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Abstract

Biomarkersmay be useful endophenotypes for genetic studies if they share genetic sources of variation with the outcome, for example, with all-
cause mortality. Australian adult study participants who had reported their parental survival information were included in the study: 14,169
participants had polygenic risk scores (PRS) from genotyping and up to 13,365 had biomarker results. We assessed associations between
participants’ biomarker results and parental survival, and between biomarker results and eight parental survival PRS at varying p-value
cut-offs. Survival in parents was associated with participants’ serum bilirubin, C-reactive protein, HDL cholesterol, triglycerides and uric
acid, and with LDL cholesterol for participants’ fathers but not for their mothers. PRS for all-cause mortality were associated with liver func-
tion tests (alkaline phosphatase, butyrylcholinesterase, gamma-glutamyl transferase), metabolic tests (LDL andHDL cholesterol, triglycerides,
uric acid), and acute-phase reactants (C-reactive protein, globulins). Association between offspring biomarker results and parental survival
demonstrates the existence of familial effects common to both, while associations between biomarker results and PRS for mortality favor at
least a partial genetic cause of this covariation. Identification of genetic loci affecting mortality-associated biomarkers offers a route to the
identification of additional loci affecting mortality.

Keywords: biochemical tests; familial similarity; lifespan; polygenic risk scores; survival

(Received 13 June 2022; accepted 14 June 2022; First Published online 12 July 2022)

There is debate about genetic sources of variation in individual life-
span (age at death). Until recently, estimates of heritability were
mostly in the range 15%–30% (summarized in Table 1 of
Murabito et al., 2012; see also Shor et al., 2019), but significant fam-
ilial nongenetic effects and assortative mating may have led to
inflated estimates of heritability (Ruby et al., 2018). Genome-wide
association studies (GWAS) have identified a number of signifi-
cant loci for lifespan or related phenotypes (Deelen et al., 2019;
Deelen et al., 2016; Joshi et al., 2017; Timmers et al., 2020;
Timmers et al., 2019; Wright et al., 2019; Zenin et al., 2019),
and the challenge is to expand the number of substantiated loci
to improve our understanding of the pathways that are associated
with variation in lifespan.

However, GWAS for lifespan are subject to a number of specific
difficulties. Lifespan is unknown until death occurs and in practice
it will then most likely be too late to collect optimal biological sam-
ples and covariate information. Ideally, the design would include
recruitment of a cohort at an age before natural mortality is

common and follow-up until death, but this may take 50 years
and is generally impractical. Survival analysis can give results after
a shorter follow-up, although this may introduce bias towards the
detection of causes of earlier death. For these reasons, other
approaches have been used.

One alternative has been to use the information on the survival
and age at death of the parents of genotyped people (Joshi et al.,
2017; Wright et al., 2019) and infer their likely genotypes from
their offspring. This has both advantages and disadvantages; it
may increase power because a higher proportion of parents than
of probands will have died, but this is offset by the lack of direct
genotyping: if both parents are present in the study, the effective
sample size is 50% of that for subject mortality. If there are secular
trends in mortality then the factors (including genetic factors)
affecting it may differ between the parental and offspring genera-
tions. Perhaps the greatest advantage of combining parental and
offspring information for genetic studies on mortality is that the
time-consuming and expensive long-term follow-up of partici-
pants can be avoided.

Another approach, which also avoids the costs of follow-up, has
been to recruit people who have already lived to an advanced age,
although there are indications that both the calculated heritability
and some of the allelic effect sizes may depend on the age cut-off
chosen (van den Berg et al., 2019; Wright et al., 2019). For this
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design, power to detect realistic effect sizes may be a problem
unless extreme longevity (e.g., more than 100 years) is the criterion
(Tan et al., 2008). Again, secular trends may lead to changes in the
prevalence of disease and in the impact of risk factors, and hence to
the identification of loci that were important for those who have
survived to extreme old age but are less so for those who are cur-
rently aging.

Definition ofmortality-related endophenotypes (characteristics
genetically correlated with lifespan), measurable in large numbers
of people and not requiring long-term follow-up, offers a further
approach. This can use the same individuals for both genotyping
and phenotyping. So far, such endophenotypes have included cog-
nition, physical activity, lung function, blood pressure, muscle
strength and age at onset of major disease (‘healthspan’; Deelen
et al., 2016; Marioni et al., 2016; Sanders et al., 2014; Singh et al.,
2015; Zenin et al., 2019). Inclusion of obesity-related metabolic
phenotypes has also been suggested (Marron et al., 2019). Loci
affecting such endophenotypes could form a shortlist for
lifespan-related GWAS with a reduced multiple-testing burden.

We have previously found associations between multiple bio-
chemical test results and all-cause mortality (Whitfield et al.,
2020) and now move on to clarify the sources of covariation

between them. Attempts to assess genetic covariation between phe-
notypes can use inferential family-based or direct genotype-based
approaches, or both. In our comparison of familial, polygenic and
biochemical predictors of mortality, we noted significant correla-
tions between some of the biochemical test results and (1) mea-
sures of parental survival and (2) polygenic risk scores (PRS) for
mortality. This implies that specific effects on the risk associated
with biomarker results are transmitted across generations and that
some of the polygenic risk is also captured by biomarker results.
The details of the overlap deserve examination.

First, we have performed survival analysis using our study
participants’ biomarker results to ‘predict’ survival of their mothers
and fathers, for whom we have information on their vital status—
living or dead — as reported by their offspring, and their ages at
that time if living or age at death. Second, we have examined the
relationships between biomarker results in our study participants
and their PRS computed for a range of p-value thresholds from a
meta-analysis of GWAS results based on parental survival (Joshi
et al., 2017). Patterns of correlation across the PRS can tell us
whether the genetic covariation is mainly due to variants with sub-
stantial effects (PRS with stringent p-value cut-offs) or to variants
with individually small effects.

Table 1. Betas with robust standard errors and p values for association of maternal and paternal survival with offspring’s (age- and age-squared) and sex-adjusted
biomarker results. Beta coefficients are estimated per 1 standard deviation difference in the offspring’s age- and sex-adjusted test result; hazard ratios per 1 standard
deviation difference can be calculated as exp(beta). There are 20 independent variables, and p values are not adjusted for multiple testing

Mothers’ survival Fathers’ survival

N total N deaths Beta Robust SE p N total N deaths Beta Robust SE p

Creatinine 10,441 2869 0.030 0.021 .142 10,373 4735 0.003 0.017 .872

Urea 10,437 2867 0.036 0.020 .073 10,370 4733 0.007 0.017 .684

Uric acid 10,485 2882 0.088 0.022 4.50 x 10–5 10,418 4756 0.075 0.017 1.71 x 10–5

Calcium 8741 2431 0.021 0.022 .354 8686 4038 0.002 0.019 .929

Total protein 10,337 2853 0.006 0.021 .767 10,270 4696 0.006 0.016 .728

Albumin 10,437 2871 −0.062 0.020 .0024 10,369 4737 −0.022 0.017 .181

Globulins 10,328 2850 0.048 0.021 .026 10,261 4692 0.026 0.017 .118

Bilirubin 10,387 2855 −0.055 0.023 .018 10,320 4710 −0.051 0.018 .0042

ALP 8755 2433 0.026 0.027 .323 8700 4039 0.043 0.019 .026

AST 10,914 3022 0.007 0.020 .736 10,844 4961 −0.009 0.015 0.566

ALT 10,913 3022 0.004 0.020 .853 10,843 4961 0.028 0.016 .074

AST/ALT ratio 10,908 3020 0.027 0.020 .168 10,838 4958 −0.042 0.016 .010

GGT 10,914 3022 0.035 0.021 .093 10,844 4961 0.053 0.016 8.68 x 10–4

BCHE 10,215 2791 −0.001 0.023 .961 10,159 4602 0.050 0.019 .010

Total cholesterol 11,174 3112 −0.022 0.021 .308 11,103 5104 0.053 0.016 .0014

LDL-C 10,766 2980 −0.018 0.021 .382 10,698 4892 0.063 0.017 1.70 x 10–4

HDL-C 11,175 3113 −0.084 0.023 1.99 x 10–4 11,104 5105 −0.064 0.017 1.84 x 10–4

Triglycerides 11,175 3113 0.065 0.020 .0013 11,104 5105 0.060 0.016 1.99 x 10–4

Glucose 6993 2040 0.011 0.022 .624 6963 3420 0.040 0.018 .029

CRP 9563 2563 0.088 0.022 5.12 x 10–5 9512 4267 0.052 0.019 .0051

Iron 9318 2617 −0.029 0.022 .180 9260 4315 −0.029 0.017 .088

Transferrin 10,997 3053 −0.014 0.023 .533 10,927 5008 0.043 0.018 .013

Saturation 9313 2614 −0.016 0.023 .481 9256 4313 −0.044 0.018 .014

Ferritin 11,002 3056 0.042 0.022 .059 10,931 5012 0.000 0.016 .999

Note: ALP, Alkaline phosphatase; AST, Aspartate aminotransferase; BCHE, Butyrylcholinesterase; HDL-C, High-density lipoprotein cholesterol; LDL-C, Low-density lipoprotein cholesterol; CRP, C-
reactive protein.
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We find that many of the biomarker values are associated with
mortality in the parental generation, and that many are associated
with mortality PRS computed at p-value cut-offs of varying
stringency.

Subjects and Methods

Data for this analysis are derived from several studies on cohorts of
adult twins and their relatives. The sources and data are described
more fully in Whitfield et al. (2020) but briefly, there were three
studies (Heath et al., 1997; Heath et al., 2011; Kirk et al., 2000;
Whitfield et al., 2008; Whitfield et al., 1998) conducted between
1993 and 2005 that included blood collection and performance
of biochemical tests and genotyping, as shown in the flowchart
in Figure 1. The earliest of these took place between 1993 and
1996, and was based on people who had volunteered for inclusion
in the Australian Twin Registry and included only twins; it was ori-
ented towards studying the heritability of risk factors for mental or
physical disease. The second in 1996−1999 focused on traits asso-
ciated with anxiety and depression and included twin pairs and
some of their siblings, with some selection for extremely concord-
ant or discordant pairs for anxiety phenotypes. The third study in
2001−2005 included twins and their siblings, parents, spouses and
offspring, and focused on genetic factors influencing smoking and
alcohol use. Information on numbers and ages, and descriptive sta-
tistics for biomarker results by study and sex, are shown in
Supplementary Table 1. Participants provided blood samples from
which serum was separated, for analysis on the day of collection or
after storage at −80°C. DNA was prepared from the buffy coat of
white blood cells.

Approval for the studies that generated the data used for this
article and for the current analysis was given by the Human
Research Ethics Committee of QIMR Berghofer Medical Research

Institute, and study participants gave informed consent for collection
of data and biological samples.

The biochemical tests (listed in Table 1) were almost entirely
done using Hitachi or Roche 747, 917 or Modular P analysers
and Roche reagents (Roche Diagnostics Australia, North Ryde
NSW 2113). Glucose results were adjusted for time between the
last meal and blood collection (fasting time). Where people had
participated in more than one study, the earliest result for each test
was used. Log10-transformation was carried out for tests with
skewed distributions and sex-specific z scores, adjusted for age
and age-squared for each test and each participant were then cal-
culated. These scores were used in the survival analysis so that the
hazard ratio (HR) for each potential predictor could be compared
on a per-standard-deviation basis.

As part of previous questionnaire or interview studies, partic-
ipants had answered questions about whether their mother and
father were alive, and their current ages or ages at death. In relation
to the parents’ survival, the design is therefore cross-generational
rather than truly prospective. This information was used to esti-
mate effects on parental survival in Cox regression, which incor-
porates information on whether each parent is known to be
alive or to have died at the time of reporting, and on their age
at that time. This analysis was necessarily restricted to those for
whom information on both the participant biochemical results
and the parental survival information were available.

Genotyping of our study participants was done using various
Illumina arrays; after quality control of the genotyping, a set of sin-
gle nucleotide polymorphisms (SNPs) common to these arrays was
defined and additional SNPs were imputed from these results.
Genotyping quality control included requirements for call rate
≥95%, minor allele frequency ≥1%, and Hardy–Weinberg equilib-
rium p value >10–6. Genotyping results were excluded if subjects
had non-European ancestry, or if there was a mismatch between

Fig. 1. Flowchart for studies and types of data
contributing to baseline assessments and to fol-
low-up of participants. Numbers shown are for
participants who have results for biochemical
tests in one or more of the baseline studies
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reported and genotype-based sex/gender or pedigree information.
Imputation used shapeit v.2, minimac3 and 1000 Genomes phase
3r5 all-populations data to derive genotypes for a total of 48 m
SNPs. Eight PRSs (PRS1 to PRS8) were calculated using allelic
association effect sizes from a GWAS on loci affecting lifespan
(Joshi et al., 2017). To avoid subject overlap between the study
cohorts used to estimate the PRS coefficients and the subjects with
data used in this analysis, the allelic effect sizes were recalculated
omitting data from our studies. Information on genotyping and
imputation procedures for other cohorts contributing to the study
from which the PRS coefficients were derived is given in the sup-
plementary data to that paper (Joshi et al., 2017). There were
13.6 m SNPs included in the GWAS whose allelic effect sizes were
available for the PRS calculation. PRS were calculated from the
imputed genotype dosages using the clumping and thresholding
method (Wray et al., 2014). We excluded SNPs with low imputa-
tion quality (r2< 0.6) or minor allele frequency below 1%. In addi-
tion, we restricted the number of SNPs used from the discovery
GWAS to include only those present in at least 50% of the maxi-
mum number contributing to each SNP, which resulted in
9,090,871 SNPs. We selected the most significant independent
SNPs using PLINK 1.9 (Purcell et al., 2007) in order to correct
for signal inflation due to linkage disequilibrium (LD; criteria
LD r2< 0.1 within windows of 10 MBp). Thresholds for inclusion
of independent SNPs were: PRS1, p< 5 x 10–8, 8 SNPs; PRS2,
p< 10–5, 118 SNPs; PRS3, p < .001, 3284 SNPs; PRS4, p < .01,
19,191 SNPs; PRS5, p < .05, 64,087 SNPs; PRS6, p < .1, 105,730
SNPs; PRS7, p < .5, 302,910 SNPs; PRS8, p≤ 1.0, 417,080 SNPs.

IBM SPSS, release 22 (IBM Corp., Armonk, NY) was used for
data management, estimation of means and correlations, and pre-
liminary survival analysis. However, because our recruitment of
study participants emphasized twins and their families, there is
genetic overlap between many of the subjects. To allow for this,
we conducted the Cox regression analysis for parental survival,
and the regression analysis for associations between test results
and PRS, in Stata (StataCorp LLC, College Station TX) with clus-
tering by family to generate robust standard errors for the regres-
sion coefficients and confidence intervals for HR. The time
dimension used for survival analysis was reported age at death
or censoring of participants’ parents. This is considered more
appropriate than time from baseline assessment for epidemiologi-
cal follow-up studies where no time for onset of exposure can be
defined (Cologne et al., 2012). Separate analyses were done for the
survival of participants’ mothers and fathers. Parents who were
reported to still be alive were censored at the age they had reached
at the time of reporting. The covariates (predictors) tested were the
age- and sex-adjusted standardized residuals for each of the tests,
measured in the study participants.

Results

Associations Between Biomarker Results and Parental
Mortality

Results of survival analysis using Cox regression with the offspring
(study participant) biomarker results and their mothers’ and
fathers’ reported survival are shown in Table 1. This assesses
whether and to what extent the biomarker-associated risks are
transmitted across generations.

Although most effect sizes were similar for participants’ moth-
ers and fathers (Figure 2), there was a notably stronger effect of
LDL cholesterol (LDL-C) on fathers’ survival than on mothers’,

with beta coefficients of −0.018 ± 0.021 (p = .382) for mothers
and 0.063 ± 0.017 (p= 1.70 x 10–4) for fathers.

We attempted to assess which of the biomarker associations
were independently significant by entering those which were sig-
nificant in the univariate analyses in a stepwise procedure. This did
show that uric acid, HDL- and LDL-C, and GGT were independ-
ently significant (p< .05) for the fathers’ survival and CRP and uric
acid were independently significant for the mothers’, but the p val-
ues were notably less than for the univariate survival analyses.

Because the survival analysis could only be performed for fam-
ilies where information on both parental survival and biochemical
test results in the participants was available, we checked (a)
whether age- and sex-adjusted biochemical results differed accord-
ing to whether parental survival information was available, and (b)
whether parental survival differed according to whether biochemi-
cal test results were available for the participants. Results are shown
in Supplementary Table 3. There were small differences in the
mean biochemical results (0.1 standard deviations in the adjusted
standardised residuals, or less), and no significant difference in
either maternal or paternal survival according to whether bio-
chemical test results were available.

Associations Between Biomarker Results and PRSs for
Mortality

Trends across PRS1 to PRS8, from the most to least stringent p
value for inclusion in PRS calculation, for correlations with
selected biomarkers are shown in Figure 3, with details in
Supplementary Table 2. In most cases, the significant correlations
were with the less stringently derived PRS5-PRS8, which included
loci that were not even nominally significant for mortality (with p
values >.05). Lipid correlations, on the other hand, were strongest
when only genome-wide significant (p< 5 x 10−8). SNPs were
included (PRS1), but nominally significant correlations were also
present with the more inclusive PRS5-PRS8. For proteins associ-
ated with the acute phase response (CRP, globulins), there was a
reversal of the direction of correlation from negative when only
a few loci were included to positive when all or nearly all were
included.

Discussion

A combination of biochemical, genetic, genomic and mortality
information on twins participating in a voluntary registry and their
relatives has allowed us to explore the co-transmission of all-cause
mortality and its biochemical risk factors. Having previously com-
pared the predictive value of biochemical tests, polygenic scores
and family history for mortality (Whitfield et al., 2020), we have
now undertaken a more detailed examination of the relationships
between the biochemical and genetic sources of variation in this
characteristic. Our starting point was the observation that there
were significant correlations between many of the biochemical
results and the statistics summarizing genetic risk; both the PRS
and parental survival. The potentially informative data comprised
first, resemblance between relatives, in this case parents and off-
spring, and second, PRS based on SNP genotyping.

Participants’ Biomarker Results Are Associated with Parental
Mortality

We know from our previous results that all-cause mortality among
the participants was significantly predicted by their mothers’ or
fathers’ survival. Because many of the test results in study
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participants were significantly correlated with the summary statis-
tic for survival in their parents (data not shown), we first ran sur-
vival analysis using Cox regression to test whether, and how far,
participants test results ‘predicted’ their parents’ reported mortal-
ity (see Table 1). Our survival analysis used parents’ reported ages

at death or censoring as the time variable, which is recommended
for follow-up studies. The alternative of using time from entry into
the study, adjusted for age at entry, can introduce bias under some
circumstances (Thiebaut & Benichou, 2004) and is inappropriate
for studies where no point can be defined at which exposure to risk

Fig. 2. Comparison of linear effect sizes (beta)
for prediction of paternal and maternal survival
from offspring’s age- and sex-adjusted bio-
marker results. Each point shows the betas for
a test and error bars show standard errors for
beta. The interrupted line shows x = y, equal
effects for mothers and fathers. Consistent pos-
itive effects are seen for uric acid (UA), C-reactive
protein (CRP), triglycerides (TG) and consistent
negative effects for HDL cholesterol (HDL) and
bilirubin (BILI). LDL cholesterol (LDL) shows a
significant positive effect in the fathers but not
the mothers

Fig. 3. Regression coefficients (beta) between
selected age- and sex-adjusted biomarker values
and polygenic risk scores. For each of the tests,
correlations are shown, down the page, for PRS1
(independent SNPs with p< 5 x 10–8 for mortal-
ity) to PRS8 (all independent SNPs). Error bars
show standard errors for the coefficients
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begins (Cologne et al., 2012). Given that our focus is on transmis-
sion of risk within families, we postulate that risk exposure for the
predictors tested is either lifelong or begins at a similar early age for
everyone.

Because the ages of our study participants varied substantially,
and because older participants would tend to have both older
parents and differences in age-related biochemical results, we
found it was important to adjust the test results for age and possible
nonlinear effects of age (age-squared), separately by sex. This
adjustment was done before use of the test results in the survival
analysis, so that they represented underlying risk exposure inde-
pendent of the effects of age of the study participants at the time
of blood collection.

Ourmain finding was the transmission of biomarker-associated
risk across generations, shown by the significant associations
between many biomarker results (which were not measured in
the parents) and parental mortality (based on reports by partici-
pants on their parents’ survival). The strongest intergenerational
effects were found for C-reactive protein, HDL cholesterol, triglyc-
erides and uric acid, with possible effects for albumin (significant in
the mothers but not the fathers) bilirubin (nominally significant,
p < .05, in both mothers and fathers), GGT (significant in the
fathers with a trend in the same direction for mothers) and glucose
(nominally significant for fathers but nonsignificant for mothers).
The fact that some tests that were significantly associated with
mortality in the offspring generation showed only nominal associ-
ation (p < .05) with parental survival may be due to nonfamilial
(environmental) aspects of risk or perhaps to insufficient power.

The tests which show associations with intergenerational trans-
mission of risk have often been shown to be associated withmortal-
ity in studies where tests are performed at baseline and the people
tested are followed until death or censoring, the classic survival-
study design. There is strong evidence for association of lipids
(LDL-C and HDL-C, triglycerides), inflammation markers (CRP)
and liver function tests (particularly GGT) with all-cause and par-
ticularly cardiovascular mortality. Uric acid (perhaps because of its
association with metabolic syndrome) and bilirubin (which has
antioxidant properties) have also been associated with mortality.
Most of these tests show significant heritability, so it is logical that
variation in these test results would be associated with variation in
parental mortality risk, but these aspects of risk do not seem to have
been put together previously in an intergenerational perspective.

One test that showed different predictive power between off-
spring and parents, and indeed between mothers and fathers,
was LDL-C. In the study participants themselves, we found no sig-
nificant association between LDL-C and mortality (beta = 0.013
± 0.027, p = .631; Whitfield et al., 2020). Our current results
on mothers’ and fathers’ mortality show a highly significant asso-
ciation with fathers’ mortality but not with mothers’ and we con-
sider that this illustrates the way in which risk and risk factors may
vary not only by sex but over time. Rates of death from ischemic
heart disease have fallen substantially in recent decades, potentially
reducing the impact of variation in LDL-C on all-cause mortality,
and this may account for the observed differences in association
between LDL-C as a risk factor and mortality as the outcome.

The associations between biomarker results in our study partic-
ipants and survival in their parents may be due to genetic variation
transmitted from parents to children, to shared environmental fac-
tors, or a combination of both. Attempts to resolve the familial
transmission of risk into shared-environmental and additive
genetic components using data from participating twin pairs were
inconclusive, consistent with low power for the classical twin

design to distinguish between these sources of variation (Martin
et al., 1978; Visscher et al., 2008).

Biomarkers Are Associated with PRSs for Mortality

The biomarker-associated risk overlapped with the SNP effects
summarized by the PRSs. This supports the presence of genetic
contributions to the covariation. We evaluated whether this was
due to a few loci of strong effect (associations with PRS1 or
PRS2, with the most stringent p-value cut-offs) or many loci with
individually weak effects (associations with PRS5 to PRS8). We
found that this varies among the biomarkers considered, as sum-
marized in Figure 3 and Supplementary Table 2.

The patterns of association fall into three groups. For LDL-C,
HDL-C and CRP, the most significant correlations were with
PRS1 or PRS2, and lipid and inflammatory loci included in calcu-
lation of these PRS were associated with reported mortality in a
previous study (Joshi et al., 2017). For uric acid, globulins, ALP,
GGT and triglycerides, the PRS based on a very wide range of loci
were the ones that had significant correlations, consistent with
highly polygenic effects. However, CRP and globulins showed neg-
ative correlations with stringent PRS and positive correlations with
the broadly based PRS. This is consistent with at least the APOE
locus, identified previously (Joshi et al., 2017) as having genome-
wide significant effects on mortality, having opposite-direction
allelic effects on LDL-C and CRP (Middelberg et al., 2011), while
the majority of loci have individually smaller but directionally con-
sistent effects on lipid- and inflammation-related risks. The similar
pattern for CRP and globulins presumably reflects the response of
at least some of the proteins included within the globulin group to
chronic inflammation.

Strengths and Limitations

Strengths of this study include our use ofmultiple types of data on a
reasonably large cohort drawn from the general community and
mostly in middle age when first assessed. Availability of informa-
tion on survival in the parents of the participants allowed a cross-
generational approach that is not strictly prospective but avoids the
problem of reverse causation (disease causing alteration in the pre-
dictor variables). Given the variety of approaches that have been
used by others to study factors affecting longevity, it is important
to note that we have studied survival rather than completed life-
span or achievement of extreme old age. There are limitations,
including limited power, to exclude small associations between
the nonsignificant biomarkers and familial effects on mortality.
We lacked information on the causes of parental mortality, and
we have not computed PRSs for subtypes of mortality such as
ischemic heart disease or specific cancers. There are some potential
sources of bias or lack of generalizability. Because we used infor-
mation provided by study participants on their parents’ survival,
people who did not have children were not represented in the mor-
tality data. Because recruitment of study participants was based on
initial contact with twins from a voluntary registry, there may be
some bias towards families that include twins, or have a greater
willingness to participate in health-related studies. It does not seem
likely that these factors would affect our conclusions, although the
fact that participants were living in Australia and nearly all were of
European descent might limit the generalizability of our results to
other populations.

In studies such as clinical trials where rates of loss to follow-up
may differ by treatment/placebo allocation, defining lost partici-
pants as censored when in fact they may have died can introduce
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bias from informative censoring. However, informative censoring
only introduces bias if the predictor (e.g., treatment/placebo status,
or in our case a quantitative risk factor) is associated with the prob-
ability of loss to follow-up. We consider that in our case the loss to
follow-up argument is not applicable, because only those parent–
offspring pairings where offspring had biochemical measurements
and had also provided information on their parents’ age at death
or last documented age if living were included. Where either
biochemical data or information on parents (but not both)
was missing, there were only minor differences between those
with full information and the other potential (but nonincluded)
participants.

Implications

We were initially struck by the association between participants’
biomarker results and the summary statistics (Martingale resid-
uals) for their parents’ survival. This is likely due to cotransmission
of these phenotypes through genetic or cultural mechanisms, or
potentially by effects of parental genes on the environments expe-
rienced by their children. The extent of the transmissible effects
may vary between the tests because those that were previously
shown to affect participants’ survival do not correspond exactly
with those affecting parental survival. However, the implications
of biomarker survival cotransmission go beyond this andmay offer
a route to the discovery of additional survival or mortality loci.

As discussed above, the identification of lifespan-associated
genetic loci throughGWAS presents a number of practical difficul-
ties. Use of more tractable endophenotypes co-inherited with sur-
vival/mortality (such as these biochemical tests and others that
may be validated in larger cohorts) may offer a route to discovery
of additional loci and pathways. Identification of more loci, and
phenomewide analysis for these, may help to answer the question
of whether there are overall resilience loci that diminish risk for
multiple age-related diseases, perhaps based on more effective
homeostasis or repair mechanisms; or whether lifespan heritability
is simply based on the absence of risk alleles for multiple diseases
without a common genetic basis.

Supplementary Material. To view supplementary material for this article,
please visit https://doi.org/10.1017/thg.2022.25.
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