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1. The question, "How, from a given function which is self-
reciprocal for a transform of a particular order, can we construct
other functions which are self-reciprocal for transforms of different
orders ? " was first raised by Hardy and Titchmarsh1 who gave some
rules for constructing such functions. Following their method, I
have shown, in a recent paper,2 that there are certain general
theorems of the following type:—

If f (x) is its own J^ transform, g (x) is its own Jv transform. In
this note I add a few more such theorems, the interest lying mainly
in the results themselves and not in a rigorous proof thereof; and
hence only the formal procedure is given here.

For his constant guidance in my work I wish to express my
thanks to Prof. E. C. Titchmarsh at whose suggestion I started the
investigation.

2. Following Hardy and Titchmarsh I will say that a function is
Rv if it is self-reciprocal for Jv transforms, and it is — Rv if it is skew-
reciprocal for </„ transforms. Also, for Rh and R_i I will write Rs and
RK respectively.

I will make use of the following result of Hardy and Titchmarsh.3

A necessary and sufficient condition that a function f (x) should
be R^ is that it should be of the form

1 fc + im

/(*)=«r-- 24»r(i + j / * -
where 0 < c < 1, and

t («) = </, ( 1 -5 ) . (2.2)

1 Hardy and Titchmarsh IV.
2 Mehrotra V.
3 Hardy and Titchmarsh III, Theorem 8.
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3. Theorem I. If f(x) is Rx, the function

g (x) = X-* f y-i- #«,_„ (xy)f{y)dy,

where Hv {x) is Struve's function of order1 v, is Rv.
This theorem can be proved on the lines of a similar theorem of

Hardy and Titchmarsh2, or it can be derived from a more general
theorem proved in my paper referred to above3, with the help of a
formula given by Watson4.

4. Theorem II. If / (a;) is R^, the function

g(x)= ±\' Q (log ±-)f ft) dy
x Jo \ y J

is Rv, provided that

(

= 0 (a;<0), i
where k is any positive number, and x (*) satisfies (2.2).

By (2.1) we have

\XQ ( 1 O § IT) dy fC+°°2*s r tt + */* + *5) ^ ( s ) 2/" ds>
where >p (s) = iff (1 — s). Hence

lC°2y r (i + iM + J«) <£ (5) rf5 T « (log - i
i» Jo \ 2/

J
Now, using a form of Mellin's Inversion Formula6, from (4.1)

we have

f"e-« Q (x) dx = T(i + ^+ Is) r (f + i* - i«) x («),
Jo

where x (s) = X 0- — s)- Changing s into 1 — s, we get

(*-!>* Q (*) dx = r (f + i/n - ia) r (i + i* + J«) x («)•

1 Watson VII, §10.4(2).
2 Hardy and Titchmarsh IV, § 2.
3 Mehrotra V, § 8.
* Watson VII, §13.24(2).
5 See Bateman I, Hardy II and Pincherle VI.
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Hence

9 {x)= Ti I'*'** r < i+^+^) r(i+i/*-Ja) r(i+Jv+i«) x(8)f(a)x-d8

= T~i r + ^ r (i + *" + *s) "Ai <s> *"* ds>

where fo (5) = T (J + ^ + |s) T (f + fr - \a) X («) ̂  («).
As ip1 (s) satisfies the equation

<Ai(«) ='Ai(1 - * ) .

it follows from (2.1) that g{x) is Bv-

5. If, in Theorem II, we put /J, = V, we get a corollary. If /(a;) is
By, the function

0(*)= - T O (log -)f(y)dy
x Jo \ y J

is Bv provided that

Q (x) = -L f V A (5) cZs (a; > 0)
2T71 Jk

= 0 (cc<0),
where A (s) = X (1 — s).

6. Theorem III. If / (a;) is B^, the function

g (x) =\"XQ (log ±

is J?,,, provided that

f
= 0 (x < 0), >

where x(
s) satisfies (2.2).

The proof of this theorem is similiar to that of Theorem II.
The symmetry of the integral in (6.1) shows that if f(x) is Bv,

g (x) is i?^.

7. For the particular case /n = T \, v = ± \, the above theorem
takes the simpler form:

If f(x) is Be (or Bs), the function
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is Rg (or Bc) provided that

Q (x) = J-r fi+1"r (s) x (s) e» tfs (x > 0)

= 0 (a; < 0),

where ^ (s) satisfies (2.2).
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