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Abstract

We construct a family of ideals representing ideal classes of order two in quadratic number fields and
show that relations between their ideal classes are governed by certain cyclic quartic extensions of the
rationals.
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1. Introduction

Let m = p1 × pt be a product of pairwise distinct primes p j ≡ 1 mod 4. Then m can be
written as a sum of two squares, say m = a2

j + 4b2
j , in 2t−1 essentially different ways

(that is, neglecting the signs of a j and b j).
We define ideals a j = (2b j +

√
m, a j) in the ring of integers of the quadratic number

field K = Q(
√

m). Since

a
2
j = ((2b j +

√
m)2, a j(2b j +

√
m), a2

j)

= ((2b j +
√

m)2, a j(2b j +
√

m), m − 4b2
j)

= (2b j +
√

m)(2b j +
√

m, a j, 2b j −
√

m)

= (2b j +
√

m)(4b j, a j, 2b j −
√

m) = (2b j +
√

m)

is principal, the ideals a j have order dividing 2.
The ‘canonical’ ideals generating classes of order dividing 2 are the products of

ramified prime ideals. Letting p j denote the prime ideal above the prime p j, we have
p2

j = (p j). Thus each of the 2t ideals

be = p
e1
1 · p

et
t , e = (e1, . . . , et) ∈ Ft

2,
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generates a class of order dividing 2. Among these ideal classes there are two trivial
relations coming from the fact that the ideals (1) =

∏
p0

j and (
√

m) =
∏
p1

j are principal
(in the usual sense; the ideal class of (

√
m) is principal in the strict sense if and only if

the fundamental unit ε of K has norm −1).
The following result is well known.

P 1. There is a nontrivial relation among the ideal classes of the ideals be if
and only of the norm of the fundamental unit ε of K is +1.

P. If
∏
p

e j

j = (α) is principal, then (α)2 =
∏

p
e j

j , hence η = α2/
∏

p
e j

j is a unit with

norm +1. If η is a square, then so is
∏

p
e j

j , which is only possible for e = (0, . . . , 0) and
e = (1, . . . , 1). Thus if there is a nontrivial relation among the classes of the ramified
ideals, then there is a nonsquare unit with positive norm; this implies that Nε = +1.

Conversely, if Nε = +1, then ε = α1−σ for some α ∈ OK by Hilbert’s theorem 90,
where σ is the nontrivial automorphism of K/Q. Since (α) is fixed by the Galois group
of K/Q, the ideal (α) is a product of a rational integer and a ramified ideal. Cancelling
the rational factors, we see that we may assume that (α) is a product of ramified prime
ideals. The equations α = 1 and α =

√
m would imply that ε = ±1; thus the relation

(α) =
∏
p

e j

j is necessarily nontrivial. �

The goal of this paper is to clarify the relations between the ideals a j and be. Our
main result is the following

T 2. Let K = Q(
√

m) be a quadratic number field, where m = p1 × pt is a
product of primes p j ≡ 1 mod 4, and denote the fundamental unit of K by ε.

(a) If Nε = −1, then the ideal classes [a j] are pairwise distinct and represent the
2t−1 classes of order dividing 2 in Cl(K). Each ideal a j is equivalent to a unique
ramified ideal be. In particular, exactly one of the a j is principal; if a j = (α), then

η =
2b j +

√
m

α2

is a unit with norm −1 (equal to ε if α is chosen suitably).
(b) If Nε = +1, then there is a subgroup C with index 2 in the group Cl(K)[2] of

ideal classes of order dividing 2 such that each class in C is represented by two
ramified ideals be (thus C is the group of strongly ambiguous ideal classes in K).
Each class in Cl(K)[2] \C is represented by two ideals a j.

The proof of Theorem 2 uses certain quadratic extensions of Q(
√

m), namely cyclic
quartic subextensions of the field Q(ζm) of mth roots of unity. It is perhaps surprising
that relations in the class group of K are governed by ramified extensions of K;
note, however, that if K1 and K2 are two cyclic quartic extensions as above, then the
compositum K1K2 contains a third quadratic extension K3/K, and that this extension
is unramified: in fact, it is part of the genus class field of K.
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Here is an example. Let m = 5 × 13 × 29 = 1885; then m = 62 + 432 = 112 +

422 = 212 + 382 = 272 + 342, and we consider the ideals a1 = (6 +
√

m, 43), a2 = (42 +
√

m, 11), a3 = (38 +
√

m, 21), a4 = (34 +
√

m, 27). Since Nε = +1, none of these ideals
is principal. In fact we have a2 ∼ a3 and a1 ∼ a4. If p denotes the ideal with norm 5,
then the ideal classes of order two are represented by p, a1 and a2 ∼ a1p.

The ramified prime ideal above 29 is principal (in fact, N(87 + 2
√

1885) = 29),
those above 5 and 13 are not. In particular,

√
ε = 2

√
65 + 3

√
29.

2. Cyclic quartic extensions

Let m = a2 + 4b2 be a squarefree odd integer; then it is the discriminant of the
quadratic number field k = Q(

√
m). In the following, we will always assume that

m = p1 × pt, where the p j ≡ 1 mod 4 are prime numbers.
Some basic facts concerning the description of abelian extensions of the rationals

via characters can be found in [2]. The field of mth roots of unity has Galois group
isomorphic to (Z/mZ)× '

∏
(Z/p jZ)×, hence has G = (Z/4Z)t as a quotient. This

group G is the Galois group of the compositum F of the cyclic quartic extensions
inside the fieldsQ(ζp j ). The character group X = X(G) is generated by quartic Dirichlet
characters χ j = χp j , and the cyclic quartic subfields of L (and of Q(ζm)) correspond to
cyclic subgroups of X with order four.

Suppose that χ is a character generating such a cyclic group of order four, and let
L/Q be the corresponding cyclic quartic extension. Then χ =

∏
χ

e j

j with 0 ≤ e j < 4.
The order of χ is four if and only if at least one exponent e j is odd. By the conductor-
discriminant formula, the field L has discriminant m3 if and only if all the e j are
odd. Thus these characters correspond to vectors e = (e1, . . . , et) with e j ∈ {1, 3}. The
cyclic quartic extensions L/Q inside F with discriminant m3 correspond to subgroups
generated by such characters, and since each subgroup contains two such characters
(χ and χ3), we have following proposition.

P 3. Let m = p1 × pt be a product of distinct primes p j ≡ 1 mod 4. Then
there are 2t−1 cyclic quartic extensions L/Q with conductor m and discriminant m3.

These extensions can be constructed explicitly as the following proposition.

P 4. Let m = p1 × pt be a product of pairwise distinct primes p ≡ 1 mod 4.
Then there exist 2t−1 ways of writing m = a2

j + 4b2
j as a sum of two squares (up to sign).

For each j, the extensions

L = Q
(√

m + 2b j
√

m
)

are the 2t−1 different cyclic quartic extension of Q with discriminant m3.

We use this result, which we will prove below, in the following proof.

P  T 2. Assume first that Nε = −1. We have to show that the classes of
the ideals a j = (2b j +

√
m, a j) are pairwise distinct.
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Assume to the contrary that a j ∼ ak; then there exists some ξ ∈ K with a j = ξak.
Squaring gives the equation (2b j +

√
m) = ξ2(2bk +

√
m) of ideals, hence there exists a

unit η ∈ O×K such that 2b j +
√

m = ηξ2(2bk +
√

m). This means that the square roots
of (2b j +

√
m)
√

m and η(2bk +
√

m)
√

m must generate the same extension. Since

Q(
√

(2b j +
√

m)
√

m) is a cyclic quartic extension inside Q(ζm), so is the extension on
the right-hand side. But this implies that Nη = +1, and the fact that Nε = −1 implies
that η = ±ε2n. Subsuming the unit into ξ shows that we may assume that η = ±1. If
η = −1, the extension on the right-hand side will ramify at 2, and this finally shows

that η is a square. Thus we have Q(
√

(2b j +
√

m)
√

m) = Q(
√

(2bk +
√

m)
√

m) and this
can only hold if j = k.

We have shown that exactly one ideal a j is principal, say a j = (α). Since (α)2 = a2j =

(2b j +
√

m) there exists a unit η such that ηα2 = 2b j +
√

m. Taking the norm shows that
Nη = −1 as claimed.

If Nε = +1, on the other hand, we first show that none of the ideals a j is equivalent
to a ramified ideal be. In fact, if a j = ξbe for some ξ ∈ K×, then squaring yields
2b j +

√
m = ηξ2m1 for m1 =

∏
p

e j

j and some unit η. Taking norms shows that Nη = −1,
which contradicts our assumptions.

Next we show that among the classes of a j, each ideal class occurs twice. In
fact, if a j ∼ ak, say a j = ξak, then 2b j +

√
m = ηξ2(2bk +

√
m). Up to squares, η is

equal to one of the units ±1, ±ε. As above, η = −1 and η = −ε are impossible,

since the places at infinity ramify in the extension K(
√
η(2bk +

√
m)
√

m)/K but not

in K(
√

(2b j +
√

m)
√

m)/K. Thus either η = 1 and j = k, or η = ε.

Thus each a j is equivalent to at most one other ak. Since there are 2t−1 ideals a j,
which are distributed among the 2t−1 ideal classes of order two in Cl(K)[2] \C, it
follows that each a j is equivalent to exactly one other ak as claimed. �

3. Generators of cyclic quartic extensions

In this section we will give a proof of Proposition 4.

Kummer generators over Q(i). Cyclic quartic extensions L/Q become Kummer
extensions overQ′ = Q(i): with L′ = L(i) we have L′ = Q′( 4

√
α) for some α ∈ Q(i). Such

an extension L′ will be normal over Q if and only if α1−σ = α2
σ is a square in Q′, where

σ is the nontrivial automorphism of Q′/Q, and will be abelian over Q if and only if σ
acts on ασ as on a fourth root of unity, that is, if and only if ασσ = α−1

σ .
Since ασ+1

σ = 1, Hilbert’s theorem 90 implies that ασ = µσ−1 = µ/µ for some
µ ∈ Z[i]. Thus α1−σ = (µ/µ)2. This equation is solved by α = µµ3

= mµ2, where m = µµ
is a positive integer. Galois theory actually shows that this is the only solution up to
multiplying α by some nonzero rational number.

We claim that α can be chosen in such a way that 2 is unramified in L′/Q′.
Since k′ = Q′(

√
α) = Q′(

√
m), the prime above 2 does not ramify in the quadratic
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subextension k′/Q′. In order for 2 to be unramified in L′/k′ we have to make sure
that
√
α = µ

√
m ≡ µ

√
m mod 4 is congruent to a square modulo 4 in k′ (see [1] for the

decomposition law in quadratic and, more generally, Kummer extensions of prime
degree). If we write µ = a + 2bi, then µ ≡ ±1 + 2i mod 4 if m ≡ 5 mod 8, hence(

±1 + 2i + i
√

m
1 + i

)2

≡ 2 + (±1 + 2i)
√

m ≡ (∓1 + 2i)
√

m mod 4

since 2 ≡ 2
√

m mod 4. Similarly, we have µ ≡ ±1 mod 4 if m ≡ 1 mod 8, hence(
±1 + i

√
m

1 + i

)2

≡
√

m ≡ µ
√

m mod 4.

Thus 2 is unramified in L′/k′ if we choose µ ≡ 1 mod 2.
We have proved the following lemma.

L 5. If L/Q is a cyclic quartic extension with conductor m, then there exist
integers a, b such that L′ = Q′( 4

√
α) for α = µµ3, where µ = a + 2bi ∈ Z[i] and m =

a2 + 4b2. Replacing a by −a or b by −b does not change the extension.

Kummer generators over Q. Let L′ = Q′( 4
√
α) be a Kummer extension of degree

four over Q′ = Q(i), and assume that α = µµ3 for some µ = a + 2bi ∈ Z[i]. Set β = 4
√
α;

we claim that β + β′ is an element of Q(
√

m), where m = µµ = a2 + 4b2. In fact,
(β + β′)2 =

√
m(µ + µ) + 2m = 2m + 2a

√
m. This implies that L′ contains a quartic

subextension L = Q(
√

2m + 2a
√

m).

The following lemma shows that L is also generated by
√

m + 2b
√

m.

L 6. Assume that Ax2 − By2 −Cz2 = 0. Then

2(x
√

A + y
√

B)(x
√

A + z
√

C) = (x
√

A + y
√

B + z
√

C)2. (1)

P. We have

(x
√

A + y
√

B + z
√

C)2 = Ax2 + By2 + Cz2 + 2xy
√

AB + 2xz
√

AC + 2yz
√

BC

= 2(Ax2 + xy
√

AB + xz
√

AC + yz
√

BC)

= 2(x
√

A + y
√

B)(x
√

A + z
√

C)

as claimed. �

Since m − a2 − 4b2 = 0, the lemma shows that 2(
√

m + a)(
√

m + 2b) is a square in
K = Q(

√
m), hence 2b

√
m + m and 2m + 2a

√
m generate the same quadratic extension

of K. This finishes the proof of Proposition 4.
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