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ABSTRACT

We investigate the implications of a dual approach to the graduation of the force of
mortality based on the modelling of the exposures as gamma random variables, as
opposed to the modelling of the numbers of deaths as Poisson random variables.
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1. INTRODUCTION

In this paper, we describe as the 'conventional' approach to graduation the method
whereby the force of mortality is graduated by fitting a parameterised formula to the
crude mortality rates under the assumption that the actual numbers of deaths are Pois-
son random variables conditional on the matching central exposures to the risk of
death, e.g. Forfar, McCutcheon & Wilkie (1988). Under this approach, the Poisson
assumption gives rise to a characteristic likelihood which is optimised to provide esti-
mates for the parameters in the graduation formula. It has been noted, e.g. page 113 of
Gerber (1995), that the same formal expression for the likelihood arises under the
different assumption that the central exposures to the risk of death are gamma random
variables conditional on the matching numbers of deaths. The implications of adopting
this dual approach for the parametric graduation process are investigated in this paper.
Following Renshaw (1991), both approaches are formulated within the generalised
linear modelling (GLM) framework , while the conclusions extend to include non-
linear parameterised graduation formulae.

A brief description of the salient features of GLMs is presented in Section 2 for
completeness. The consequences of switching from the 'conventional' approach to the
dual modelling approach when the data are based on head counts, or equivalently, on
policy counts in the absence of duplicate police;, are discussed in Section 3. The im-
plications for both approaches when duplicate policies are present in the data counts
are then discussed in Section 4 and Section 5 respectively. Finally an illustration of the
implications of the switch from the 'conventional' approach to the dual approach,
which reside largely in the reporting of the graduation, is presented in Section 6.
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2. GENERALISED LINEAR MODELS

The purpose of this section is to provide a brief introduction to GLMs. A complete
treatment of the theory and application can be found in McCullagh & Nelder (1989)
and Francis, Green & Payne (1993).

The basis of a GLM is motivated, in the first instance, by the assumption that the
data are sampled from a one parameter exponential family of distributions with log-
likelihood

l = ye-b(d)

for a single observation y, where 8 is the canonical parameter and 0 is the dispersion
parameter, assumed known. It is then straightforward to demonstrate that

d d2

m = E(Y) = — b{8) and Var(Y) = 0 — j b{8) = 0 b"(9).
d8 dO

We note that Var(K) is the product of two quantities. The quantity b"(9) is called the
variance function and depends on the canonical parameter and hence on the mean. We
can write this as V(m).

The log-likelihoods for some common distributions of interest and which conform
to these properties are

I = y log m — m- log y\

8 = log m, b(0) = exp0, V(m) = m, 0 = 1

for the Poisson distribution with mean m, and

/ = _ 2 L
V

6 = - —, b(d) = - log(-6»), V(m) = m2,0 = v"1

m

for the gamma distribution mean m and variance m2/v.
More generally a GLM is characterised by independent response variables {Yu: u =

1,2, ..., n} for which

E(Yu) = mu,Var(Yu)=*^ (2.1)

comprising a variance function V, a scale parameter (0 > 0) and prior weights cou.
Covariates enter via a linear predictor
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with specified structure (xUJ) and unknown parameters /J, linked to the mean response
through a known differentiable monotonic link function g with

The special link function g - 6, so that 6(m) - 77, is called the canonical link function.
Examples are the log link in the case of the Poisson distribution and the reciprocal link
in the case of the gamma distribution.

The suffices or units u have structure, either intrinsic or imposed. The data compri-
se realisations [yu] of the independent response variables, matched to the structure of
the units. Generally in any one study, the detail of the distribution and link are fixed,
while the predictor structure may be varied.

Model fitting is by maximising the quasi log-likelihood

H = l

leading to the system of linear equations

= 0 v ;
£ "<l>V(mu)dpj

in the unknown fys. These are solved numerically, e.g. Francis, Green & Payne (1993),
McCullagh & Nelder (1989). Detail of the construction of standard errors for the pa-
rameter estimators, based on standard statistical theory, is also to be found in these
references. Denote the resulting values of the parameter estimators, linear predictor
and fitted values, for the current model c, fl}, fju and mu respectively, where

For members of the exponential family of distributions, the quasi log-likelihood is
synonymous with log-likelihood. The maximal structure possible has the property that
the fitted values are equal to the observed responses, that is mu = yu for all u, and is
called the full or saturated model/

The (unsealed) deviance of the current model c is

n

D{c,f) = d(y,m) = YJdu--

in which the fitted values under the current and saturated models impact on the for-
mula through the lower and upper limits of the integral respectively. The correspon-
ding scaled deviance is

d(y;m)
S(c,f)-d*(y;m) = ———= > 2a>,. I— ds = -2q(y\m). (2.3)
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For fixed distribution, fixed link and hierarchical model structures c, andc2, with c2

nested in c,, the difference in scaled deviance

S(c2,f)-S(C],f)

may be referred, generally as an approximation, to the chi-square distribution with v2 -
v, degrees-of-freedom, where v, and v2 denote the respective degrees-of-freedom.

Two types of residuals (which are identical only in the case of the Gaussian distri-
bution, for which V(s) =1) are of interest, the Pearson residuals

V(mu)
(2.4)

or the deviance residuals

where du is the wth. component of the (unsealed) deviance above.

3. HEAD OR POLICY COUNTS WITH NO DUPLICATES

3.1 Distribution Assumptions

In keeping with common practice, let

fix = the force of mortality at age x
wpx = the probability that a life aged x survives tot age x + w

and recall the basic identity
w

WPX = e x p - J fix+sds (3.1)
o

with the implied assumption that fix is a function of age alone and is therefore assumed
to be constant with respect to variations in calendar time within a fixed observation
window.

Focus on a set of individual lives or policyholders. If the latter, and the data are ba-
sed on policy counts, then it is assumed throughout this Section that all policyholders
possess a single policy. Individual members of the set are assumed to be observed
between ages x and x + 1 in thefixed calendar period or observation window t to t + t0,
with pre-specified policy duration where relevant, and their survival experience is
assumed throughout to be independent. Typically t0 = 4 years in many United King-
dom (UK) actuarial mortality studies. There is also interest in the case t0 = 1 year
when modelling trends in mortality, e.g. Renshaw, Haberman & Hatzopoulos (1996).
Within such a cell, identified in this instance by the suffix x, suppose an individual i
enters observation at age vxl and leaves it either by death (lx, - 1) or by censorship
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(lxi = 0) at age vxl + wxi where x < vxi < vxj +wxi < x + 1. Then it is well known see, e.g.
Section 3.2 of Cox & Oakes (1984), that each such datum contributes an amount.

'-'xi =wxl Pvx,^v*x',+wx,

to the likelihood, or, on resorting to the use of expression (3.1), an amount
w xl

hi = l 0 § Lxi = - J Hva +sds + hi lQg i"% +wxt

0

to the log-likelihood. Thus the total contribution to the log-likelihood from such a cell
is

x , ,, j
h = X hi=X r J ̂ + ° d s + 7 » l o g ^ + " - (3-2)

.•=i /=i [ o J
where the summation extends to all nx individuals contributing to the experience in the
cell. If in addition fix is assumed to be piecewise constant with respect to age within
each cell and accorded the central value jxx +1/2, expression (3.2) can be written as

where

denote the respective central exposure and actual number of deaths associated with
cell x. The expression for the full log-likelihood

} (3-3)

then follows by summation over all such cells. It is of specific interest to note that this
expression may be interpreted in one of two ways.

Firstly, and somewhat exclusively in the context of an actuarial graduation, expres-
sion (2.3) is identifiable as the kernel of the log-likelihood under the assumption that
the actual numbers of deaths, ax, are modelled as independent realisations of Poisson
random variables Ax conditional on rx, such that

Ax~Poi(r t Jux + 1 / 2).

For this case, the detail of the distributional requirements to set up the appropriate
GLM (equation (2.1) with u = x) is either

responses {A_t},with mx = rxjix+ln,V(mx) = mx,(j) = l,CDx =1, (3.4a)

or equivalently

responses [Ax /rx},with mx = Hx+\i2>V(mx) = mx^ = 1'®* = rx- (3.4b)
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Secondly, e.g. Section 11.5 of Gerber (1995), expression (3.3) is also identifiable as
the kernel of the log-likelihood under the assumption that the exposures to risk, rx, are
modelled as independent realisations of gamma random variables Rx conditional on ax,
such that

Rx ~

Superficially this result is perhaps a little unusual in-so-far as the gamma distribution
is generally associated with two unknown parameters, whereas here, as with the Pois-
son distribution above, there is only a single parameter to estimate. For this case, the
detail of the distributional requirements to set up the appropriate GLM (equation (2.1)
with u = x) is either

responses {7?x},with mx = ax ,V(mx) = mx,<j) = \,cox = ax, (3.5a)

or equivalently

responses {Rx I ax] ,with mx = ,V(mx) = mx,ty = \,(ox = ax. (3.5b)

The data comprise the ordered pairs of numbers of deaths and central exposures (ax, rx)
over a range of ages x. All of the rxs are non-zero by implication, but it is conceivable
that certain of the axs are zero. This is most likely to occur at the extremities of the age
range were the data are sometimes sparse. Note that while such data cells are retained
in any analysis of the data based on distributional assumptions (3.4a & b), they are
weighted out of any analysis based on distributional assumptions (3.5a & b).

3.2 Discussion

The optimisation of expression (3.3) under the former interpretation (based on the
Poisson distribution) is central to the current graduation practice of the Continuous
Mortality Investigation (CMI) Bureau in the UK, e.g. Forfar et al. (1988); while the
optimisation of expression (3.3) under the alternative interpretation (based on the
gamma distribution) would appear not to have been investigated previously in an
actuarial graduation setting.

It is possible to derive the first set of assumptions, in which the number of actual
deaths Ax form the response variables, by taking expectations and variances under the
identity

nx

A=YL,

where \, is the zero-one indicator random variable, introduced previously, in Section
3.1. It has the property

r

r,,ds
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and is assumed to be independent for all individuals i. The results then follow under
the assumption that /J,X is piecewise constant within cells, so that

E(IX,) = (£(/*) = 1 - e x p ( - ^ + 1 / 2 w , , ) ; (3.6)

and on neglecting second and higher order therms in the power series expansion of
cxp(-^ix+l/2wxl), so that

Var(Ia) =

Under the second set of assumptions, for which the responses satisfy

the individual exposures Wv are modelled as random variables. Under the additional
assumption that the individual exposures are independent and identically distributed, it
follows trivially from the reproductive property of the gamma distribution that they
have the gamma distribution

WXI ~ ^

Again based on the reproductive property of the gamma distribution, note that it is also
possible to construct the identical GLM by defining

1=1 J=\

in which the TXJs are assumed to be independent and identically distributed gamma
random variables, such that

TXJ ~gam(l,^x + 1 / 2),

and where at least one death is recorded in every cell. Here it is possible to interpret TXJ

as the sum of randomly selected censored exposures Wx, the last of which is associated
with a death.

The target of the graduation process is the force of mortality fix under distribution
assumptions (3.4a & b) and the force of vitality \/\lx under distribution assumptions
(3.4a & b). In using the latter description, we follow the terminology of Lambert
(1772) see, e.g. Daw (1980).

The value of the scaled deviance, (expression 2.3, with u = x) is identical under
both sets of modelling assumptions (3.4a & b) and (3.5a & b) and is equal to

where £ix denotes the graduated values of fix provided deaths are recorded for all ages
(i.e. ax > 0 V x) so that none of the terms are weighted out of the expression on the
right hand side (RHS) of equation (3.7) under the dual modelling assumptions (3.5a &

https://doi.org/10.2143/AST.27.1.542064 Published online by Cambridge University Press

https://doi.org/10.2143/AST.27.1.542064


1 2 A E RENSHAW, PH D , S HABERMAN, PH D , FI A , AND P HATZOPOULOS, M SC

b). This is perhaps a surprising result on the surface. It reflects the fact that the same
objective function, expression (3.3), which is embedded in the construction of the
scaled deviance as the quasi log-likelihood function, (expression 2.2, with u = x) is
optimised when fitting the model structure (or graduation formula).

Subject to the weighting out of any data cells containing zero a^ in the one case,
the two sets of distribution assumptions lead to identical graduations for [ix. Thus,
assumption (3.4a) with responses \ax\ in combination with log-link based graduation
formulae of the type

i°g^+i/2 = 2X0, (3-8)

J=0

so that

gives identical graduations to those obtained under assumption (3.5b) with responses
(rx } so that

p

\ogmx =T]X= logo, - l o g ^ + l / 2 = \ogax + ^hxjPj-
j=0

Typically the parameterised structure of the RHS of the graduation equation (3.8) is a
polynomial in x with either the log rx or log ax terms declared as offsets, as the case
may be. The estimated values of the parameters /3, are identical in magnitude but op-
posite in sign in the two cases. Similarly assumption (3.4b) with responses {a/rx} in
combination with the power link graduation formulae of the type

7=0

gives identical graduations to those obtained under assumption (3.5b) with responses
{r/ax} so that

p

1=0

This time the estimated values of the parameters /?, are identical in both magnitude and
sign in the two cases. Thus the general conclusions of this paper extend to non-linear
parameterised graduation formulae via the identity link under the 'conventional' ap-
proach and the reciprocal link under the dual approach.

Let ex = rx/ix+l/2 denote the expected number of deaths predicted at age x, under
the conventional graduation methodology encapsulated by equations (3.4a &b), and
define the statistics
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(3.9)

It is common practice for these to be tabulated (subject to possible cell grouping in the
tails of the age range) as part of the diagnostic checking procedure of a graduation.
Note in particular that the statistic zx is the Pearson residual of the corresponding
GLM, (expression 2.3, with u = x). Thus typically the value of the approximate chi-
square statistic ^ z\ is quoted as one of the many test statistics of a graduation. The

X

equivalent statistics under the dual graduation methodology encapsulated by equations
(3.5a or b) involving definition ex - ax //tx+i/2 or expected exposure predicted at age

x, are

d~evx=rx-~ex,JVx=l^,~Zx=-i^, 100^ . (3.10)

Again note that these statistics are defined in such a way that zx denotes the Pearson
residual of the associated GLM (3.5a or b). The relationship between the values of the
deviation under the dual and 'conventional' graduation methodologies, namely

-devxdevx =

implies that the residuals under the two methodologies have opposite signs. Although
only strictly exact provided all the ax& are positive, this relationship provides a very
close approximation when the axs take zero values at the extremities of the age range
concerned. Detailed examination of the respective formulae defining the Pearson resi-
duals zx and zx reveals that they differ in magnitude (and have opposite signs). On the
other hand, because of the equality of the deviance components under the two metho-
dologies established above, the deviance residuals defined by either

sign (devx )^d~ or sign (devx )^[d~c

as the case may be, where dx is the general term in the summation on the RHS of ex-
pression (3.7), are identical in magnitude (and opposite in sign) under the dual metho-
dologies. It is also of interest to note that the final statistics quoted in expressions (3.9)
and (3.10), corresponding to the respective dual modelling scenarios, are the recipro-
cals of one another prior to scaling by 100. Again both of these features are exact
when all the a,s are positive and represent a very close approximation when any of the
axs are zero at the extremities of the age range.
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4. POLICY COUNTS WITH DUPLICATES: CLAIM NUMBER RESPONSE MODELS

4.1 Preliminaries

The data used in the construction of actuarial life tables are generally based on policy
rather than head counts. Consequently, the death of a policyholder with more than one
policy will appear as more than one death in the raw data. The resulting graduation
needs to account for this overdispersion: for a review of the issues involved, readers
should consult Forfar et al. (1988) and Renshaw (1992).

Let

Dxl = the number of policies held by policyholder /, age x
CXI = the number of policies held by policyholder /, age x, resulting in a claim

Assume that the random variables Dx, are i.i.d. V i and let Dx denote the generic type.
For each i, the events (Cx, = k I /„ = 1) and (DXI - k) are such that

and thus have identical probabilities. Define

\n{k) k = 1,2,3,...

where

= *) = p(C=*i/ , ,=i)= * .
0 otherwise

Denote

and

E{DX)=E(CXI i ix,=i)=2,^r; =. *,

E(D2
X) = E{C2

xl I la = 1) = J T / c V / ' =2nx.
k=\

It also follows by definition that

so that

E(Cxl\Ixl =O) = E(C2
X, I/,, =0) = 0.

Hence the unconditional distribution of CXI is given by

_(l-E(IJ, k = 0
=k) = \E{Iu)n[k\ 4 = 1,2,3,...
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for which

E{Cxl)=xKxE{lxl), E(Cl)=2nxE{Ixl).

These equations, in combination with expression (3.6) for E(IJ, on neglecting second
and higher order terms in the power series expansion of exp(-^x+,/2 w,), imply that

"xnx^x+V2wxl <mdVar(Cx,) ~ 27txL

We also have an interest in the first two moments of the product random variable
DXI \XI. Under the mild assumption that the number of policies, DXI, held by policyhol-
der /, aged x, is statistically independent of the mode of censorship, lxl, it follows that

E(DJxl) = E(DXI )E(IX,), Var(DxlIxl) = E(D2
XI )E(I2

XI) - [E(Dxl )E(Ixl)}
2.

These equations in combination with expressions (3.6), on neglecting second and
higher order terms in the power series expansion of exp(-/ix+1/2 w,), then imply that

xl)~lnxnx+U2wa andVm{DJx l )« 2nx^x + l l 2wx r (4-2)

4.2 Distribution Assumptions

Let

A'x= the number of policies giving rise to a claim through deaths
r'x = the cental exposure to the risk of death based on policies.

Note that r' = > drlwr,
( = 1

where dxl (> 1) denotes the number of policies held by policyholder i, reducing to rx if
and only if dxl = 1 V i. Throughout this Section the A'x s are modelled as random vari-
ables conditional on r'x. It follows on taking expectations and variances under any one
of the following identities

Ax nx nx

^ = X DXI (with Ax > 0), A'X=^CXI,A'X=^ DXI Ixl (4.3)
1 = 1 ( = 1 1 = 1

that the detail of the distributional requirements to set up the appropriate GLM
(equation (2.1), with u = x) is either

responses jA'x}, with mx = rx/ilx+l,2, V(mx) = mx, $ = 1, (Ox = <fx , (4.4a)

or equivalenfly

responses {A'x I r'x), with mx - fix+U2, V(mx) = mx,^> = \,(Ox- rx<px
], (4.4b)

where <px — ———.
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4.3 Discussion

The result (4.4a) follows from the first of the identities (4.3) which, under the assump-
tion that Ax is independent of the {Dx,} implies, in combination with equations (3.4a)

= E(Dx)E(Ax)=17txrxfix+U2

and

J f [E(DX)}2 ^ ( X )
E{DX) xnx

Under the independence of the terms in the respective summations, the same result
follows trivially from either the second of the identities (4.3) in combination with
equations (4.1), or the third of the identities (4.3) in combination with equations (4.2).
In all three cases, the product term xn/x in the expression for E(A'X) involving the
unobserved central exposure based on lives has been replaced by r'x, the observed
central exposure based on policies. The result (4.4b) follows trivially from result
(4.4a).

The justification for (4.4a) based on the second of the identities (4.3) and equations
(4.1) is a generalisation of the method described in Renshaw (1992) for initial exposu-
res and the binomial response model. This work establishes a link with much earlier
work on the modelling of duplicate policies using an empirical approach, e.g. Beard &
Perks (1949).

A knowledge of the reciprocals of the overdispersion parameters <j)x is needed to
form the weights, if the distributional assumptions (4.4) are to be fully implemented.
Insight into the potential variation of <j>x with x is provided by studies of the properties
of so-called variance ratios, the empirical equivalent of <j)x, e.g. Forfar et al. (1988).
These are defined as

where fx
l> denotes the proportion, at age x, of policyholders who have i policies and

where

/x
(i) > 0 V i = 1,2,3,...; ^ i / i 0 = 1 => vrx > 1.

There are a number of alternative practical possibilities. When available, variance
ratios can be used as estimates for the dispersion parameters (f)x and graduation can
proceed in accordance with assumptions (4.4). On the other hand, Forfar et al. (1988)
acting for the CMI Bureau in the UK, elect to transform the data by dividing both the
policy counts a'x and exposures r'x by the matching variance ratios prior to graduation
with assumptions (3.4) displacing assumptions (4.4). When a detailed knowledge of
the relevant variance ratios is not available for analysis a possible method of genera-
ting estimates for the dispersion parameters is described in Renshaw (1992). Alterna-
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tively, under the assumption that the underlying modelling distribution of the number
of duplicate policies is identical across all ages x in the absence of any further detailed
knowledge about this distribution, the dispersion parameters 0X may be replaced by a
constant scale (or dispersion) parameter 0 in assumptions (4.4), e.g. Renshaw (1992).
It is estimated as

unsealed deviance
0 =

degrees - of - freedom
and is root -y 0 used to scale the Pearson residuals zx of expressions (3.9) or zx of
expressions (3.10), by multiplying either Vx or Vx by 0, as the case may be. Here the
unsealed deviance is calculated using the expression on the RHS of equation (3.7).
(Recall that 0 was set to one when deriving this expression, so that the scaled deviance
S(c,f) is also the unsealed deviance in this instance.) This latter approach is closest in
spirit to that adopted by Forfar et al. (1988) involving the transformation of the data
prior to graduation in-so-far as it produces identical graduations, while allowing the
presence of duplicate policies to impact solely on the second moment properties of the
graduation process.

5. POLICY COUNTS WITH DUPLICATES: EXPOSURE RESPONSE MODELS

5.1 Preliminaries

As before, let

DXI = the number of policies held by policyholder i, age x
WXI = the contribution to the exposure by policyholder i, age x.

Recall that Dx, Dxl are assumed to be i.i.d. V i with

E{Dx)={izx,E(D2
x)=2nx.

Recall also the duality property of Section 3.2, namely that the central exposure to risk
of death based on head counts, at age x

so that

Mx+l/2
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Consider the identity
n

R'x^DxlWxl (5.1)
1=1

which defines the central exposure to risk of death based on policy counts, at age x.
Assuming that the number of policies held by an individual policyholder is indepen-
dent of the corresponding contribution to the exposure to risk from that individual and
that the individual exposures are independent, it follows from the identity (5.1) that

E(R') = E(Dr)Y E(Wr,) = E(Dr)E(Rr) = -&&L. (5.2)
A A £^ At II

, = 1 MAT+1/2

and

pij?'2\ — F(n2\PYV W }2 — F(D2}F(R2\— 2n*ax*• •*' (SVi
, = 1 M.t+1/2

after simplification.

5.2 Distribution Assumptions

Let

R'x = the central exposure to the risk of death based on policies
a'x = the number of policies giving rise to a claim through deaths.

Throughout this section the R'x s are modelled as random variables conditional on a'x.
It follows from equations (5.1), (5.2) and (5.3) that the detail of the distributional
requirements to set up the appropriate GLM (equation (2.1), with u = x) is either

responses {R'x}, with mx = a'x , V(mx) = m2, (j) = \,cox = y/~\ (5.4a)

or equivalently

lesponses {R'x Ia'x}, with mx = , V(mt) = m2,(f> = \,a>x = y/~l, (5.4b)

where this time

( -ir \ nn \

— -T- (5-5)
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5.3 Discussion

In parallel with the previous case, this time the product term xnxax in the expression for
E(R'X)involving the unobserved number of deaths ax based on head counts has been
replaced by a'x, the observed number of deaths base on policy counts. Again result
(5.4b) follows trivially from result (5.4a).

A knowledge of the reciprocals of the dispersion parameters y/x is required to form
the weights if the distribution assumptions (5.4a or b) are to be fully implemented. In
the event that the results of a study into the variance ratios for the policies in question
are available, this will furnish estimates for the first two moments xnx and 2nx of the
number of duplicate policies so that modelling can proceed. Alternatively if it is assu-
med that the square of the coefficient of variation of the number of duplicate policies
held by an individual is sufficiently small so as to make the first term on the RHS of
expression (5.5) for y/x is negligible in comparison with the second term,

l

and the situation is analogous to that discussed in Section 4.3.

6. ILLUSTRATION

The dual methodologies are illustrated using the Pensioners' widows 1979-1982 expe-
rience reported in Table 15.5 of Forfar et al. (1988). The data (ax, rx), comprising the
numbers of deaths ax and matching central exposures rx, are reported in the age range
17 to 108 years inclusive. There are 2 + 5 = 7 completely empty cells in the extremi-
ties of the age range and 28 + 12 = 40 cells contain no reported deaths. The detail of
the graduation contained in the above Table is based on Gompertz's formula fitted by
the 'conventional' approach, in which the numbers of deaths are modelled as Poisson
random variables. The data have been regraduated using both the 'conventional' ap-
proach based on assumptions (3.4a) with predictor-link formulation

and the dual approach based on assumptions (3.5a) with equivalent predictor-link
formulation

logmA. =

where mx denotes the respective mean responses. The associated graduation formula,
implied by these formulae, is taken from Forfar et al. (1988). Some details of the res-
pective fits including the parameter estimates are recorded in Table 6.1. The corres-
ponding parameter estimates have opposite signs as expected, but differ slightly in
absolute value because the data entries involving zero deaths feature only in the
'conventional' analysis. Similarly the corresponding values of both the deviances and
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the degrees-of-freedom differ for the same reason. These differences are found to
disappear when the 'conventional' analysis is applied to the reduced data set and iden-
tical graduations result as a consequence (subject to very minor differences induced by
the numerical fitting algorithm operating under the two different approaches.) An
extract of both graduations based on the detail of Table 6.1 is reproduced in Table
6.2(a&b), along with detail of the associated statistics of expressions (3.9) and (3.10),
as the case may be. The detail of Table 6.2a is in complete agreement with that to be
found in Table 15.5 of Forfar et al. (1988), while the relatively minor effects of the
excluded data under the dual modelling approach are demonstrated. The basic diffe-
rences in the accompanying statistics used to monitor the effectiveness of a graduation
under the two different approaches, as described in Section 3.2, can be verified.

7. CONCLUSIONS

The 'conventional' actuarial approach to the construction of ^-graduations based on
the fitting of a wide class of parameterised mathematical formulae by optimising the
likelihood, in which the death counts are modelled as Poisson random variables con-
ditional on the central exposures, is effectively equivalent to a dual approach in which
the central exposures are modelled as gamma random variables conditional on the
death counts. The dual approaches lead to identical graduations provided deaths are
recorded in all data cells, otherwise small differences occur in practice as a conse-
quence of the loss of information from any data cells in which no deaths are recorded
under the one approach. Key differences occur in the diagnostic statistics of a gradua-
tion, with residuals being accorded opposite signs under the two different approaches.
In practice, a detailed knowledge of the specific nature of the empirical distributions
on duplicate policies has only a minimal effect on the first moment of a graduation
under the two formulations described here. In the absence of this knowledge, these
first moment properties may be neglected and a free standing constant scale (or disper-
sion) parameter introduced, under either formulation, to represent the second moment
properties of a graduation in the presence of duplicate policies.

The dual approach to ^-graduation would appear to have distinct advantages over
the 'conventional' approach to graduation, when it is adapted and applied to the con-
struction of select mortality tables. This is discussed further in Renshaw & Haberman
(1996), who successfully use the dual approach to model the log crude mortality ratios
for individual select durations relative to the ultimate experience.
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TABLE 6.1

PARAMETERS ESTIMATES WITH (STANDARD ERRORS)

'conventional' approach dual approach

deviance is 60.98 with 83 d.f.

scale parameter 0=1

/} = -3.553 (0.03923)

/? =4.317(0.1966)

deviance is 45.99 with 50 d.f.

scale parameter <|>= 1

y3()=3.543 (0.03925)

J3 =-4.332(0.1979)

TABLE 6.2(a)

GRADUATION EXTRACT, 'CONVENTIONAL' METHOD

X

17
30
40
50
60
65
70
75
80
85
95

108

X

17
30
40
50
60
65
70
75
80
85
95

108

0.5
36.0

115.5
378.5

1029.0
1029.0
941.0
607.0
323.5
132.5

4.0
2.0

ax

0
0
0
3

14
21
21
33
25
11
2
0

Vx + l/2

0.00029
0.00091
0.00215
0.00509
0.01208
0.01860
0.02864
0.04410
0.06790
0.10455
0.24790
0.76154

»x + l/2

0.00029
0.00090
0.00215
0.00511
0.01216
0.01876
0.02893
0.04461
0.06880
0.10611
0.25237
0.77841

ax

0
0
0
3

14
21
21
33
25
11
2
0

ex

0.00
0.03
0.25
1.93

12.43
19.14
26.95
26.77
21.97
13.85
0.99
1.52

devx

0.00
-0.03
-0.25
1.07
1.57
1.86

-5.95
6.23
3.03

11.60
1.01

-1.52

TABLE 6.2(b)

GRADUATION EXTRACT,

rx

0.5
36.0

115.0
378.5

1029.0
1029.0
941.0
607.0
323.5
132.5

4.0
2.0

*
586.7

1151.1
1119.6
725.9
739.7
363.4
103.7

7.9
*

_
_

-
3.53
4.37
5.19
5.17
4.69
3.72

_
-

DUAL METHOD

devx

#

*
-208.2
-122.1
-90.6
215.1

-132.7
-39.9
28.8
-3.9

*

*
*

338.7
307.6
244.3
158.4
128.8
72.7
31.3
5.6

*

_
_
_
-

0.45
0.43

-1.14
1.20
0.65

-0.77

-

zx

*

-0.61
-0.40
-0.37
1.36

-1.03
-0.55
0.92

-0.70
*

100aJex

-
112.6
109.7
77.9

123.3
113.8
79.4

-

100rx/ex

*
*
*

64.5
89 4
91.9

129.6
82.1
89.0

127.8
50.5
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