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1. Tchebycheff proposed the problem of finding n + 1 constants 
A, xi, X2, . . • , xn ( — 1 < Xi < X2 < . . . < xn < +1) such that the formula 

a) 
/»1 n 

f{x)dx = A^f(pCi) 

is exact for all algebraic polynomials of degree < n . In this case it is clear that 
A = 2/n. Later S. Bernstein (1) proved that for n > 10 not all the x / s can 
be real. For a history of the problem and for more references see Natanson (4). 
However, we know that for suitable A u the formula 

(2) f /(*)<& = IU«/(E«) 
« / - l i=l 

is exact for all polynomials of degree <2w — 1 and that all the £/s are real. 
Indeed the £/s are the zeros of the Legendre polynomials Pn(x) of degree n and 
all the A / s are non-negative. 

Thus one observes that if one determines n + 1 constants as in the Tcheby­
cheff case, there exists a number no (in this case n0 = 10) such that not all 
the Xî s are real for n > n0. However, if we allow ourselves more freedom, as 
in the Gauss quadrature case of formula (2), there is no number n0 such that 
for n > n0 some of the £/s must become imaginary, since in this case all the 
£/s turn out to be real and lie in [ — 1, 1]. 

Two questions arise naturally in this connection. We formulate them as 
follows : 

PROBLEM 1. Given a fixed integer k, we wish to determine n + k + 1 (w>& + 2) 
constants Auyt(i = 1, 2, . . . , &), Xj(j = 1, 2, . . . , n — k), and B so that the 
formula 

(3) f f(x)dx = EAtf(yt) + B^f(Xj) 

is exact for all polynomials of degree <w + k. We require the yt's and x/s to be 
in [ — 1, 1]. Does there exist a number no such that for n > w0 the formula (3) is 
no longer valid? 

PROBLEM 2. If for every n, the formula (3) is only required to be valid for all 
polynomials of degree m = m(n) < n, what is the order of m(n)l 

The object of this paper is to show that in Problem 2, m{n) = 0(\/n), 
whence it is clear that the answer to Problem 1 is in the affirmative. 
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When n = k or k + 1, Problem 1 has a negative answer as is seen by the 
Gauss quadrature formula. For k = 0, the answer to Problem 1 is known and 
is due to Bernstein. But Problem 2 does not seem to have been formulated 
even for k = 0. 

If k = 1, one can determine the constants in (3) easily when n = 2 or 3. 
When n = 2, one has the system of equations 

A + B = 2 , 
Ayi + £xi = 0, 

Ayf + BxJ = | , 
Ay!* + Bx^ = 0, 

which have the solution A = B = 1, Xi = —yi = 1/V3. Also when k = 1, 
w = 3, we have the system of equations 

A +2B = 2, 
Ay! + B(x! + x2) = 0, 

,4;yi2 + £(*i2 + *22) = | , 
AyJ + B(x!* + xf) = 0 , 
,4;yi4 + £(*i 4 + *24) = f , 

which have a solution, viz. ^i = 0, Xi = — x2 = \/f, A = f, ^ = f. 
For larger values of n, the equations become very cumbersome to handle. 

2. We shall prove the following: 

THEOREM 1. k being a fixed integer and n a large integer, if the formula (3) 
is exact for all polynomials of degree < m — m(n) < n for real xu yu A u and B 
with xuyiin [ — 1, 1], then m < ck \/n where ck depends on k only. 

A consequence of Theorem 1 is the following result. 

THEOREM 2. There exists an integer nG such that for n > n0 no formula (3) can 
be valid for every polynomial f (x) of degree <?z + k with real 

yu j2,..., yk, xi, x 2 , . . . , xn-k 

in [ - 1 , 1 ] . 

We assume in our proof of Theorem 1 that the xt and yt are in [ — 1,1], 
but we can also prove it without assuming this. It suffices to assume that they 
are real. The proof of this stronger statement follows the same lines but is a 
bit more complicated. 

For the proof of Theorem 1, we need the following lemmas. 

LEMMA 1. (2, p. 529). For the fundamental polynomials lkn(x) of Lagrange 
interpolation formed upon any n points Xi < x2 < . . . < xn, we have 

(4) lkn(x) + h+l,n(x) > 1 

for xk < x < xk+i. 
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I t follows from this lemma that for every x0 with xk < x0 < xk+i, we have 

(5) either lkn(x0) > | or h+i,n(xo) > h 

From a theorem of Fejér (3), we know that when fi, £2l . . . , frc are the 
Tchebycheff abscissas (zeros of rw(x) = cos w0, cos 0 = x), we have 

(6) IX2(*)<2 
whence 

(7) |/™(x)| < V 2 (i = 1, 2, . . . , n; - 1 < x < 1). 

LEMMA 2. Giz;ew aw integer m sufficiently large and points xo, yi, y 2, . . . , y H 
in [ — 1 , 1], such that 

xo = 1 — Ci/m2, |x0 — yt\ > c2/m
2 (i = 1, 2, . . . , &), 

Ci, c2 being some positive constants independent of m, /Aere exis£ constants c3, c4 

depending on ci, c%, and k, and a polynomial Pm(x) of degree <ra, with the 
following properties: 

(i) 0 < Pm{x) < of for — 1 < x < 1, a independent of m, 
(ii) Pm(x0) = 1, 

(iii) PmCyi) = 0, i = 1,2, . . . , * , 
(iv) Pm(x) < i if |x0 — x| > c3/m2, 

and 

(v) j'PmC*: )dx < c±/m2. 

Proof. I t is enough to prove the result for k = 1. For if PM,i(x) is a poly­
nomial of degree M = [m/k] with properties (ii), (iv), and (v) and with 
PM,i(ji) = 0 and 0 < PM,iipc) < a: for — 1 < x < 1 instead of (i) and (iii), 
then we consider the polynomial 

k 

p(x) =Y\PMM) 

which is of degree <m. It is clear that P(x) possesses properties (i)-(iv), and 
since PM,Î(X) (2 = 1, 2, . . . , &) are non-negative, we have 

(8) f P(x)= ( f[PM,((x)dx 

k-1 s*l 

< n max PM,i(x) PMAX)<IX 

< C5/M
2 < C6/m2. 

We may therefore take k = 1 in the lemma. Set 

(9) Pm(x) = C7 ( ^ f l 1 ^ 2 &»(*))4, 
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where lpm(x) is the fundamental polynomial of Lagrange interpolation on 
Tchebycheff abscissas ( — 1 < £w < £w_i < . . . £1 < 1) given by 

£j = COS 
2i 

Put £o = 1 and £m+i = — 1. Then 

(10) lpm(x) --

«•, 3 = 1.2,, 

•L m\X )  

, m. 

[X Çp) 1 m \qp) 

We shall show that Pm{x) is the polynomial required. Since x0 = 1 — Ci/m2, 
we may suppose that %p+i < x0 < %p for some finite p, p independent of m. 
By Lemma 1 and the remark following it, either lpm(xo) > J or lp+i,m(xo) > J. 
Let lpm(x0) > J, to be precise. Using (7), we can fix a constant C% < 4 such 
that 

(ID -Pm(*o) = C8 (lpm(Xo)) 

Thus Pm{x) satisfies (ii) and (iii). To prove that Pm(x) satisfies (i) and (iv), 
we observe that if \x — yi\ < \x0 — yi\, we have 

(12) Pm(x) < Cs(lpm(x)) < 16. 

If \x — yi\ > \xo — yi\ we shall still show that Pm(x) is bounded. For if 
£i+i < yi < £*, then from (10), we have for £s+i < x < £s, the inequality 

1 
(13) \km(x)\ < 

m\£s - iv\ 
V ( i &2) 

sin 
2p 

2m 

2ra sin — 7T 
I 2ra I 

sin 
s + p 

< 
C9 

2m 
(s - pf 

Also for £s+i < x < £s, we have 

(14) 
(*o — yi) 

= Cn-54 . 

Thus we have for |x — yi\ > \x0 — yi|, 

(15) -P»(«) < 41 
Cus4 

< 
Ci 

We can now prove part (iv) of the lemma. Namely, the constant C3 can be 
taken so large that for all x such that \x0 — x\ > C^/m2 inequality (15) will 
hold, and with such a large 5 that the right-hand member of (15) will be < ^ . 
Also, combining (15) and (12) we prove part (i) of the lemma with 
a = max(16, C\%). 
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To prove (v) we observe that 

I = j Pm(x)dx = h+ h+ h+ h 

where 

P-i /Us S*kp 

^ i = 2 I Pm(x)dx, 12 = I Pm(x)dx, 
s=0 •/ |s +i «/ £p +1 

/s = S I Pm(x)dx1 74 = S I Pm{x)dx. 
s=p+l *^£s+i s=so *^£s+i 

Here 50 is the largest value of 5 for which |£s — yi\ < |x0 — 3>i|. Since 

IS, - É.+i| = cos-
25 1 2 5 + 1 

7T — COS -
2m 2m 

we have, using the definition (9) of Pm(x), 

P—1 I* y 1 / 1 >- \ 2 

1=o (̂  - £) (C3/w ) 

< 

< 

C3
2"'m2 t-0(^-£) 

/ . 2t + l V 

r p-l] 

w s y 5 
m2h (s -p)[ 

^ 2 m 

Similarly, 

r s r V î s — £s+i[ ^ Ç18 
-*3 ^ * W / ^ / , x8 ^ 2 » 

*^+i (̂  - p) m 
and 

I4 <, C7 2 ^ /P _ ^ 8 • / N2" ^ 2 2L, (s - £) (xo - yiY m ~ 0 (5 - p) 
K < 

C2 

Combining all these estimates for Ix, 72, Iz, and 74, we see at once that Property 
(iv) is verified. This completes the proof of Lemma 2. 

LEMMA 3. If Qm(x) is a polynomial of degree m, non-negative in — 1 < x < 1, 
and if Qm(xo) = 1 for some x0in [ — 1 , 1], then 

J Qm{x)dx > — 
2mr ' 

This is an immediate consequence of Bernstein's inequality regarding 
derivatives of a polynomial of degree m. 
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3. Proof of Theorem 1. We shall show that if we allow m > Mt where 
M = [a\/n], a and t being sufficiently large constants, we arrive at a 
contradiction. 

Taking/(x) to be a polynomial 

-P*(*) = II (* - Ji)\ 
i=i 

we see at once from (3) that B > 0. 
Consider now the k + 1 intervals 

O - f > 1 - i T ^ ) ' *=1.2,...,*+1, 
where C is sufficiently large. Denote the ith interval by 7 t . Then there is at 
least one of the intervals, Ij (say), which is free of the k points yit y2, . . . , yk. 
Denote the middle half of Ij by / ' , so that V is 

K 4M2 C ' 1 4M2 V* 

We consider now two possibilities : 
(i) there is no Xi in I', 

(ii) there is at least one xt in / ' . 
In case (i), we take x0 to be the middle point of V. Then one can easily see 
that there exist constants d and C2 such that 

xo = 1 - d/M2 and \x0 - yt\ > C2/M
2 for i = 1, 2, . . . , k. 

Then by Lemma 2, there exists a non-negative polynomial PM{x) of degree 
M which satisfies the conditions (i)-(v) of Lemma 2. By the quadrature 
formula (3), we have 

s*l n—Jc 

PM{x)dx = B £ Pu(Xi) < M2' 

where the inequality follows from Lemma 2, (v). 
Since P ¥ (x 0 ) = 1, we have by Lemma 3 

f_iPM(,x)dx>^-2, 

so that for a suitable constant X between C4 and J, we have 

n—k -x 

Again using (3) and Property (iv) of Lemma 2, we have 

f (PM(x))'dx = 3 £ (Pu(xt))' < B £ PM(xt)(\)>-\ 
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while Lemma 3 gives 

J_i(PM(x))tdx>^y; 
whence we have 

2M2t2 M2 

which is impossible for t sufficiently large. Thus we cannot have case (i). Thus 
there is at least one xt (say Xi) in I', and there exist constants d and C2 such 
that 

xi = 1 - Cx/M2 and |xx - yt\ > C2/M
2, i = 1, 2, . . . , k. 

Then there exists a polynomial P M(x) of Lemma 2. As in case (i), we have 

PM(x)dx = B X) PM(XÙ < Jp . 

Since by Property (ii) of Lemma 2, PM{xi) = 1, we have 

B < C4/M
2 < C,/a2n (since M = [a v V l ) . 

However, taking 

/(*) = p2,(x) = n (̂  - ^o2 

in (3), we have \P2k(x)\ < 22fc in ( - 1 , 1), so that 

<** = f P2,(x)^x = / f P2fc(x0 < 4 4 - (» - ^)22Â: < %22A-, 
•/—1 j=i a ft a 

which is impossible if a > (C4 22k/ak)
1. 

This contradiction completes the proof of the theorem. 

4. By a modification of our method we can show that not all the x/s can be 
real if the quadrature formula is to hold. We do not know if the order of m 
given by Theorem 1 is the best possible. I t would be interesting to find a 
numerical value for the n0 whose existence is claimed in Theorem 2. Another 
interesting problem which calls for attention is the study of the modified 
Tchebycheff quadrature problem when some weight-function is used in formula 
(3). I t would also be interesting to inquire into the nature of n0 as a function 
of*. 
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