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This paper presents a numerical investigation of the turbulence transition phenomenon
in the wake of wall-mounted prisms. Large-eddy simulations are performed at Re =
1 × 103−5 × 103 for prisms with a range of aspect ratio (height to width) from 0.25
to 1.5, and depth ratios (length to width) between 1 and 4. The results show that the
wake irregularity is enhanced with increasing depth ratio, evidenced by higher turbulent
kinetic energy (≈90 %) near the leading edge, and the onset of irregular, unsteady vortex
shedding. This is attributed to interactions between Kelvin–Helmholtz instability (KHI) of
the shear layer and large-scale vortex shedding, and it is induced by an unsteady shear
layer, resembling flapping-like motion. These interactions elevate the flow momentum
due to increased turbulence intensity and mixing, contributing to the wake transition
phenomenon. To this end, this study defines the role of depth ratio in the transition
phenomenon by showing that increasing depth ratio (e.g. from 1 to 4) leads to earlier
onset of KHIs in the shear layer. These instabilities intensify with depth ratio, resulting
in stronger interactions between shear layer and large-scale vortex shedding. Specifically,
KHI-induced vortices interact more frequently with large-scale wake structures for higher
depth ratio prisms, exciting larger flow fluctuations and irregular wake patterns. This
interaction alters the frequency and coherence of vortex shedding, revealing a complex
coupling mechanism that drives the transition to turbulence.

Key words: wakes, separated flows, vortex dynamics

1. Introduction
Separated flows over sharp-edged, wall-mounted bluff bodies, such as prisms, has garnered
increasing attention due to their relevance in various industrial applications (Goswami
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& Hemmati 2020, 2021a,b). These flows are complex and multifaceted, owing to their
inherent three-dimensional nature, and are primarily attributed to end effects (Wang &
Zhou 2009). As the oncoming flow encounters the leading edge, it decelerates and forms
a boundary layer along the prism surfaces. This boundary layer subsequently separates,
creating a highly disturbed region of flow known as the wake (Zdravkovich 1997). One
prominent feature of the wake is the formation of large-scale coherent structures, which
contain a significant portion of the total fluctuating energy, thus playing a vital role in
momentum transfer and mixing processes. The formation of these structures strongly
depends on the state of the wake, which can be laminar, transitional or turbulent. Transition
can occur in three key regions, commonly observed in various geometries, including both
circular and rectangular cylinders: (i) within the wake, (ii) in the free-shear layers, and
(iii) within the boundary layer (Zdravkovich 1997). In the context of sharp-edged bluff
body wake, such as a wall-mounted prism, transition to turbulence occurs rapidly in
the free shear layers, with the wake becoming fully turbulent due to flow separation at
the leading edges (Martinuzzi 2008). Moreover, transition to turbulence is influenced by
both Reynolds number (Re = Ubd/ν, where d is the width of the prism in the spanwise
direction) and geometrical features of the flow, including depth ratio (DR = l/d, where l
is the length of the prism in the streamwise direction), aspect ratio (AR = h/d, where h is
the height of the prism in flow normal direction), and free-end effects, particularly in the
case of wall-mounted prisms (Zdravkovich 1997).

At elevated Reynolds numbers (Re > 103), it is well documented that separated shear
layers have the capacity to reattach over the side and top surfaces of the prism, provided
that there is a significant increase in depth ratio (Rastan et al. 2021). Further, increasing
depth ratio entails enhancement of the downwash flow, which suppresses the wake
unsteadiness (Goswami & Hemmati 2022). Meanwhile, aspect ratio plays a role in
intensifying the upwash flow and contributing to the overall wake unsteadiness (Saha
2013). Thus enhancement of the unsteadiness in the wake of wall-mounted prisms can
be achieved by either increasing the prism aspect ratio or reducing its depth ratio. This
heightened wake unsteadiness suggests that such abrupt changes in geometry may be
associated with the transition to turbulence.

Goswami & Hemmati (2022) studied the wake of small aspect ratio wall-mounted
prisms with increasing depth ratio at low Reynolds numbers, and observed the suppression
of spatio-temporal features with depth ratio. Previously, Rastan et al. (2021) made similar
observations at Reynolds number Re = 1.2 × 104, which is within the moderate range
of Reynolds numbers (103 � Re � 104). They demonstrated that increasing the prism
depth ratio led to diminished vortex shedding, which was attributed to the suppressed
interactions between the separating shear layer and the wake. This suppression was linked
to strengthening of the downwash flow. Zargar et al. (2022) further demonstrated that
increasing the Reynolds number above 750 for a large-depth-ratio prism (DR = 5) leads to
an irregular (unstable) unsteady regime resembling a transitional state. The irregular shed-
ding resulted in flow reattachment and subsequent detachment from the prism surfaces.
The majority of studies on wall-mounted prisms have focused on low (102 � Re � 103)
and high (Re � 104) Reynolds number ranges, with limited attention given to the moderate
range of Reynolds numbers. The moderate Reynolds number range (103 � Re � 104) is
associated with the onset of complex flow phenomena for wall-mounted long prisms
(Zargar et al. 2022), including transition to turbulence in the wake, which significantly
influences the wake dynamics and aerodynamic forces. Understanding these phenomena is
crucial for applications involving wall-mounted prisms, as they can significantly influence
the wake dynamics and consequently the aerodynamic forces and structural response
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Parameter Range Increments

Depth ratio (DR = l/d) 1−4 1
Aspect ratio (AR = h/d) 0.25−1.5 0.25
Reynolds number (Re = Ubd/ν) 1 × 103−5 × 103 0.5 × 103

Table 1. Parametric space of the study.

(Martinuzzi 2008; Hemmati et al. 2016; Zargar et al. 2022). As such, it is important to
investigate and characterize the wake of wall-mounted prisms in this regime.

Previously, the influence of depth ratio on global unsteadiness and interactions between
Kelvin–Helmholtz instability (KHI) and large-scale vortex shedding have been reported
for infinite-span suspended prisms (Zhang et al. 2023). However, these interactions differ
significantly compared to the case of wall-mounted prisms, due mainly to the infinite-
span nature of the prisms, where the wake is bounded by free-end effects (Wang &
Zhou 2009). Thus in the context of wall-mounted prisms, interactions between KHI and
large-scale vortex shedding, influenced by depth ratio and free-end effects, have not been
quantified in the past literature. The current study investigates the role of depth ratio in
turbulence transition at 103 � Re � 104. Specifically, this study investigates the possibility
of enhanced momentum transport with increasing depth ratio as a precursor to wake
transition. We hypothesize that an unsteady shear layer may enhance interactions between
leading-edge shear layer instabilities and prism surfaces, particularly at large depth ratios.
This enhanced interaction could elevate flow momentum and potentially contribute to the
transition phenomenon.

Numerical investigations are performed at Reynolds numbers 1 × 103−5 × 103 for wall-
mounted prisms with aspect ratios 0.25−1.5 and a range of depth ratios (1−4). For brevity,
we focus our main analysis on the case Re = 2.5 × 103, AR = 1 and DR = 1 and 4,
which avails investigation of the wake at extreme geometrical settings. Observations and
insights from these specific cases are then expanded across the broad parameter space
considered in this study and presented later on. The results are discussed in the context
of the unsteady shear layer, wake frequency signatures, and enhanced interactions using
the Poisson equation. Finally, the triadic interactions are quantified using bi-spectral mode
decomposition to further understand the transition phenomenon. This paper is structured
as follows. Section 2 presents the problem description, followed by the results in § 3.
Finally, the conclusions are presented in § 4.

2. Problem description
Large-eddy simulations (LES) with the dynamic Smagorinsky sub-grid scale model
(Durbin & Reif 2011) within OpenFOAM were utilized to study the wake. The
computational domain consisted of a rectangular prism with aspect ratios AR =
h/d = 0.25, 0.5, 1, 1.5 and depth ratios DR = l/d = 1, 2, 3, 4 mounted on the base of
the domain with dimensions Lu = 10d, Ld = 20d, H = 6d and W = 12d. Numerical
simulations were performed at Reynolds numbers Re = Ubd/ν = 1 × 103−5 × 103, with
increments of 0.5 × 103, where Ub is the bulk velocity, d is the width of the prism, and ν is
the kinematic viscosity. The parametric space of the study is presented in table 1. A non-
homogeneous structured grid consisting of 25 × 106 and 40 × 106 elements, depending on
the depth ratio, was developed for this study. Domain and grid for the case DR = 4 are
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Figure 1. Computational domain (not to scale) and spatial grid distribution for the wall-mounted thin prism
with DR = 4, presented in top view at y/d = 0.5 (top) and side view at z/d = 0 (bottom).
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Figure 2. (a) Distribution of the time-averaged values and root mean square (r.m.s.) of the streamwise velocity
(u and u′) at the location of the leading edge of the prism at Re = 2.5 × 103. (b) Distribution of the time-
averaged streamwise velocity (u) at the location of the leading edge of the prism at Re = 1 × 103, 2.5 ×
103, 5 × 103. Measurements were performed in the absence of the prism. The dashed line shows the boundary
layer thickness (δ/d).

presented in figure 1. The inlet boundary conditions were set to uniform flow (u = Ub,

v = w = 0), with an outflow boundary condition (∂u/∂n = ∂p/∂n = 0) applied at the
outlet. Ceiling and lateral boundaries were modelled as free-slip, while a no-slip wall
condition was imposed on the ground and the prism. This computational set-up closely
resembled that of Goswami & Hemmati (2022, 2023). The natural boundary layer
thickness (δ) varied between δ/d ≈ 1.5 and δ/d ≈ 1 for Re = 1 × 103 and 5 × 103,
respectively, when simulating the flow without placing the prism in the domain. Boundary
layer thickness was determined as the distance from the wall to the location where the
streamwise mean velocity reaches 99 % of the free-stream velocity. As an example, the
boundary-layer thickness at Re = 2.5 × 103 was δ/d ≈ 1.2, as shown in figure 2(a). Since
the boundary layer thickness changes with Reynolds number (see figure 2b), implications
of boundary layer thickness and dynamics on the wake topology is naturally incorporated
in the current analysis. As noted by Behera & Saha (2019), the implications of boundary
layer thickness on the wake are negligible considering a small (∼ 10 %) variation in δ.
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Study Ntotal Domain size y+
max Cd |�Cd %| Cl |�Cl %| C ′

d C ′
l C ′

s

Domain 1 17.3 × 106 30d × 5d × 10d 0.8 1.102 5.60 0.921 5.14 0.016 0.039 0
Domain 2 19.6 × 106 30d × 6d × 12d 0.8 1.041 − 0.875 − 0.012 0.032 0
Domain 3 20.9 × 106 35d × 6d × 12d 0.8 1.043 0.19 0.876 0.10 0.012 0.032 0
Grid 1 5.1 × 106 30d × 6d × 12d 3.1 1.100 5.51 0.914 5.33 0.018 0.041 0
Grid 2 15.1 × 106 30d × 6d × 12d 1.55 1.061 2.36 0.899 3.55 0.013 0.033 0
Grid 3 19.6 × 106 30d × 6d × 12d 0.8 1.041 0.38 0.875 0.90 0.012 0.032 0
Grid 4 25.2 × 106 30d × 6d × 12d 0.44 1.037 − 0.868 − 0.012 0.032 0

Table 2. Domain and grid sensitivity analysis results for wall mounted prism with DR = 4 at Re = 2.5 × 103.
The relative error is calculated with respect to domain 2 and grid 4, respectively.

In the current study, the change in δ is ∼ 8 %. A thick boundary layer (δ/h � 1, fully
submerged body) is considered in the current study, which means that the oncoming flow
over the prism length plays a significant role in dictating the wake characteristics through
variations in the strength of the separated vortex sheet over the prism length (Bourgeois
et al. 2011).

Second-order implicit backward Euler numerical schemes were used for temporal
discretization, and the diffusive and convective fluxes were approximated using central
difference schemes. The discretized equations were then solved using a pressure implicit
with splitting operator (PISO) algorithm (Goswami & Hemmati 2024). Time-marching
simulations were performed by adjusting the temporal grid to maintain a maximum
Courant number below 0.8. Moreover, the time step size (�t∗ = �t Ub/d = 0.001) was
selected such that the ratio of eddy turnover time (τη) to �t for the smallest dissipative
eddy (Pope 2001) yields at least 50 time steps. All simulations continued for 150 vortex
shedding cycles, while the last 100 cycles were used for post-processing. This duration
ensured that transient effects from the initial conditions had dissipated (Hemmati et al.
2018). The sampling frequency of data used for spectral analysis was f ∗

s ≈ 500, based on
the simulation time step, such that data were collected every time step. Simulations were
completed on a Digital Research Alliance of Canada computing cluster, utilizing 256 Intel
E5−2683 v4 Broadwell cores with 125 GB of shared memory, requiring 6 × 105 core
hours in total.

2.1. Verification and validation
Numerical simulations were verified by evaluating the sensitivity of results to domain
size and grid resolution. To start, we acknowledge that the present computational domain
was designed larger than those employed in previous studies (Saha 2013; Rastan et al.
2021). The set-up, domain and grid configuration were adopted from Goswami &
Hemmati (2022, 2023). Blockage ratio (β) and domain height (H ) were set as 0.01 and
6d, respectively. These criterion followed the practices of Sohankar et al. (1998) and
Saha (2013), which suggested β = (d × h)/(W × H)� 0.05 and H � h + 5d, to ensure
negligible effects of domain on the global flow features. Comparison of mean drag (Cd )
and lift (Cl ) coefficients in table 2 indicated a negligible influence of the domain size,
with domain 2 (30d × 6d × 12d) being sufficient to capture the flow features of interest.
Moreover, the root mean square (r.m.s.) of drag, lift and side force obtained from domains
2 and 3 are in close agreement. Domain sensitivity was further investigated in figure 3
by comparing mean and turbulent flow profiles at x/d = 1 downstream of the prism. The
results in figure 3 further suggests a close agreement between domains 2 and 3, while the
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Figure 3. Effect of domain size on mean and turbulent wake characteristics at x/d = 1 and y/d = 1 for prism
with DR = 4 at Re = 2.5 × 103. Shown are (a) u and (b) u′u′.
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Figure 4. Effect of grid size on mean and turbulent wake characteristics at x/d = 2 and y/d = 0.5 for prism
with DR = 4 at Re = 2.5 × 103. Shown are (a) u and (b) u′u′.

influnce of blockage is apparent in domain 1. As such, domain 2 is selected for the present
study.

Grid sensitivity was assessed using four grids that were successively refined to include
5.1 × 106, 15.1 × 106, 19.6 × 106 and 25.2 × 106 elements. Relative errors in the mean
drag (Cd ) and lift (Cl ) between grids 3 and 4 were below 1 %, indicating grid convergence
for grid 3 (details in table 2). Furthermore, the r.m.s. values of drag, lift and side force
obtained from grids 3 and 4 are in close agreement. A maximum deviation ∼ 0.1 % was
noted for the r.m.s. of lift, while the side force coefficient remained constant at C ′

s = 0
for all grids and domains. The side force coefficient is expected to be zero for the current
set-up due to the symmetric nature of the time-averaged flow around the prism in the
lateral direction. Here, drag and lift coefficients relate to mean axial (Fx ) and normal
(F y) forces, respectively. Further, the sensitivities of mean and turbulent flow to changing
grid sizes are examined in figure 4 by comparing their profiles at x/d = 2 downstream of
the prism. Only one axial location is presented for brevity. Comparisons in figure 4 showed
excellent agreement with < 1 % deviation between grids 3 and 4. This suggests that the
grid resolution for grid 3 is sufficient to capture the flow features of interest.

The present study necessitates accurate resolution of the smallest resolvable flow
features, such as the leading-edge shear layer and the wake structures in the immediate
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Figure 5. Contours of the ratio of grid size to Kolmogorov length scale (Δ/η) at (a) z/d = 0 and (b)
y/d = 0.5, for the case DR = 4 at Re = 2.5 × 103.
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Figure 6. Comparison of (a) mean axial velocity (u) and (b) r.m.s. velocity (u′
rms ) profiles obtained from LES

with the experimental results of Saeedi et al. (2014).

vicinity of the prism. To this end, the grid size should be comparable to the Kolmogorov
length scale (Moin & Mahesh 1998). Therefore, we investigate the ratio of grid size (Δ) to
Kolmogorov length scale (η) for further verification. Kolmogorov length scale is defined
as η = (ν3/ε)1/4, where ν is the kinematic viscosity, ε = 2ν(s′

i j s
′
i j ) is the turbulent energy

dissipation rate, and s′
i j is the strain-rate tensor given as s′

i j = 1
2(∂u′

j/∂xi + ∂u′
i/∂x j )

(Pope 2001). The grid size is calculated as Δ = 3
√

�x × �y × �z. Using direct numerical
simulations, Yakhot et al. (2006) and Saeedi et al. (2014) suggested Δ/η = 2−5 in the
critical regions of the wake of wall-mounted prisms. Additionally, Celik et al. (2009) and
Rastan et al. (2021) recommended 20 �Δ/η � 40 for LES. Contours of Δ/η are presented
in figure 5 on both the normal (y/d = 0.5) and spanwise (z/d = 0) planes for the prism
with DR = 4. The results demonstrate that maximum Δ/η is ∼ 5 at x/d = 15, with Δ/η

between 1 and 3 in the immediate vicinity of the prism. This indicates that the resolution
of grid 3 is sufficient to capture the critical flow features.

Due to a lack of existing experimental data for our specific case (prism with DR =
4, Re = 2.5 × 103), we adopted an alternate validation approach. We mimicked the set-
up of Saeedi et al. (2014) for an AR = 4 prism at Re = 1.2 × 105 using LES. The LES
grid resolution and computational set-up mirrored the present study. Mean axial velocity
profiles from the LES agreed well with Saeedi et al. (2014), such that we had less than 5 %
deviation (figure 6a). Figure 6(b) further shows satisfactory agreement between LES and
experimental results in capturing the r.m.s. velocity profiles. The trends at the peak and
into the wake are well reproduced by the numerical simulations. This outcome validated
our numerical set-up.
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ū /Ub

PRSR

0

0.5

1.0

x/d

1.5

2.0

1 2 3 4 5 6

WR

0

0.5

1.0

1.5

2.0

1 2 3 4 5 6

WRPR

0

0.050 0.10

0.5

1.0

1.5

2.0

1 2 3 4 5 6

y/d

x/d x/d

k/Ub
2

(a) (b)

(c) (d)

Figure 7. (a,b) Mean streamwise velocity (u) and (c,d) turbulent kinetic energy (k) contours overlaid with
mean velocity streamlines for (a,c) DR = 1 and (b,d) DR = 4 prisms.

3. Results and discussion
We begin by reporting the main features of the mean flow. As shown in figures 7(a)
and 7(b), streamlines highlight the presence of flow separation at the leading edge,
which in case DR = 1 prolongs into the wake and reattaches at x/d ≈ 2.12 for DR = 4.
Reattachment length is quantified by tracing the time-averaged wall shear stress across
the top surface of the DR = 4 prism. A large-scale recirculation region is present on
the top surface of DR = 4, hereby referred to as the primary recirculation (PR) region.
A second recirculation bubble is present below the PR region, noted as the secondary
recirculation (SR) zone. Indeed, the reverse flow induced in the near-wall region of the PR
forms a boundary layer moving upstream, resulting in the formation of the SR. Following
the trailing-edge separation of the flow, a tertiary recirculation region is formed, referred
to as the wake recirculation (WR) region. For a short prism, the absence of PR and SR
is attributed to a lack of flow reattachment on the prism surfaces. As such, only WR is
noted due to shedding of the leading-edge shear layer directly into the wake. Contours
of turbulent kinetic energy (k = (u′

i u
′
i )/2) are presented in figures 7(c) and 7(d). Initially,

both prisms highlight an almost laminar state of the leading-edge shear layer. Instabilities
associated with the leading-edge shear layer amplify the intensity of fluctuating velocities,
initiating the transition to turbulence (Wang & Zhou 2009). These regions of intense
fluctuations result in high turbulence intensity (u′

i ), thus maximizing k. For the larger
prisms, maximum k occurs on the prism top surface, while the shorter prisms experience
it in the wake. The region of maximum k occurs in the primary vortex shedding region.

Qualitative illustrations of instantaneous vortex structures for DR = 1 and 4 are
presented in figure 8. Following the leading-edge separation, the shear layer undergoes
distinct stages of growth and primary instability formation (Moore et al. 2019a). This
triggers the formation of a KHI of the shear layer for both prisms, as evidenced by the
finite spanwise vortex rollers forming near the leading edge. Such rollers are delayed and
less frequent for DR = 1, and their formation occurs over a larger distance compared
to DR = 4. This is evident from the distrubution of maximum turbulent kinetic energy
(kmax ) along the mid-span (z/d = 0) of both prisms at Re = 2.5 × 103 in figure 9. Previous
studies (Moore et al. 2019b) have used similar methods to identify the location of vortex
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Figure 9. Distribution of maximum turbulent kinetic energy (kmax ) along the mid-span (z/d = 0) of both
prisms at Re = 2.5 × 103.

roll-up behind sharp-edged bluff bodies. Figure 9 shows that the roll-up phenomenon, i.e.
the location of maximum turbulent kinetic energy, is delayed for DR = 1 compared to
DR = 4. In case DR = 4, the roll-up occurs close to x/d ≈ 2, while it occurs at x/d ≈ 3
for DR = 1. These rollers become more prominent with increasing depth ratio. Thus there
is evidence of a strong dependence on depth ratio for the generation of these instabilities.
Evidence of the flow periodicity and frequency signatures is provided in § 3.2. Figures 8(c)
and 8(d) presents the lateral view of the instantaneous vortex structures for DR = 1
and 4 prisms. In case DR = 1, amplified quasi-periodic perturbations resulting from an

1007 A9-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
09

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1109


S. Goswami and A. Hemmati

2.0

1.5

1.0

0.5

0
10 2 3

Kelvin–Helmholtz

4 5

0.2 0.4 0.6 0.8 1.0

1.4

1.2

1.0

0

y/d

x/d

Kelvin–Helmholtz

0.2 0.4 0.6 0.8 −4 0 41.0

1.4

1.2

1.0

0

ωz
*

10 2 3 4 5

x/d

2.0

1.5

1.0

0.5

0

(a) (b)

Figure 10. Contours of spanwise vorticity ω∗
z for (a) DR = 1 and (b) DR = 4, superimposed with

instantaneous streamlines and the isopleth of u = 0 (green line) at z/d = 0.

unsteady shear layer are less frequent and delayed, whereas they are more pronounced
for DR = 4, and they occur more frequently, especially in the wake region (1 � x/d � 6).
As such, it becomes apparent that large-scale vortex shedding is more pronounced for
DR = 4 compared to DR = 1. Following the leading-edge shear layer separation and
instability development, flapping-like motion (Cimarelli et al. 2018) leads to perturbations
in the shear layer that amplify and propagate downstream, ultimately interacting with
and influencing large-scale vortex shedding. Further evidence of shear layer flapping is
presented in § 3.1, and discussion on interactions is presented in § 3.3.

Figure 10 present contours of spanwise vorticity (ω∗
z ) for both prisms, superimposed

with instantaneous streamlines and the isopleth of u = 0 at z/d = 0. Formation of KHI
rollers from the leading-edge shear layer is evident for both depth ratios. As presented
in the insets, an early initiaion of KHI rollers is noted near the leading edge for DR = 4
compared to DR = 1, where the instability appears in the wake at x/d � 1. The onset of
KHI rollers is quantified by the streamwise position of the first appearance of spanwise
vortices, which is at x/d ≈ 0.4 and 1 for DR = 4 and 1, respectively. This indicates that
depth ratio significantly influences the onset of KHI rollers in the wake of a wall-mounted
prism. Furthermore, the leading-edge shear layer sheds directly into the wake for the case
DR = 1, while the flow reattaches on surfaces of the larger prism. The larger prism shows
a prominent spanwise vortex shedding with hairpin-like vortices appearing over the prism
surfaces. However, vortex shedding is suppressed by interactions between the separating
shear layer and the wake in WR for the shorter prism. These observations, along with the
formation of KHI rollers and their interaction with surfaces of the prism, are a precursor
to the transition to turbulence in the wake of wall-mounted prisms.

Previous studies have noted that the wake dynamics is significantly influenced by the
depth ratio and aspect ratio of the prism, as well as the flow Reynolds number (Wang
et al. 2006; Rastan et al. 2021; Zargar et al. 2022; Goswami & Hemmati 2022). Rastan
et al. (2021) showed that increasing depth ratio for a large-aspect-ratio prism resulted
in decreased vortex shedding due to diminished interactions between the separating
shear layer and the wake. This effect correlates with strengthening of the downwash
flow. These results are consistent with the wake observed behind low-aspect-ratio prisms
with changing depth ratio, where increasing depth ratio resulted in suppressed wake
unsteadiness for Re � 500 (Goswami & Hemmati 2022). Further, Zargar et al. (2022)
demonstrated that increasing the Reynolds number beyond 750 for a long prism (DR = 5)
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Figure 11. Axial wall pressure gradient (∂pw/∂x) along the mid-span (z/d = 0) of both prisms at
Re = 2.5 × 103.

resulted in an irregular unsteady wake, resembling a transitional state. In summary,
previous studies have indicated that increasing the depth ratio suppresses wake irregularity
(Goswami & Hemmati 2022), while for a long prism, the wake evolves into an irregular
unsteady wake with increasing Reynolds number (Zargar et al. 2022). This observation
underscores the complexity of the flow dynamics around wall-mounted prisms, and
suggests that multiple factors influence the interaction between the shear layer and wake
structures, which results in wake transitions, such as the flow Reynolds number and prism
geometry parameters. The present study portrays a novel perspective where the flow
irregularity is enhanced with depth ratio. The current study focuses on the role of Reynolds
number in the transition phenomenon, while investigating the influence of depth ratio on
the wake dynamics. At moderate Reynolds numbers, the unsteadiness of the shear layer
(Moore et al. 2019a) is stronger, interacting with the prism surfaces and elevating the flow
momentum in this region due to large depth ratio. This further enhances the interactions
between KHI and the wake coherent structures, leading to the wake transition. Evidence
of this mechanism is discussed further in this paper by first presenting the unsteady shear
layer motion, followed by the wake frequency signatures, and enhanced interactions using
the Poisson equation. Finally, the triadic interactions are quantified using bi-spectral mode
decomposition (BMD) to further understand the transition phenomenon. Here, we look at
the interactions between KHI and the large-scale vortex shedding.

3.1. Unsteady shear-layer motion
We begin by first investigating the axial wall pressure gradient along the mid-span (z/d =
0) of both prisms at Re = 2.5 × 103 in figure 11. The rapid increase in pressure gradient
near the leading edge is attributed to streamwise flow compression due to an abrupt flow
separation at the leading edge (Obabko & Cassel 2002). This yields a favourable pressure
gradient, indicated by an overshoot of ∂pw/∂x towards a positive value. Then the pressure
gradient recovers for DR = 1 due to the absence of flow reattachment and shedding of
the shea layer into the wake. For DR = 4, the pressure gradient remains elevated due to
the reattachment of the shear layer on the prism surfaces. The elevated pressure gradients
feature oscillatory motion, which results in flow compression and expansion (Obabko &
Cassel 2002). This leads to an unsteady shear layer characterized by flapping-like motion.
Similar oscillatory shear-layer motions are observed in infinite-span prisms (Kiya & Sasaki
1983; Cimarelli et al. 2018) as well as in two-dimensional forward–backward-facing steps
(Fang & Tachie 2019). The unstable shear layer motion is associated with the formation
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Figure 12. Space–time plot of the instantaneous wall shear stress (τw) along the top surface of the prism with
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the region of reverse flow.
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Figure 13. Pre-multiplied power spectral density of streamwise (Eu), normal (Ev) and spanwise (Ew)
velocity fluctuations near the leading edge at (0.5, 1.3, 0) for (a) DR = 1 and (b) DR = 4.

of large-scale structures in the wake and their interactions, which are responsible for the
momentum transport and mixing processes (More et al. 2015; Moore et al. 2019a).

Unsteady motion of the shear layer is analysed quantitatively using the wall shear stress
(τw = μ ∂u/∂y) along the top surface of the long prism, as depicted in figure 12. Temporal
variations between the mean reattachment point are recognized by the border between the
reverse flow (τw < 0) and forward flow (τw > 0) regions. Previous studies (Lander et al.
2018) suggest two main mechanisms that control the flow unsteadiness around sharp-edged
prisms: vorticity roll-up and shear layer flapping. For long prisms, the shear layer roll-up
near the leading edge intermittently forces the newly formed vortices towards the prism
surfaces, resulting in a flapping motion (Moore et al. 2019a). This induces oscillations
of the PR bubble between x/d ≈ 1.2 and x/d ≈ 2.1. As presented in figure 12, the mean
reattachment point at z/d = 0 for the large-depth-ratio prism follows an oscillatory pattern.
Further, SR also appears to oscillate, albeit in the opposite direction. With time, SR moves
further upstream, while PR moves downstream. This behaviour may be linked to the
mechanism of shear layer flapping, though it remains out of scope for this study, which
focuses only on the transition phenomenon.

3.2. Flow periodicity
The flow periodicity is investigated by using the pre-multiplied power spectral density
of the streamwise (Eu), normal (Ev) and spanwise (Ew) velocity fluctuations near the
leading edge at (0.5, 1.3, 0) in figure 13. Multiple peaks are noted in the power spectrum
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Figure 14. Profiles of maximum values of r.m.s. (a) turbulence–mean shear interaction (TMImax ) and (b)
turbulence–turbulence interaction (TTImax ) terms of the Poisson equation for DR = 1 and 4 prisms at z/d = 0
(blue) and y/d = 0.5 (red). The axial distances are normalized using prism length (l). Circles represent
DR = 1; squares represent DR = 4.

of both cases, with the one at Stkh appearing to be dominant. This frequency is associated
with KHI of the leading-edge shear layer. Moreover, a harmonic of KHI is observed
at 2Stkh . Another frequency centred at Stsh is also observed, mainly attributed to the
Kármán-like vortex shedding. At DR = 1, Stsh and Stkh are 0.170 and 0.855, respectively,
while Stsh = 0.173 and Stkh = 1.290 at DR = 4. With increasing depth ratio from 1 to 4,
a meagre increase in Stsh is noted, while Stkh and 2Stkh are significantly enhanced. In
other words, the depth ratio enhances KHI of the leading-edge shear layer, and further
explains the strong spanwise vortex shedding (observed in figure 8b). Additionally, as
noted in figure 8(a), the formation of KHI rollers for DR = 1 occurs over a larger distance
compared to DR = 4. This delay in the onset of KHI rollers is reflected in figure 13,
where Stkh for DR = 1 is lower compared to DR = 4. This further suggests that structures
associated with Stkh for DR = 1 are larger and slow-growing compared to DR = 4.
Finally, a subharmonic spanwise frequency is noted, which is attributed to alternate
shedding of the secondary vortex structures in the wake (Goswami & Hemmati 2022).

Motion of the unsteady shear layer is correlated with the vortex-pairing mechanism in
sharp-edged prisms (Ma et al. 2023). Following the flow separation at the leading edge,
both the shear layer rolls-up and newly formed vortices are intermittently forced towards
the prism surfaces and convect downstream (flapping mechanism). These vortices pair
with others in the wake, growing into large-scale structures, such as hairpin-like vortices
(vortex-pairing mechanism). Large-scale vortex shedding away from the leading edge is
associated with large-scale momentum transport. The vortex-pairing and interactions of
KHI with large-scale vortices are quantified using the correlation Stkh/Stsh = 0.18 Re0.6

(Lander et al. 2018). Since these interactions are a function of Reynolds number,
empirically this ratio should be Stkh/Stsh = 18 for Re = 2.5 × 103 (Lander et al. 2018).
For example, this ratio is Stkh/Stsh = 26.5 for flow around a two-dimensional square prism
at Re = 2 × 103 (Brun et al. 2008). In our cases, results in figure 13 indicate that this ratio
is ∼ 5.0 and ∼ 7.5 for DR = 1 and 4, respectively. This suggests that interactions between
KHI and large-scale structures depend on depth ratio, and they are suppressed compared
to infinite-span and two-dimensional prisms (Brun et al. 2008; Kumahor & Tachie 2022),
potentially due to the three-dimensional effects in the wake.

3.3. Leading-edge shear layer interactions
Interactions between KHI and large-scale vortex shedding can be further quantified by
analysing the Poisson equation:
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∇2 p = −ρ

(
2

∂ui

∂x j

∂u′
j

∂xi
+ ∂2

∂xi ∂x j
(u′

i u
′
j − u′

i u
′
j )

)
. (3.1)

Here, the right-hand side can be decomposed into two terms: turbulence–mean-shear
interaction (TMI) and turbulence–turbulence interaction (TTI). The TMI accounts for the
rapid changes in mean flow due to fluctuating fields, while TTI is associated with nonlinear
interactions of turbulent structures. These two terms are considered the primary sources
of pressure fluctuations in the flow (Ma et al. 2023). Figure 14 presents the profiles of
maximum values of TMI and TTI terms of the Poisson equation for DR = 1 and 4 at
z/d = 0 (blue) and y/d = 0.5 (red). Figure 14(a) reveals heightened TMI closer to the
leading edge, where separated shear layers are created for both prisms. Following the
abrupt shear layer separation at the leading edge, vorticity associated with the shear layer
alters the mean flow in this region, resulting in enhanced momentum. This explains the
high values of TMI near the leading edge. Initially, TMImax for both prisms remains large,
though it subsides quickly for DR = 1. Due to a lack of flow reattachment in DR = 1,
TMImax for the top shear layer reduces until x/ l ≈ 0.5, followed by a gradual increase
due to flow interactions with the upwash flow at the trailing edge (Goswami & Hemmati
2023). The TMI for DR = 4 remains large in 0.1 � x/ l � 0.3, indicating a region of
elevated mean flow modulations by KHI. For both cases, TMImax on side surfaces is
significantly suppressed compared to the top, indicating that the top surface shear layer
plays a dominant role in driving the downstream flow. Finally, TMI points to the origins
of mean flow modulations, which are associated with the shear layer flapping-like motion.
Thus enhanced TMI near the leading edge for DR = 4 identifies the location where shear
layer flapping-like motion is most pronounced.

The TTI term, presented in figure 14(b), highlights the interactions between different
flow structures (Ma et al. 2023). While TMI is concentrated near the leading edge, TTI is
more distributed across the top and side surfaces of both prisms. The distribution is likely
due to the enhanced flow momentum (velocity fluctuations) produced by the mean flow
alterations that gradually affect the surrounding flow field. For DR = 1, TTImax is elevated
closer to the trailing edge, which is attributed to direct shedding of the leading-edge shear
layer into the wake. This enhances the interactions and vortex mixing in the wake region
(Goswami & Hemmati 2023). For DR = 4, elevated TTImax occurs close to the location
of the flow reattachment on the prism surfaces (xR/ l ≈ 0.53). This region is associated
with the breakdown of KHI rollers into hairpin-like vortices, which are then convected
downstream. The interactions between KHI rollers and large-scale vortex shedding are
most pronounced in this region, leading to an increased turbulence intensity and mixing
(shown previously in figure 7d). These processes enhance the flow momentum due to
an influx of energy by the mean flow modulation (TMI). As such, increased momentum
results in the enhancement of vortex shedding and wake transition. These interactions are
driven by the flow geometry, since such a mechanism is absent for the short prism, where
TTImax steadily rises up to the trailing edge. Finally, TTImax is comparable for the top
and side surface shear layers for both prisms, which indicates an invariance of energy
production and dissipation on the top and side surfaces.

Triadic interactions form the basis of the energy transfer mechanism in the wake
transition phenomenon (Craik 1971). The frequency triad, described by the interactions
between two flow structures at frequencies Sti and St j , results in a third frequency Sti+ j
such that Sti ± St j ± Sti+ j = 0. These interactions are quantified using BMD analysis,
proposed by Schmidt (2020). Figure 15 shows the magnitude of the mode bi-spectrum
for DR = 4 in the sum and difference regions. Their interactions with large-scale vortex
shedding frequency (Stsh) are noted in figure 15 along with the sum interaction of Stkh
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Figure 16. The BMD interaction map for the DR = 4 prism, showing the interactions between (a) KHI and
mean flow, and (b) KHI and large-scale vortex shedding.

with Stsh , and the fundamental mode of Stsh . The intensity of the spectrum is large
for the large-scale frequencies (Stsh), while it reduces significantly for Stkh . Further, the
sum interaction of Stsh corresponds to the global maximum of the mode bi-spectrum,
consistent with the separated flow in Schmidt (2020).

Interactions of KHI with the mean flow and large-scale vortex shedding are presented
through a BMD interaction map in figure 16. This map quantifies the average local
bi-correlation between the three frequencies, Sti , St j and Sti+ j , involved in the triad.
The interactions are defined as Ψk,l = |φk+l ◦ φk◦l |, where φk+l represents the resultant
mode of triadic interaction, and φk◦l represents the influence of input modes. For more
information regarding the formulation, readers are referred to Schmidt (2020). For both
cases, the interactions are most pronounced near the leading edge and throughout the upper
surface of the prism up to x/d ≈ 2, where the flow reattaches to the surface. Interactions of
KHI with the mean flow are dominant outside the PR, with the maximum value occurring
at x/d ≈ 0.8. This is consistent with the location of maximum TMI in figure 14(a). This
interaction is associated with the mean flow modulation by KHI due to the shear layer
flapping-like motion. A slightly elevated interaction at the trailing edge also corresponds
to the trailing-edge shear layer interacting with the flow downstream. Interactions of KHI
with large-scale vortex shedding are distributed across the prism surface. Near the centre
of PR, these interactions enhance due to the flow impingement on prism surfaces as a
result of the unsteady shear layer. This region of elevated interactions is consistent with the
region of maximum TTI in figure 14(b). These results confirm that flow modulations at the
leading edge, due to KHI, are convected downstream and interact with large-scale vortex
shedding, enhancing the flow momentum. Due to the interactions and vortex breakdown,
the flow momentum reduces further until the trailing edge. While not shown here for DR =
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Figure 17. Instantaneous vortex structures overlaid with axial velocity (u) contours for (a,c) DR = 1.5 and
(b,d) DR = 3.5 at (a,b) Re = 1.5 × 103, (c,d) Re = 4 × 103, identified using the Q-criterion (Q∗ = 1).

1, such interactions remain absent, underscoring the influence of depth ratio in the wake
transition phenomenon. These results provide a novel understanding of the interactions
between KHI and large-scale vortex shedding in the wake of wall-mounted prisms.

3.4. Observations across the parameter space
Observations and insights from the specific cases DR = 1 and 4 at Re = 2.5 × 103

are expandable across the broad parameter space considered in this study, i.e. varying
aspect ratio (0.25−1.5), depth ratio (1−4) and Reynolds numbers (1 × 103−5 × 103).
For example, we consider the cases DR = 1.5 and 3.5 at Re = 1.5 × 103 and 4 × 103 in
figure 17. These instantaneous vortex structures reveal that for a short-depth-ratio prism
(DR = 1.5), the leading-edge shear layer extends and sheds directly into the wake. The
influence of the Reynolds number becomes apparent, where the unsteady wake is classified
into regular unsteady wake, consistent with the observations of Zargar et al. (2022). In
contrast, a larger-depth-ratio prism (DR = 3.5) exhibits the shear layer reattachment to
the prism surfaces, leading to an unsteady shear layer motion and enhanced interactions
with large-scale vortex shedding. This results in the formation of large-scale vortex rollers
and hairpin-like vortices in the wake, consistent with previous observations from the case
DR = 4 at Re = 2.5 × 103.

Next, we consider the cases of prisms with AR = 1.5 and DR = 1.5, 3.5 at Re =
2.5 × 103 in figure 18. The results are consistent with the observations from AR = 1,
where the interactions of KHI with large-scale vortex shedding is more pronounced for
larger depth ratio. This results in a more complex wake topology downstream of the
leading edge, as opposed to DR = 1.5, where shedding of the shear layer into the wake
suppresses the interactions, resulting in a more stable flow. Influence of prism aspect
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and (a) DR = 1.5 and (b) DR = 3.5 at Re = 2.5 × 103 identified using the Q-criterion (Q∗ = 1).
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Re = 2.5 × 103, and (b) AR = 1 at Re = 4 × 103.

ratio is further evident in figure 18, where the flow unsteadiness enhances with aspect
ratio, consistent with observations of Saha (2013). Finally, the unsteady shear layer is
quantitatively observed by axial wall pressure gradients plotted along the prism mid-
span (z/d = 0) in figure 19. Here, we present the cases DR = 1.5, 3.5 with AR = 1.5
at Re = 2.5 × 103, and AR = 1 at Re = 4 × 103. The rapid overshoot of pressure gradient
near the leading edge, suggesting an abrupt flow separation, is consistent in all cases. The
trends of ∂pw/∂x for DR = 1.5 remain steady at Re = 2.5 × 103, while small oscillations
are noted at Re = 4 × 103. Although Reynolds number effects are not the primary focus
of this study, the oscillations in ∂pw/∂x at higher Reynolds numbers can be linked
to unsteady wake dynamics. Notably, for a larger-depth-ratio prism (DR = 3.5), the
oscillatory behaviour of the pressure gradient becomes evident and more pronounced
across both aspect ratios and Reynolds numbers. Oscillations enhance with depth ratio, and
they are associated with the shear layer flapping-like phenomenon, which is pronounced
for these cases (see figures 17 and 18). Previous studies (Goswami & Hemmati 2022,
2023) have established that unsteady and mean wake topology of wall-mounted prisms
are functions of both Reynolds number and body geometry. Our results expand this
argument to turbulence transition, where the interactions between KHI and large-scale
vortex shedding are enhanced with increasing depth ratio. These interactions are driven by
the unsteady shear layer motion, which is most pronounced for large-depth-ratio prisms.
These interactions enhance the flow momentum over the prism surfaces, resulting in a
more complex wake structure, and ultimately leading to turbulence transition.
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4. Conclusion
This study numerically investigated the wake transition phenomenon around wall-mounted
prisms. Results were presented at Reynolds number 2.5 × 103 for prisms with aspect ratio
1 and depth ratios 1 and 4, which were consistent for the entire parameter space studied
here (AR = 0.25−1.5, DR = 1−4 and Re = 1 × 103−5 × 103). The wake unsteadiness is
enhanced with increasing depth ratio. Kelvin–Helmholtz instability (KHI) is noted for all
cases, forming finite spanwise vortex rollers. However, the intensity and frequency of the
rollers are more pronounced for longer prisms (DR � 3), while for short prisms they are
delayed and less frequent. Additionally, the formation of KHI for short prisms takes place
over a larger distance compared to longer prisms. Enhanced wake unsteadiness is attributed
to interactions between KHI and large-scale vortex shedding, induced by an unsteady shear
layer flapping-like motion in the wake of large-depth-ratio prisms. Evidence of an unsteady
shear layer is provided by analysing the space–time wall shear stress contours, showing an
oscillating recirculating region. Interactions between KHI and large-scale vortex shedding
are quantified using the Poisson equation and bi-spectral decomposition. The turbulence–
mean-shear interaction (TMI) term of the Poisson equation is elevated near the leading
edge, while the turbulence–turbulence interaction (TTI) term is distributed across the
prism surfaces. Elevated TMI near the leading edge points to the mean flow manipulations
due to the unsteady shear layer, while enhanced TTI on the prism surfaces indicates
interactions between KHI and large-scale vortex shedding. Elevated TMI shows that
the leading-edge flow manipulations provide energy, which is then transferred to the
large-scale vortex shedding, enhancing the flow momentum. Increased momentum in the
wake enhances vortex shedding, which is a precursor to turbulence transition. Finally,
bi-spectral mode decomposition analysis provides evidence of the interactions between
KHI and large-scale vortex shedding, further confirming the transition process. This study
underscores the role of depth ratio in the transition to turbulence phenomenon at moderate
Reynolds numbers, and provides novel insights into the interaction mechanisms of KHI
and large-scale vortex shedding in the wake of wall-mounted prisms.
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