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ON NUMBERS WHICH ARE DIFFERENCES OF
TWO CONJUGATES OVER Q OF AN ALGEBRAIC INTEGER

T. ZAIMI

We continue the investigation started by A. Dubickas of the numbers which are
differences of two conjugates of an algebraic integer over the field Q of rational
numbers. Mainly, we show that the cubic algebraic integers over Q with zero
trace satisfy this property and we give a characterisation for those for which this
property holds in their normal closure. We also prove that if a normal extension
K/Q is of prime degree, then every integer of K with zero trace is a difference of
two conjugates of an algebraic integer in K if and only if there exists an integer
of K with trace 1.

1. INTRODUCTION

Let L be a number field, that is a finite extension of the field Q of rational numbers,
and let K be a subfield of L. Then, the extension L/K is said to be normal if there
exists 6 € L all of whose conjugates over K belong to L. In this case the set G(L/K)

of the if-embeddings of L in the complex field has a group structure and is called
the Galois group of the extension L/K. A normal extension is said to be cyclic if its
Galois group is cyclic.

Let 6 € L, then the trace of 0 over K, namely r £/«•(#) = S T ( 0 ) , is an
reG(L/K)

element of K. In particular if 6 e ZL , where ZL is the ring of the integers of the field
L, then rL/K(6)eZK.

The additive form of Hilbeft's Theorem 90 ([3]), asserts that if the extension L/K

is cyclic, then every element 0 € L satisfying rL/K(6) = 0, can be written as 0

= a — a(a), where a € L and a is a generator of G(L/K). A natural question arises
immediately. For which cyclic extensions L/K, can we write every integer /3 of L

satisfying rLjK{fi) = 0 in the form p = a - cr(a), where a € ZL? The next result
gives a partial answer to this question.

THEOREM 1 . Let L/K be a normal extension of degree d, where d is inert in

ZK • Then, every integer 0 of the Geld L satisfying rL/j({f}) = 0, is a difference of two

conjugates of an algebraic integer in L if and only if TL/K{ZL) = ZK-
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In fact the question above is in a certain sense due to Smyth [1]. He asks whether
an algebraic integer which is a difference of two conjugates over K of an algebraic
number, is a difference of two conjugates over K of an algebraic integer.

In [2], Dubickas and Smyth, have shown that a number 8 is a difference of two
conjugates over K of an algebraic number if and only if there exists an element T in
the Galois group of the normal closure of the extension K(6)/K (the normal closure of
the extension K(9)/K is the smallest normal extension of K containing 6) such that
9 + T(0) -\ 1- Tn~l{6) = 0, where n is the order of r .

Recently ([1]), Dubickas proved that an algebraic integer /3 whose minimal poly-
nomial over K, say Irr (/?, K), is of the form

where P € ZK [X] and n is a rational integer greater than 1, is a difference of two
conjugates over K of an algebraic integer. He also showed that the same property holds
when

Irr (0, K) = x3 + px + q,

provided p/9 € ZK- For this last case, the next theorem shows that the condition
p/9 e ZK is not necessary when K = Q.

THEOREM 2 . Let ft be a cubic algebraic integer over Q. IfTQ(P)/Q{P) = 0, then
fj is a difference of two conjugates of an algebraic integer of degree ^ 3 over the Reid
Q{/3, (3'), where /3' is a conjugate of 0 and 0' ^ /?.

Let v be the 3—adic valuation function on the set ZQ := Z (if k € Z, then v(k)
is the greatest rational integer such that fc/(3"(fc') £ Z). The following result gives
a characterisation of the cubic algebraic integers over Q which are differences of two
conjugates of an integer of the field Q((3, /3').

THEOREM 3 . Let (3 be a cubic algebraic integer over Q and let disc (/3) be the
discriminant of Irr (fi,Q) := x3 +px + q. Then, /3is a difference of two conjugates of an
integer of the Reid Q(/3, /3') if and onJy if v(disc (/3)) £ {4,5}, provided v(disc ($)) ^ 3
or there exists e G {—1,1} such that v(m + 3p + el) ^ 3 (respectively, such that
v(m + Yip + 8el) ^ 3),where m is a squarefree rational integer, I e Z, l2m = disc (/3)
and m = 2,3[4] (respectively and m = 1[4]J, when u(disc (/3)) = 3 .

2. PROOF OF THEOREM 1

Let L/K be a cyclic extension of degree d ^ 2 and let a be a generator of G(L/K).

Set A= {P G ZL, rL/K(P) = 0} and D = {a - am(a), a € ZL and m € Z}. It is
clear that D C A and if T{ZL) — ZK (along the proof of Theorem 1, r means rL/K),
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then there exists an element e € ZL satisfying r(e) = 1. It follows (as in the proof of
Hilbert's Theorem [3, p. 215]) that if /3 € A, then

P = a- a(a),

where
a= E ( E ^V(e) €

Conversely, suppose D — A. Note first that r ( Z t ) is an ideal of ZK and contains
the ideal r(ZK) = dZK. Suppose that r(ZL) # ZK. Then, r (Z L ) = dZK, since dZ*
is a prime ideal. We shall prove that 0/d € A, whenever 0 S A. This leads to a
contradiction, since in this case /3/dn € A C ZL for all positive rational integers n. Let
us now prove the following lemmas.

LEMMA 1 . Let fi e A. Tien there exists fa <S A such that /3 = fa - a (fa).

PROOF: Let /3 € A. Then, there exist an element a € ZL and a positive rational
integer m such that /3 — a — am(a), since A = D. Set 77 = Ẑ '̂C**
ft = r/ - (r(T/))/d. Then, r(fa) = 0 , f t e ZL and o ^ m - i

i9 = , f f ( I , ) = f , a ( l , ) = / 3 1 ( r ( j 8 l ) . Q

LEMMA 2 . Let /3 G A. Then, for every non-negative rational integer n , there

exists (3n e A such that 0 = £ (-l) f cCJVf c03n).

P R O O F : We apply induction on n . Letting po = /3, we obtain the result for n = 0.

Assume now that ft = X) (-rfCk ak(Pn), where n is a non-negative rational integer

and fteA. Then, by Lemma 1, there exists /3n+i € A such that /3n = (3n+i — <r(Pn+i)

and

&= E (-

LEMMA 3 . Let 0 € A. Then, X) (d - 1 - fc)fffc()3) e dA.
O^fc^d-2

PROOF: Let /3 € A. Then, by Lemma 1, there exits a € A such that /3 = a — o(a)

and £ (d-l-fc)<rk(/3) = d a e d A . D
0<k<d-2
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Returning to the proof of Theorem 1 and let xk — (d — 1 — k) + (—1)*C^~2, where
0 < k < d - 2. Then, xo/d = 1, x^/d = 0 and for k ^ 2, xk/d 6 Z, since k < d and

s ) . . . ^ * ) ) ^

where P is a polynomial with rational integer coefficients.

Let now /3 € A. Then, by Lemma 2, there exists a € A such that

It follows by Lemma 3, that the number

is an element of the set dh. Furthermore, ]>Z Xkcrk(a) € dA, as xk/d € Z for all

0 ^ k ^ d — 2 and r I £) XfcCTfc(o;) 1 = 0. Hence, /3 € dA, since the sum of two
\0^fc<d-2 /

elements of the set dA belongs to dA (if £ = # — <rm (6), where 0 € ZL and m is a
positive rational integer, then £ = T] — <T(T)), where rj = J ] ^ 'W- Hence, the sum

of two elements of A = D belongs to A).

REMARK. The proof of Theorem 1 can not be applied for a cyclic extension L/Q
of degree 4, since in this case the condition A = D does not imply TLIQ{ZI)

— AZ. Indeed, Let Q{\fm) (m is a squarefree rational integer), be the unique quadratic
field contained in L. Then, \frn = a — act, where a € ZL and from the equalities
a(y/m) = —yjm = a(a — era) — era — a2a we obtain ^/m = a — aa = -{aa - a2a)
and a G Q(\Zm), as a = a2a. Hence, m = 1[4] and TL/Q{ZL) = tZ where t € {1,2},
since TL/Q(1 + y/m)/2 = 2.

3. PROOF OF THEOREM 2 AND THEOREM 3

First we show some results which can be used for the case where 0 is a cubic
algebraic integer over a number field K. Set Irr(/J, K) := x3 + px + q and let L be
the normal closure of the extension K(/3)/K. Then, the group G{L/K) is isomorphic
to the symmetric group on three letters (respectively is cyclic of order 3) when L
^ K(0) (respectively when L — K{0)). Fix an element a in G(L/K) of order 3, then
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where 9 is any element of the field K{[i),

(1) V = rK{fi)/K{a{0)a2{0)) = 0a(0) + a(0)a2(0) + a2{0)0

and

(2) disc 08) = (08 - o0) (0 - *20) {a0 - o20)f = -4p 3 - 33g2.

Recall by Galois theory, that the field L contains three cubic extensions of K and

only one quadratic extension of K, namely K (^/disc (/?)). The field K (^/disc(/3))

is the set of elements of L which are fix under the action of the automorphism a

(respectively Recall that the set of the elements of L which are fix under the action of

a is the field K). Note also that if ft = 9 - T{6), where 6 € ZL and r € G(L/K),

then there exists a € ZL such that 0 — a - a(a) and K(a) = L. Indeed, if r is

of order 2, then r(/3) — T{6) — 9 — —/3 is a conjugate of /3 and if r = a2, then

p = 9- a2{9) =9 + a{9) - a(9 + a{9)). The equality K{a) = L is clear, since all the

cubic extensions of K in L, namely K(fi), K(o(/3)) and K{a2{P)), are not normal

over K (respectively since the only subfields of L containing K are L and K).

Let 7 := /3 - <T2(/3) . Then, 7 is of degree 6 (respectively of degree 3) over K and

where 6 = (0 - CT2/3) (a0 - 0) (CT2/3 - a0) and satisfies 62 = disc 08) (if L = K{0),

then K(y/disc(0)) = K). Hence,

3

and the next result follows.

LEMMA 4 . If (disc (/3))/36 £ Z^-, then 0 is a difference of two conjugates of an

integer of the field L.

PROOF: Prom the last equality and the relation (2), we obtain that 7/3 S ZL,

when (disc(/3))/36 € ZK- Then, the result is immediate, since (7/3) — 17(7/3)

The proof of Theorem 2 is a trivial corollary of the next two lemmas.

LEMMA 5 . Let NK/Q(P) be the norm over Q of the integer p of the field K. If

V(NK/Q(P)) = 0, then 0 is a difference of two conjugates (over K) of an integer of L.

PROOF: Note first that the algebraic integer (NK/Q(P))/(p)a(0)cr2(0) belongs to

the field K{0). By (1), we have

?m^ = NK/Q(p).
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Set NK/Q(p) = ±1 + 3*, where k € Z and ?? = ±((NK/Q(p))/(p)a(P)a2(P) - kj .

Then, TJ G ZKW, rK(p)/K(r)) = 1 and

0 = a-a(a),

where

a =

LEMMA 6 . If p/3 G ZK , then /3 is a difference of two conjugates over K of an
algebraic integer with degree ^ 18 (respective]/ with degree ^9) over K.

PROOF: Consider the polynomial

-27* + x3 + 3px - 26J,

in the two variables t and x and with coefficients in L. This polynomial is ir-
reducible and by Hubert's irreducibility Theorem [4, p. 179], there exists s 6 Z
such that the polynomial x3 + 3px — (265 + 27s) is irreducible over L. Hence, if
93 + 3p0 - (265 + 27s) = 0, then

Irr (6, L)=x3 + Zpx - (265 + 27s) = Irr(0, K(y/disc(0))),

since Irr(0,L) € K(y/d\sc(j3))[x]. Furthermore, if a = 7/3 + 5/3, then (o-(7))/3 + 0/3
is a conjugate of a over L (and a fortiori over K) and

From the relation
/9%3 P/<K 265 + 27s
V3/ 3V3/ 27

we obtain that a is a root of the polynomial

since 73 + 3p7 = 8. Hence, a is an algebraic integer provided 72/3 € ZL. In fact (as in
the proof of [1, Theorem 1]), the condition p/3 G ZK implies 72/3 G ZL. Indeed, by (2),
we have (disc (/3))/27 G ZK and from the relation 7(72 + 3p) = 6, we obtain that 72/3
is a root of the polynomial x3 + 2px2 + p2x - (disc (/3))/27 G ZK[x\. Note finally that
from the relations K{a) C K{-y,6) and i o d i s e 08)) C ^(7) = Lc L(6) = K(-y,6),
we deduce that a is of degree < 18 (respectively of degree ^ 9) over K. D
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P R O O F OF T H E O R E M 3: With the notation above and K = Q, it is clear by the
relation (2) and Lemma 5, that 0 is a difference of two conjugates of an integer of
the field L, when v(disc(/3)) = 0. Note also, if u(disc(/3)) ^ 0, then by the relation
(2), we have v(p) ^ 1 and v(disc(/3)) Js 3 . Hence, if w(disc(/3)) £ {3,4 ,5}, then
v(disc (/3)) ^ 6 and by Lemma 4, /? is a difference of two conjugates of an integer of
the field L.

Conversely (the case w(disc(/3)) — 3 will be treated separately at the end of the
proof), suppose that /3 = a — cr(a),where a € ZL and set S := ly/m, where I € Z and
m is a squarefree rational integer (respectively and set m = 1). Then,

The relation (1) together with the equality /3 = a — cr(a), yields

(3) p - 3w = u2,

where the algebraic integers w — ao(a) + a{a)a2(a) + o2{a)a and

u — a + a(a) +a2(a)

belong to the field Q(y/m), since they are fix under the action a. Next we need the
following result.

LEMMA 7 . With the notation above and if /3 = a - <r(a), where a € ZL and

satisfies (a + a(a) + <72(a))/3 € ZL, then v(disc (/3)) ^ 6.

PROOF: Let s — (a + a(a) + a2(a)) /3 . Then, a(s) = s, s G ZQ(S/^)
 a n d P

= 9 - a(8), where 6 - a - s S ZL and satisfies 6 + a{6) + o2(6) = 0. Hence,

/3 - <7/3 =. 0 - o{6) -a(e- a{9)) = -3a(6)

and v(disc(0)) ^ 6, since the algebraic integer (0CT(0)CT2(0))2 = (disc(/3))/36 is a

rational.

Let us continue the proof of Theorem 3 and suppose that v(p) ^ 1. If v(p)

= 0, then u(disc(/3)) = 0. It follows by (3) that u2/3 € ZQ^\ (respectively u2/3

e ZQ,^\ = Z, u/3 € Z and i>(disc(/3)) ^ 6, by Lemma 7. This ends the proof of

Theorem 3, since disc (/3) is a square of a rational integer). D

Assume now that m = 2,3[4] (respectively m = 1[4]). To simplify the computation
in what follows, especially when w(disc (/3)) = 3,we shall use the following lemma.

LEMMA 8 . With the notation above. Then, /? = a - cr(a) for some a 6 ZL if

and only if there exist a and b € {—1,0,1} such that

( 7 + 0 + 6(1 + ^ / 2 ) \
€ ZL I respectively such that *- ^^—'— £ ZL\.
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In this case we can choose a so that a + a(a) + a2{a) — a 4 by/m (respectively so that
a + a{a) + a2(a) = a + b(l + s/m)/2).

PROOF: Suppose that /3 = a - cr(a), where a £ ZL. Then, the algebraic number
Q = a - 7/3 belongs to the field Q(y/m), since /3 = 7/3 - (7(7/3) and 6 = a(6).
Furthermore,

36> = 6 + a{6) + a2(6) = a + a(a) 4 a2(a).

Set (as above) u = a + cr(a) + a2(a). Then, u € ZQ(J£\ and (7 + u)/3
= (7 + 30)/3 = a e ZL. Writing u = a0 + boy/m (respectively u = ao + 6o(l + y/fn)/2),
ao = a + 3ai and 60 = b + 3&i, where a0, bo,ai and b\ £ Z, and a and
b £ { —1,0, l},we obtain the first implication. The second one follows from the equali-
ties P = (7/3) —17(7/3) = (7 4- w)/3 — cr((7 4- u)/3), where u = a + by/m (respectively,
where u = a + 6(1 + y/m)/2), since a(u) = u.

Note that Lemma 8 is also true when the extension Q(/3)/Q is normal: j3 = a
— cr(a) for some a € ZQ^) if and only if one of the three algebraic numbers (7 4- u)/3,
where u e { — 1,0,1}, is an algebraic integer. At a first glance Theorem 3 seems to be
an easy corollary of Lemma 8, however using only this lemma the proof needs a non
trivial computation.

Let us end the proof of Theorem 3. From the relation ((7 + u/3) - u/3)
4 p/3((7 + u)/3 - u/Z) = (ly/m)/33, we obtain

m — x —3 " * w » v ; - — V 3 3 / 33

It follows by Lemma 8 that

«> T< "
and

3pu + u3 +
(5) 33

Set u := a + by/m (respectively u = a46(1 4 \/m)/2), where a and b € Z. Then,
the relation (4) can also be written

v(a2 + b2m) ^ 1 and v(2ab) ^ 1

(respectively v(A(2a — b) + mb2) ^ 1, and v(Ab) ^ 1, where A — 2a + b).

It follows when v(m) = 0 that v(a) ^ 1 and v(b) ^ 1 (respectively v(b) ^ 1 and

v(a) > 1). Hence, u / 3 G ZL and by Lemma 7, v(disc(/3)) ^ 6.
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Suppose now v(m) = 1 and write the relation (5)

v(a3 + Zamb2 + Zpa) ^ 3

(5.1) (respectively v(A3 + ZAmb2 + l2Ap - (b3m + 3A2b + I2bp + 8l)) ^ 3)

and

v (b3m + 36a2 + 3bp + l) ^ 3
(5.2) (respectively v(b3m + ZA2b + I2bp + 8l) ^ 3).

Then, by (5.1) we have v(a) ^ 1 (respectively v(A) ^ 1). Furthermore, by (5.2)
we obtain v(b3m) ^ 2 and v(b) ^ 1 (respectively v(b3m) ^ 2, v(b) ^ 1 and v(a) ^ 1),
when v(l) > 2. Hence, u/Z € ZL and by Lemma 7, v(disc(/3)) ^ 6.

It remains now to consider the case where v(l) — v(m) = 1 (or where v(disc (/3))
= 3). A short computation shows that the relations (5.1), (4) and v(a) ^ 1 are all
equivalent (respectively the relations (4) and v(A) ^ 1 are equivalent. Furthermore,
(5.1) together with (4) implies (5.2)).

Hence, by Lemma 8, ft = a — <r(a) for some a € ZL if and only if there exist
a and b e {-1,0,1} satisfying the relations v(a) ^ 1 and (5.2) (respectively, the
relations v(2a + b) ^ 1 and (5.1)). It follows that a = 0, b = ±1 (if b = 0, then
v(l) > 1). (Respectively, it follows that a = b = ±1 (if a = b = 0, then v(l) > 1)) and
(3 = a - a (a) where a 6 ZL if and only if one of the two relations

v(m + 3p ± I) ^ 3 (respectively v(m + 12p ± 81) ^ 3),

holds.
Note finally, if Irr (/3, Q) = z3 + 3x + 6, then disc (/3) = -33235, m = -30, I = ±6

and m+3p+Z 6 {-27, —15}. Hence, ft is a difference of two conjugates (over Q(>/-30) )
of an algebraic integer a € L with Irr(a,Q(v'-30)) = x3 - V-30X2 - 9x + v^30 (a
= 0, 6= 1 and u = ^/=:30). However, if Irr (/3, Q) = x3+3x+2, then disc (/3) = -3323,
m = - 6 , / = ±6, m + 3p + Z £ {—3,9} and ft is not a difference of two conjugates of an
integer of the field L. (Respectively, note finally that at least one of these inequalities
holds (respectively, that these inequalities does not hold) infinitely many times. Indeed,
let r be a prime rational integer greater than 3 and let n € {r, 2r, 4r} and satisfies
(respectively and does not satisfy) n = £i[9], where £i G {-1,1}. Then, v(n) = 0 and
n is not a cube of a rational integer. Set Irr (ft, Q) := x3 - n. Then, disc (ft) = -27n2,
m = - 3 , / = 3£2n, where £2 e {-1,1}, and v(m + 8el) ^ 3, where e satisfies
ez^ei = - 1 (respectively and v(m + 8el) < 3, where e € {—1,1}). This ends the proof
of Theorem 3. D
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