Trimethoprim resistant dihydrofolate reductases in normal faecal flora isolated in India

S. TAIT AND S. G. B. AMYES*

The Department of Medical Microbiology, University of Edinburgh Medical School, Teviot Place, Edinburgh, Scotland EH8 9AG

(Accepted 24 April 1994)

SUMMARY

A high incidence of resistance to trimethoprim has been shown in the normal faecal flora in a population in south India. The dihydrofolate reductase (dhfr) genes mediating transferable resistance to trimethoprim have been identified. Unusually, in this study, the dhfrV was shown to be the predominant resistance gene (dhfr V 50% of transconjugants, dhfr Ia 30%), the dhfr Ib was also detected being distinguished from the dhfrV by an oligo-probe. However, when non-transferable resistance was considered, the dhfr Ia was the most prevalent of the dhfrs identified. All those plasmids harbouring the dhfr Ia were shown to possess Tn7. All the plasmids that probed positive for the dhfrV and the dhfr Ib were shown to be associated with the integrase of the Tn21-like transposons, but 8 of the dhfrV genes were not associated with the Tn21 resolvase. The dhfrIV was shown to be present in all seven plasmids that produced low level trimethoprim-resistance. The dhfrV, first characterized in Sri Lanka, would seem to have a local distribution in this region of Asia but is distinguishable from the dhfr Ib only by the use of an oligo-probe.

INTRODUCTION

Trimethoprim. a selective inhibitor of bacterial dihydrofolate reductase (DHFR) [1]. has been widely used throughout the world in the treatment of a number of infections, for over 20 years, either alone or in combination with a sulphonamide. Despite the emergence of resistance mediated by plasmid-encoded DHFRs insensitive to the action of trimethoprim [2], resistance has remained at relatively low levels in industrialized countries [3, 4]. In developing countries, however, resistance is a growing problem, with high levels being reported in Africa. South America and Asia amongst enterobacteria [5–7], including *Salmonella* spp. [8, 9] and *Shigella* spp. [10–12]. High levels of resistance have also been reported in the normal faecal flora from populations in Africa and Asia [13–16] and in the Netherlands [17, 18].

Plasmid-encoded resistance to trimethoprim is mediated by DHFR enzymes that are insensitive to inhibition by the drug. Sixteen such enzymes have been identified in the Enterobacteriaceae [19, 20]. The nucleotide sequences of many of

* For correspondence and reprint requests.

S. TAIT AND S. G. B. AMYES

these have been determined and the types Ia [21]. Ib [22]. V [23], VI [24] and VII [25] have been shown to be closely related. The DHFR type Ia is found associated with the transposon Tn7, which integrates at a high frequency into the *Escherichia coli* chromosome, at a specific site attTn7 [26]. As a result, the type Ia is the most widespread and frequently isolated of the trimethoprim resistant DHFRs [4, 27] and has been increasingly identified in the chromosomes of trimethoprim resistant *E. coli* [28]. The type Ia has also been found, infrequently, in association with Tn21-like transposons [28, 29]. In this location it has become integrated at the recombination site contained within the integron region of the Tn21 group of transposons [29]. The type Ia is bounded by regions that are similar to integron associated sequences; however, a functional integron is not present. Other resistance genes are found at this site, perhaps indicating past integron activity [30, 31].

The DHFR types Ia, IIc, V, VII and X have been found as gene-cassettes located at the integron-associated active recombination locus of Tn21-like transposons [25, 32]. The DHFR Ib has only been characterized as part of a Tn7like transposon [33]. Despite the location as part of such a promiscuous group of transposons, the DHFR types V, VI, VII and X are far less frequently identified in trimethoprim resistant strains than the DHFR type Ia [3], and little is known of the epidemiology of the *dhfr* Ib [33]. The DHFR type IV. on the other hand, has only ever been identified in plasmids isolated from urinary pathogens in this area of India [34]. This DHFR confers only low level resistance, conferring an MIC of 4 mg/l as determined on IST agar [35]. It has, however, been shown to be inducible, under certain circumstances, that results in a much higher MIC [36, 37].

In 1990, almost universal carriage of enterobacteria resistant to ampicillin, chloramphenicol and trimethoprim was reported in south India [13] in the town of Vellore and 3 rural villages near to this town. In this present study, the nature of the resistance to trimethoprim in these strains is investigated and the genes mediating this resistance are identified.

MATERIALS AND METHODS

'Breakpoint' sensitivity tests were performed at 10 mg/l of antibiotic [38], and 50 mg/l of HgCl₂ [29], unless otherwise indicated. Minimum inhibitory concentrations were determined by doubling dilution in Isosensitest agar (Oxoid, Basingstoke, UK). Transfer of plasmids to the standard rifampicin resistant *E. coli* J62-2 was by the method of Amyes and Gould [38]. Plasmid DNA from the resulting transconjugants was prepared by the method of Takahashi and Nagano [39]. Subsequent digestion with restriction endonucleases was carried out under the conditions recommended by the manufacturers (Gibco BRL, Life Sciences, Paisley, Scotland). Plasmid DNA was separated in a 0.6% agarose gel while digests of plasmid DNA were separated in 0.8% agarose.

Plasmid DNA was transferred to Hybond C-Extra (Amersham, UK), by a modified method of Southern [40], as recommended by the manufacturer. Colony blotting was performed by the method described by Sundström and colleagues [41]. The probes for the various dhfr genes, used to identify the trimethoprim resistance mechanisms, and the transposon and integron open reading frames

 $\mathbf{248}$

Probe for	Derivation	Probe fragment	Reference
<i>dhfr</i> Ia	pFE872	<i>Нра</i> I 499 bp	21
<i>dhfr</i> Ha	pFE700	Eco RI 800 bp	42
dhfrIII	pUN972	<i>Eco</i> RI, <i>Pst</i> I 700 bp	(Gift of K. J. Towner)
dhfrIV	pUK1148	Cla I 1700 bp	43
dhfrV	pLK09	Hinc II 500 bp	43
dhfrVII	pUN1056	<i>Eco</i> RV 300 bp	44
*tnpA of Tn21	pGS150	<i>Eco</i> RI 1.25 Kb	29
†In Tn21	pRSS011	<i>Ava</i> I, <i>Hpa</i> I 1.7 Kb	29
‡In Tnĩ	$\rm pLK026$	<i>Bam</i> HI, <i>Kpn</i> I 1.29 Kb	29

Table 1. Probes used in hybridization studies, and their origin

* Resolvase gene of Tn21. †Integrase-like orf of Tn21. ‡Integrase-like orf of Tn7.

(ORFs). are as outlined in Table 1. The vectors carrying these various probes were prepared by the polyethylene glycol method described by Sambrook, Fritsch and Maniatis [45]. The probe fragments were isolated with the Geneclean (Bio101, La Jolla. CA) DNA preparation kit. The probes were labelled with biotin by nick translation (Gibco BRL. Life Sciences, Paisley, Scotland) for the preparation of probes for hybridization with plasmid blots or with dCTP[³²P] (Amersham, UK) by the random prime method (Gibco BRL, Life Sciences, Paisley, Scotland) colony hybridization.

An oligo-nucleotide probe, as characterized by Young and colleagues was used to distinguish the dhfr Ib in those plasmids that hybridized with the dhfr V gene probe. This has shown to be necessary to differentiate between these two dhfrgenes because of sequence homology [33]. The probe was labelled and detected by the ECL kit (Amersham, UK) following the manufacturer's instructions.

Hybridization wash and detection conditions for biotinylated probes, for high stringency, were as described by the manufacturer (Gibco BRL, Life Sciences, Paisley, Scotland). Colony blots were hybridized and washed under conditions of high stringency as described by Sundström and colleagues [41].

RESULTS

Resistance in wild-type strains

One hundred and four trimethoprim resistant strains were tested for resistance to other antimicrobial agents and the MIC of trimethoprim was determined in both wild-type and transconjugant strains. Rates of resistance to those antimicrobials tested are outlined in Figure 1. In total, 62 isolates were resistant to 6 or more of the agents tested. No resistance was encountered to cefotaxime (1 mg/l), ceftazidime (2 mg/l), cefuroxime (4 mg/l), gentamicin (1 mg/l), or ciprofloxacin (0.1 mg/l) in any of the organisms tested. All but 8 of the wild-type strains had MICs of > 1024 mg/l for trimethoprim.

Plasmid-mediated resistance

Thirty-six of the 104 trimethoprim resistant strains were capable of transferring this resistance to $E. \ coli \ K12 \ J62-2$. All of these donors were identified as $E. \ coli$ by the API 20E system. The antibiotic resistance profiles of the transconjugants

Fig. 1. Number of isolates resistant to other antimicrobial agents in the trimethoprim resistant strains. Tp, trimethoprim; Tc, tetracycline; Ap, ampicillin; Su, sulphamethoxazole; Sm, streptomycin; Sp, spectinomycin; Cm, chloramphenicol; $HgCl_2$, mercuric chloride; Km, kanamycin; Cp, cephaloridine.

Table 2. Resistance profiles of the trimethoprim resistant transconjugants

Resistance profile*	Transconjugant strain number
Тр	13, 91, 147, 185
Тр Тс	188
Тр Ар	166
Tp Su Sm	7, 32
Tp(L) Su Sm	179
Tp Te Cm Hg	64
Tp Te Cm Hg Ap	160
Tp Tc Cm Ap	111
Tp Su Te Sm	190
Tp Su Te Sm Ap	199
Tp(L) Su Te Sm Ap	10, 16, 34, 35, 36
Tp(L) Su Sm Ap Km	118
Tp Tc Ap Sp Sm Km	163
Tp Su Te Sm Ap	20, 120, 198
Tp Su Ap Sm Sp	217
Tp Su Tc Ap Sm Sp	6, 26, 29, 167, 208, 219
Tp Su Te Cm Sm Ap Km Cp Hg Ag	186, 2, 9, 60

* L indicates low level resistance to trimethoprim; Ag, amoxicillin/clavulanic acid.

are shown in Table 2. Twenty-nine of these 36 transconjugants demonstrated high level resistance to trimethoprim with MICs at or above 512 mg/l. Seven of the transconjugants demonstrated low level resistance to trimethoprim, the donor strains of all 7 also had low MICs of trimethoprim, all with MICs between 4 and 64 mg/l.

Seventeen different antibiotic resistance profiles in the transconjugants were found (Table 2). However, on restriction endonuclease digest analysis of the plasmids prepared from the transconjugants, 27 quite distinct patterns could be identified. Thus it appears that 27 different plasmids are responsible for trimethoprim resistance, and a number of other resistance mechanisms, in this population of Gram-negative rods from normal faecal samples.

Donor	Resistance profile	Plasmid sizes (Kb)	In1*	$tnpA^*$
13	Тр	69	+	_
91	$\hat{\mathrm{Tp}}$	46, 2	+	_
147	T_{p}	53, 13, 4	+	_
192	$\hat{\mathbf{T}_{\mathbf{p}}}$	54, 8, 3	+	_
166	Tp, Ap	64, 13, 6	+	_
7	Tp. Su, Sm	82	+	_
32	Tp, Su, Sm	74, 17, 4, 2	+	_
64	Tp. Te. Cm. Hg	80, 55	+	+
190	Tp. Su. Te, Sm	100, 8, 3	+	_
160	Tp, Te, Cm, Ap, Hg	80, 46	+	+
199	Tp, Su, Te, Sm, Ap	82	+	+
20	Tp, Su, Tc, Sm, Ap	120	+	+
198	Tp, Su, Te, Sm, Ap	52	+	+

Table 3. Characteristics of plasmids positive for the dhfr V probe

* In 1 is the probe for ORF of the putative integrase, tnp A is the probe for the resolvase of Tn21. The largest plasmid carried the dhfr in all cases.

Table 4. Characteristics of plasmids positive for the dhfrIb oligo-probe

Donor	Resistance profile	Plasmid sizes (Kb)	In1*	tnpA*
120	Tp, Su, Te, Sm, Ap	30	+	+
186	Tp, Su, Te, Cm, Sm, Ap, Cp, Hg, Km, Ag	70, 63	+	+
2	Tp. Su. Te, Cm, Sm. Ap, Cp, Hg, Km, Ag	89	+	+
9	Tp. Su. Te. Cm. Sm, Ap. Cp, Hg, Km, Ag	100	+	+
60	Tp, Su, Te, Cm, Sm, Ap, Cp, Hg, Km, Ag	108	+	+

* In *I* is the probe for ORF of the putative integrase, tnpA is the probe for the resolvase of Tn21. The largest plasmid carried the dhfr in all cases.

Hybridization with dhfr probes

When the transconjugants were hybridized with the various probes for the trimethoprim resistant DHFRs, positive results were obtained with 3 of the probes. None of the plasmids was negative for any of the probes tested, and none hybridized with more than one gene probe.

Eighteen of the plasmids hybridized with the probe for the type V DHFR (Table 3). However, 5 of these were subsequently shown to be dhfr Ib genes when the oligo-probe was used to distinguish between these 2 dhfr genes that showed close sequence homology (Table 4). These plasmids were then tested for positive hybridization with probes for the tnpA gene of Tn21 and the gene coding for the integrase associated with the integron. All those plasmids harbouring the dhfrV and dhfr Ib gene also possessed the open reading frame (ORF) of the integrase. However, 8 plasmids encoding the dhfrV did not possess the tnpA for the Tn21 transposa. This suggests the absence of the Tn21 transposon in these plasmids (Table 3).

Some of the plasmids, encoding the dhfr V gene, were shown to be very similar when their restriction endonuclease digest patterns were compared. The plasmids from strains 13, 91, 147 and 192 were shown to be very similar, although not

S. TAIT AND S. G. B. AMYES

Fig. 2. A 0.8% agarose gel of a *Bam*H1 restriction endonuclease digest of plasmids isolated from the transconjugants 13, 91, 147 and 192, harbouring the *dhfrV* gene: A. 13; B, 91; C, 147; D, 192.

identical (Fig. 2), and were counted as one group. They were, however, isolated from different sites, 1 each from 2 of the villages (13, 19) and 2 from the town of Vellore itself (147, 192). These plasmids also encoded only trimethoprim resistance out of all the antimicrobials tested. The plasmids from strains 7 and 32 also had very similar restriction endonuclease digest patterns to each other and had the same antimicrobial resistance profile (Table 2), as did the plasmids from strains 9 Table 5. Characteristics of plasmids positive for the dhfrI probe

Donor	Resistance profile	Plasmid size (Kb)
185	Тр	40
188	Tp. Te	60.85
111	Tp. Tc. Cm. Ap	77.2
6	Tp, Su, Tc, Ap, Sm, Sp	48.4
26	Tp. Su. Tc. Ap. Sm. Sp	48.4
29	Tp. Su. Tc. Ap. Sm. Sp	94
208	Tp, 8u, Tc, Ap, 8m, 8p	57, 7, 4
217	Tp, Su, Ap, Sm, Sp	35.7.4
219	Tp. Su. Tc. Ap. Sm. Sp	57.7.4
167	Tp. Su. Tc. Ap. Sm. Sp	77, 30, 2
163	Тр, Кт. Тс. Ар. 8m. 8p	84

The largest plasmid carried the *dhfr* in all cases.

Table 6. Plasmids positive for the dhfrIV probe in this study

Plasmids	Resistance profile	Plasmid size (Kb)
pUK2005 (10)	Tp. Su. Tc. Sm. Ap	65
pUK2007 (16)	Tp. Su. Tc. Sm. Ap	65
pUK2012 (34)	Tp. Su. Tc. Sm. Ap	65
pUK2013 (35)	Tp. Su. Te. Sm. Ap	65
pUK2014 (36)	Tp. Su. Te. Sm. Ap	65
pUK2019 (118)	Tp. Su. Sm. Ap. Km	52
pUK2026 (179)	Tp. Su. Sm	77

Numbers in parentheses are the original donor strains.

and 60. harbouring the dhfr Ib. Both of these plasmids were isolated from the same village.

Many of the transconjugants harbouring the dhfrV were sensitive to sulphamethoxazole (Table 3) which is usually associated with Tn21 and the integrase system of this transposon [46]. Only 3 of those plasmids that did not show hybridization with the tnpA probe were sulphamethoxazole resistant. Only 2 of the plasmids which gave positive hybridization with the tnpA gene did not carry resistance to sulphamethoxazole (Table 3).

The remaining 11 of the transconjugants, that demonstrated high level resistance to trimethoprim. all harboured the dhfr Ia gene (Table 5). All of these plasmids showed positive hybridization with the probe for the Tn7 integrase ORF (Table 5).

All the plasmids that were responsible for mediating low level resistance to trimethoprim demonstrated positive hybridization with the probe for the dhfr IV gene (Table 6). Five of these plasmids were identical in both their antibiotic resistance and restriction endonuclease digest pattern although they were again isolated from different areas.

Of those strains that did not transfer trimethoprim resistance, 27 were shown to carry the dhfr Ia gene by colony blot and hybridization (Table 7). Only four strains that did not transfer trimethoprim resistance hybridized with the probe for the dhfr V (Table 8).

 Table 7. Strains that demonstrated positive hybridization with the dhfrIa gene probe but were not capable of transferring trimethoprim resistance

Resistance profile	Strain number
Tp Su Ap Te Cm Sm/Sp Hg Km	174
Tp Su Ap Te Sm/Sp Hg Km	203
Tp Su Ap Te Cm Sm/Sp	47, 54, 110, 112, 117, 141,
	148, 152, 153, 161, 170, 193
Tp Su Ap Te Cm Km	149
Tp Su Ap Cm Sm/Sp	195
Tp Su Ap Te Cm	173
Tp Ap Tc Sm/Sp	45
Tp Su Te Sm/Sp	61, 139, 155, 172, 194, 201
Tp Su Sm/Sp	162, 171
Тр	136

 Table 8. Strains that demonstrated positive hybridization with the dhfr V gene

 probe but did not transfer trimethoprim resistance

Resistance profile	Strain number
Tp Su Ap Tc Sm	23
Tp Su Ap Tc Cm Sm Hg	37, 56, 191

DISCUSSION

Trimethoprim resistant Gram-negative rods were encountered at very high rates in the normal faecal flora in urban and rural populations in Tamil Nadu, south India [13]. Thirty-six percent of this resistance was due to transferable plasmid-mediated resistance to the drug. Along with resistance to trimethoprim, a number of other resistance determinants were co-transferred. All the transferable resistance determinants were shown to result from the presence of previously described trimethoprim resistant DHFRs. In this survey, however, the type V DHFR was marginally the most frequently isolated of the plasmid-mediated DHFRs, accounting for a third of the transferable resistance. The type Ia DHFR is usually found to be the most commonly isolated DHFR [27, 4]. In this case, only 11 of the transconjugants were shown to harbour the dhfr Ia gene.

The epidemiology of the dhfr Ib gene has not been well studied and its prevalence is not known. The probe for the dhfr V gene hybridized. under conditions of high stringency, with 5 plasmids (Table 4) that were later shown to hybridize with the oligo-probe for the dhfr Ib. This probe cannot therefore differentiate between the dhfr V and dhfr Ib and the use of this probe may mask the true extent of the dhfr Ib. The dhfr Ib has been characterized in a transposon Tn4132 that is similar to Tn7 [33]. In this study, however, the plasmids did not hybridize with the Tn7 integrase-like ORF but did hybridize with the integrase probe for Tn21 and the transposane of TN21. This may indicate the presence of the dhfr Ib on a Tn21-like transposon having been integrated to this location as part of a gene cassette, further work is underway in the characterization of these elements.

The dhfrV gene was first characterized in strains from Sri Lanka [41] and the region where these strains were collected is close to Sri Lanka. Other studies in which the dhfrV has been frequently found have also shown some association with

this part of Asia. In a study conducted in Sicily the type V DHFR was shown to be the most frequently isolated of the DHFRs in an outbreak of trimethoprim resistant *Shigella* sp. It was, however, thought that the strain had been introduced in immigrants from Sri Lanka [47]. In a study conducted in Finland, 4 or 5 *Shigella* carrying the *dhfr*V gene probably originated in Sri Lanka [48]. The DHFR type V may have originated in this area or this region may represent a focus for this resistance gene.

The dhfr Ia gene was the most common trimethoprim resistance gene in those strains that were not capable of transferring resistance. The movement of the dhfr Ia gene onto the chromosome via the action of Tn7 has been noted on previous occasions. This reflects the preferred insertion of Tn7 into the *E. coli* chromosome at the specific insertion site attTn7 [26]. Here, as in other surveys, this has resulted in an increasing identification of the dhfr Ia gene as part of the *E. coli* chromosome [28, 50]. The dhfr Ia gene accounted for 53% of the identified trimethoprim resistance mechanisms, and 36% of all trimethoprim resistant isolates. The stability conferred on the gene by insertion into the chromosomes has probably resulted in the success of the dhfr Ia gene mediated by Tn7.

The dhfrV, encoded by Tn21 has not met with the same success, although the Tn21-like group of transposons is responsible for a wide range of different resistance mechanisms [46]. The integron system associated with the Tn21-group of transposons has been responsible for the accumulation of resistance mechanisms to sulphonamides [45], β -lactams [50], aminoglycosides [51], heavy metals [52] and disinfectants [25] as well as the insertion of the dhfr genes encoding for the DHFR types IIc, V [23], VII [25], X [32]. Recently the dhfrIa has been found in Tn21 inserted as a gene-cassette that has been shown to be associated with Tn7; however, the integrase of Tn7 seems to have undergone a deletion that has rendered it inoperative [29, 32].

All of the dhfrV genes identified in this study are associated with the integrase ORF of Tn21; however, 8 showed no positive hybridization with the probe for the transposase of Tn21. This indicates the insertion of the integron into the plasmid without the presence of an intervening transposon, has had been demonstrated in the case of the dhfrII of plasmid R388 [23]. Several of these plasmids also lack resistance to the sulphonamides, that is usually found associated with the dhfrV gene [29] and integron structures in general [46]. This indicates that sulphamethoxazole resistance has been deleted or is not being expressed. Further investigation of the structures involved in the integration of the dhfrV gene will need to be performed to confirm the genetic background of trimethoprim resistance in these plasmids.

The type IV DHFR was identified in all plasmids which conferred low level resistance to trimethoprim. Five of the transconjugants showed the presence of the same 65 Kb plasmid mediating resistance to trimethoprim, sulphamethoxazole, tetracycline, ampicillin and streptomycin. The other two plasmids were distinct from each other and this group. These plasmids all showed some similarities in resistance profile when compared with those plasmids previously characterized harbouring the dhfr IV gene (Table 6). The dhfr IV gene has not been identified in other parts of the world. This may be as the result of: (1) the mechanism is restricted to this part of India; (2) failure to detect the low level of

S. TAIT AND S. G. B. AMYES

resistance demonstrated by this mechanism under normal sensitivity testing conditions; and (3) failure to detect transconjugants bearing the dhfr IV, again because of the low level of resistance demonstrated when ISTA is used. However, the unique induction mechanism of the DHFR type IV means that the actual MIC may be much higher when the enzyme has been induced prior to the sensitivity test [37].

The continued persistence of this resistance mechanism, despite the presence of ostensibly more effective resistance mechanisms, the DHFR types Ia and V, suggests some level of success for the dhfr gene for the type IV in this region. The evolution of this inducible DHFR may be a result of the conditions influencing antibiotic resistance in this region, i.e. high use and 'self-dosing' with antimicrobials available without prescription in any amount affordable to the customer [13].

Thus high rates of resistance to trimethoprim in the normal gut flora of this population are due to mechanisms previously identified in pathogenic strains. Resistance is plasmid- and transposon-mediated and integron activity seems to be associated with the dhfrV genes identified in the plasmids responsible for trimethoprim resistance. High rates of resistance have been reported in Vellore in S. flexneri and S. shigae, 84% and 88% resistance respectively, carrying transferable resistance to trimethoprim [53]. The genes identified here are capable of transfer to pathogenic strains and will constitute a reservoir of resistance which may threaten the use of trimethoprim in this area, especially in the treatment of shigellosis, typhoid and paratyphoid that are endemic in this region.

ACKNOWLEDGEMENT

We thank the Wellcome Trust for grant no. 34079/1.5 which funded this work.

REFERENCES

- 1. Burchall JJ, Hitchings GH. Inhibitor binding analysis of dihydrofolate reductases from various species. Mol Pharmacol 1965: 1: 126–36.
- 2. Amyes SGB, Smith JT. R-factor trimethoprim resistance mechanism: an insusceptible target site. Biochem Biophys Res Comm 1974: 58: 412–18.
- Amyes SGB, Towner KJ. Trimethoprim resistance: epidemiology and molecular aspects. J Med Microbiol 1990; 31: 1–19.
- Heikkilä E. Renkonen OV, Sunila R. Uurasmaa P. Huovinen P. The emergence and mechanisms of trimethoprim resistance in *Escherichia coli* isolated from out-patients in Finland. J Antimicrob Chemother 1990; 25: 275-83.
- Young H-K, Amyes SGB. Trimethoprim resistance among urinary pathogens in south India. J Antimicrob Chemother 1986: 23: 143–9.
- Urbina R. Prado V. Canelo E. Trimethoprim resistance in enterobacteria isolated in Chile. J Antimicrob Chemother 1989; 23: 143-9.
- Goldstein FW. Papadopolou B, Acar JF. The changing pattern of trimethoprim resistance in Paris, with a review of world wide experience. Rev Infect Dis: 8: 725–37.
- Solórzano F, Leaños M, Guiscarfé H. Resistancia antimicrobiana actual de Salmonella typhi. Salmonella enteriditis y Shigella spp. Bol Med Hosp Infant Mexico 1987; 44: 448–55.
- Murray BE, Alvarado T, Kim K-H, et al. Increasing resistance to trimethoprimsulphamethoxazole among isolates of *Escherichia coli* in developing countries. J Infect Dis 1985; 152: 1107-13.
- Shahid NS, Rahman MM, Haider K, Banu H, Rahman N. Changing pattern of resistant Shiga bacillus (*Shigella dysenteriae* type I) and *Shigella flexneri* in Bangladesh. J Infect Dis 1985: 152: 1114-19.

256

- 11. Jesudason MV, Joseph D, Koshi G. Transferable resistance in *Shigellae* encountered in Vellore (south India). Indian J Med Res 1989; **89**: 297-9.
- 12. Frost JA. Rowe B. Vandepitte J. Acquisition of trimethoprim resistance in epidemic strains of *Shigella dystenteriae* 1 from an epidemic in central Africa. J Hyg 1982; **94**: 163–72.
- 13. Amyes SGB. Tait S. Thomson CJ. et al. The incidence of antibiotic resistance in aerobic faecal flora in south India. J Antimicrob Chemother 1992; 29: 415-25.
- Shanahan PMA, Wylie BA, Adrian PV, Koornhof HJ, Thomson CJ, Amyes SGB. The prevalence of antimicrobial resistance in human faecal flora in south Africa. Epidemiol Infect 1993; 111: 221-8.
- Shears P. Saliman G. Hart CA. Occurrence of multiple resistance and R-plasmids in Enterobacteriaceae isolated from children in the Sudan. Epidemiol Infect 1988; 100: 73-81.
- Lamikanra A. Ndep RB. Trimethoprim resistance in urinary tract pathogens in two Nigerian hospitals. J Antimicrob Chemother 1989: 23: 151–4.
- Bonten M. Stobberingh E. Philips J. Houben A. High prevalence of antibiotic resistant *Escherichia coli* in faecal samples in students in the south-east of the Netherlands. J Antimicrob Chemother 1990; 26: 585–92.
- Bonten M. Stobberingh E. Philips J. Houben A. Antibiotic resistance of *Escherichia coli* in faecal samples of healthy people in two different areas in an industrialized country. Infection 1992: 20: 258–62.
- Amyes SGB, Towner KJ, Young H-K, Classification of dihydrofolate reductases conferring trimethoprim resistance. J Med Microbiol 1992: 36: 1–3.
- 20. Singh KV. Reves R. Pickering LK. Murray BE. Identification by DNA sequence analysis of a new plasmid-encoded trimethoprim resistance gene in faecal *Escherichia coli* isolates from children in day care-centres. Antimicrob Agents Chemother 1992; **36**: 1720–6.
- Fling ME. Richards C. The nucleotide sequence of the trimethoprim-resistant dihydrofolate reductase gene harboured by Tn7. Nuc Acid Res 1983; 11: 5147-58.
- Young H-K, Amyes SGB. Characterization of a new transposon-mediated trimethoprimresistant dihydrofolate reductase. Biochem Pharmacol 1985: 34: 4334–7.
- Sundström L. Radström P. Swedberg G. Sköld O. Site-specific recombination promotes linkage between trimethoprim and sulphonamide resistance genes. Sequence characterization of *dhfrV* and *sul1* and the recombination active locus of Tn21. Mol Gen Genet 1988: 213: 191–201.
- Wylie BA, Koornhof HJ, Nucleotide sequence of the dihydrofolate type VI. J Med Microbiol 1991: 35: 214–8.
- Sundström L. Swedberg G. Sköld O. Characterization of transposon Tn5086, carrying the site-specifically inserted gene *dhfr* VII mediated trimethoprim resistance. J Bacteriol 1993; 175: 1796-805.
- Lichtenstein C. Brenner S. Unique insertion site of Tn7 in the *Escherichia coli* chromosome. Nature 1982; 297: 601-3.
- Towner KJ, Carter GI, Young H-K, Amyes SGB. Detection of novel trimethoprim resistance determinants in the United Kingdom using biotin-labelled DNA probes. Epidemiol Infect 1991: 106: 63-70.
- Hekkilä E, Sundström L, Skurnik M, Huovinen P, Analysis and localization of the type I trimethoprim resistance gene from *Escherichia coli* isolated in Finland. Antimicrob Agents (hemother 1991: 35: 1562–9.
- Sundström L. Sköld O. The *dhfrI* trimethoprim-resistance gene of Tn7 can be found at specific sites in other genetic elements. Antimicrob Agents Chemother 1990; 34: 642–50.
- Tietze E. Brevet J. Tschapë H. Relationships amongst the streptothricin resistance transposons Tn1825 and Tn1826 and the trimethoprim resistance transposon Tn7. Plasmid 1987: 18: 246-9.
- Sundström L. Roy PH. Sköld O. Site-specific insertion of three structural gene-cassettes intransposon Tn7. J Bacteriol 1991: 173: 3025–8.
- Parsons Y, Hall RM, Stokes HW, A new trimethoprim resistance gene *dhfrX* in the In7 integron of pDGO100. Antimicrob Agents Chemother 1991; 35: 2536-9.
- Young H-K, Qumsieh MJ, McIntosh ML, Nucleotide sequence and genetic analysis of the type 1b trimethoprim resistant. Tm4132-encoded dihydrofolate reductase. J Antimicrob Chemother. In press.

- 34. Young H-K, Amyes SGB. A new mechanism of plasmid-mediated trimethoprim resistance. Characterization of an inducible dihydrofolate reductase. J Biol Chem 1986; **261**: 2503-5.
- 35. Young H-K, Jesudason MV, Koshi G, Amyes SGB. Unusual expression of new low-level trimethoprim-resistance plasmids. J Clin Microbiol 1986; 24: 61-4.
- Thomson CJ, Young H-K, Amyes SGB. The role of thymine starvation in the expression of the type IV plasmid-encoded trimethoprim-resistant dihydrofolate reductase. J Med Microbiol 1993; 32: 250–5.
- 37. Tait S. Trimethoprim resistance in normal flora from India [Thesis]. Edinburgh, UK: University of Edinburgh, 1993.
- Amyes SGB, Gould I. Trimethoprim resistance plasmids. Annales de Microbiologie 1984: 135B: 177-86.
- 39. Takahashi S, Nagano Y. Rapid procedure for the isolation of plasmid DNA and application to epidemiological analysis. J Clin Microbiol 1984: 20: 608-13.
- 40. Southern E. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 1976; **98**: 503-17.
- Sundström L, Vinayagamoorthy T, Sköld O. Novel type of plasmid-borne trimethoprim resistance. Antimicrob Agents Chemother 1987: 31: 60-6.
- 42. Mayer KH, Fling ME, Hopkins JD, O'Brien JF. Trimethoprim resistance in multiple genera of Enterobacteriaceae at a US hospital: spread of the type II dihydrofolate reductase by a single plasmid. J Infect Dis 1985; **151**: 783-9.
- Towner KJ, Young H-K. Amyes SGB. Biotinylated probes for trimethoprim-resistant dihydrofolate reductases type IV and V. J Antimicrob Chemother 1988; 22: 285-91.
- 44. Towner KJ, Carter GI. Cloning of the type VII trimethoprim-resistant dihydrofolate reductase and identification of a specific DNA probe. FEMS Microbiol Letts 1990; 58: 19-22.
- 45. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: A laboratory manual, 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, 1984.
- 46. Bissonnete L, Roy PH. Characterization of $\ln\theta$ of *Pseudomonas aeruginosa* plasmid pSV1 an ancestor of integrons of multiresistance plasmids and transposons of gram-negative bacteria. J Bacteriol 1992: **174**: 1228–57.
- Agodi A, Jones C, Threfall EJ, D'Angelo M, Marranzano M. Molecular characterization of trimethoprim resistance in *Shigella sonnei* in Sicily. Epidemiol Infect 1990; 105: 29-40.
- Hekkilä E, Siitonen A, Jahkla M, Fling ME, Sundström L, Huovinen P. Increase of trimethoprim resistance among *Shigella* species. 1975–1988: analysis of resistance mechanisms. J Infect Dis: 161: 1242–8.
- Steen R, Sköld O. Plasmid-borne or chromosomally mediated resistance by Tn7 is the most common response to the ubiquitous use of trimethoprim. Antimicrob Agent Chemother 1985; 27: 933-7.
- 50. Lafond M, Couture F, Vézina G, Lavesque RC. Evolutionary aspects in multiresistance β -lactamase transposons. J Bacteriol 1989; 171: 6423–9.
- Wohileben W, Arnold W, Bissonnette L. et al. On the evolution of the Tn21-like transposons: Sequence analysis of the gene (aac1) for the gentamicin acetyltransferase-3-1 [AAC(3)-1] another member of the Tn21-based expression cassette. Mol Gen Genet 1989: 217: 202-8.
- 52. Brown NI, Winnie JN, Seiff M, Silver S. The nucleotide sequence of the mercuric resistance operons of plasmid R100 and transposon Tn501. further evidence for mer genes which enhance the mercuric ion detoxification system. Mol Gen Genet 1986; 202: 143-51.
- 53. Jesudason MV, Joseph G, Koshi G. Transferable trimethoprim resistance in *Shigellae* encountered in Vellore south India. Indian J Med Res 1989: **89**: 297-9.

258