function as in (A.3).

This formula is also given in [14].
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